Jean-Francois Cloutier, PhD

Jean-Francois Cloutier, PhD
Contact Information
Email address: 
jf.cloutier [at]

Jean-François Cloutier’s research is aimed at understanding the molecular mechanisms that control axonal pathfinding during development of the nervous systems. The formation of accurate connections between the peripheral and central nervous systems is essential for the functioning of the various sensory systems that allow us to detect odors, sounds, tastes, pain, and temperature. While the basic anatomical principles of wiring in these systems are well understood, little is known about the mechanisms involved in establishing these wiring patterns.

Cloutier uses a combination of in vivo mouse genetic models and molecular biological approaches to identify cues involved in guiding axons of primary sensory neurons to their targets and to characterize intracellular signals that function downstream of these axon guidance cues. Gaining insight into the basic mode of action of guidance molecules will be important in the future development of therapies for neurological disorders and injuries requiring regeneration of specific axonal connections.

Selected publications: 

Prince, J. E. A., Cho, J.H., Dumontier, E., Andrews W., Cutforth, T., Tessier-Lavigne, M., Parnavelas, J., Cloutier, J.-F. (2009) Robo-2 controls the segregation of a portion of basal vomeronasal sensory neuron axons to the posterior region of the accessory olfactory bulb. J. Neurosci. 29:14211-14222.

Beaubien, F. and Cloutier, J.F. (2009) Differential expression of Slitrk family members in the mouse nervous system. Dev. Dyn. 238:3285-3296.

Cho, J.H., Prince, J.E.A., Cloutier, J.-F. (2008) Axon guidance events in the wiring of the mammalian olfactory system. Mol. Neurobiol. 39:1-9.

Briançon-Marjollet, A., Ghogha, A., Nawabi, H., Triki, I., Auziol, C., Fromont, S., Enslen, H., Chebli, K., Cloutier, J.-F., Castellani, V., Debant, A., Lamarche-Vane, N. (2008) Trio mediates netrin-1-induced Rac1 activation and axon guidance. Mol. Cell. Biol. 7: 2314-2323.

Cho, J.H., Lépine, M., Andrews W., Parnavelas, J., Cloutier, J.-F. (2007) Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb. The Journal of Neuroscience 27: 9094-9104.

Cloutier, J.-F., Sahay, A., Chang, E.C., Tessier-Lavigne, M., Dulac, C., Kolodkin, A.L., Ginty, D.D. (2004) Differential requirements for Sema3F and Slit-1 in axonal fasciculation, targeting, and segregation of olfactory receptor sensory neurons. J. Neurosci. 24: 9087-9096. [PDF]

Huber, A.B., Kolodkin, A.L., Ginty, D.D., Cloutier, J.-F. (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Ann. Rev. Neurosci. 26:509-63. [PDF]

Cloutier, J.-F., Giger, R.J., Koentges, G., Dulac, C., Kolodkin, A.L., Ginty, D.D. (2002) Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence of primary accessory olfactory neurons. Neuron 33: 877-92. [PDF]

Research areas: 
Neurodevelopmental Disorders

The Neuro logo McGill logoMcGill University Health Centre logoKillam logo


The Neuro is a McGill research and teaching institute; delivering high quality patient care, as part of the Neuroscience Mission of the McGill University Health Centre. We are proud to be a Killam Institution, supported by the Killam Trusts.




Back to top