Robust Dual Dynamic Programming


AuthorsAngelos Georghiou, Angelos Tsoukalas, Wolfram Wiesemann

PublicationOperations Research, Forthcoming


Multi-stage robust optimization problems, where the decision maker can dynamically react to consecutively observed realizations of the uncertain problem parameters, pose formidable theoretical and computational challenges. As a result, the existing solution approaches for this problem class typically determine suboptimal solutions under restrictive assumptions. In this paper, we propose a robust dual dynamic programming (RDDP) scheme for multi-stage robust optimization problems. The RDDP scheme takes advantage of the decomposable nature of these problems by bounding the costs arising in the future stages through lower and upper cost to-go functions. For problems with uncertain technology matrices and/or constraint right-hand sides, our RDDP scheme determines an optimal solution in finite time. If also the objective function and/or the recourse matrices are uncertain, our method converges asymptotically (but deterministically) to an optimal solution. Our RDDP scheme does not require a relatively complete recourse, and it offers deterministic upper and lower bounds throughout the execution of the algorithm. We demonstrate the promising performance of our algorithm in a stylized inventory management problem.

Desautels 22

In recognition of research excellence as it relates to publications in top-tier management journals, our Faculty has compiled a list of high quality, peer-reviewed management journals, which is referred to as the Desautels 22.