BRIDGE Webinar: Jean-Pierre Dubé, University of Chicago


Scalable Price Targeting


We propose a Bayesion Decision-Theoretic approach for implementing targeted “personalized” price discrimination using a high-dimensional vector of observed customer characteristics. The approach consists of applying a Bayesian Bootstrap to a regularized logit demand model using a lasso. We use the bootstrap to quantify the uncertainty around the regularized demand estimates and the firm's profitability from different pricing decisions. We illustrate the proposed approach using a case study of business-to-business pricing at a large, online recruiting company. We first run a randomized price experiment to ensure that our training data can identify the causal effect of price on individual demand. The experiment provides us with a model-free estimate of demand. We use these data to estimate demand and conduct decision-theoretic optimal uniform and personalized pricing. The approach allows for customer-specific personalized prices. We then conduct a second experiment with new customers to create a prediction sample to validate our price recommendations and the proposed method for quantifying uncertainty. Optimized uniform pricing improves revenues by 64.9% relative to the control pricing, whereas personalized pricing structure improves revenues by 81.5%. These improvements hold both in the training sample and in the subsequent prediction sample. 


Contact Information

Lisa Walker
lisa.walker [at]

Coronavirus (COVID-19)

Get the latest Covid-19 updates and learn what to expect for McGill’s return to campus this Fall, 2021.

For Desautels specific updates please visit our COVID-19 FAQ page.

Back to top