Publications by topic

Adaptation and sensory processing

  • Huang, C.G., Metzen, M.G., Chacron, M.J. (2019). Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. Science Advances 5: eaax2211. PDF icon 2019_huang_sciadv.pdf
  • Huang, C.G., Chacron, M.J. (2017). SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus features: a review. Channels 11: 281-304. PDF icon 2017_huang_channels.pdf
  • Huang, C.G., Zhang, Z.D., Chacron, M.J. (2016). Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli. Nature Communications 7: 11353. PDF icon 2016_huang_naturecomms.pdf
  • Zhang, Z.D., Chacron, M.J. (2016). Adaptation to second order stimulus features by electrosensory neurons causes ambiguity. Scientific Reports 6: 28716. PDF icon 2016_zhang_scirep.pdf
  • Zhang, Z., Chacron, M.J. (2016). Scale-invariant adaptation in response to second-order electro-sensory stimuli in weakly electric fish. McGill Science Undergraduate Research Journal 11: 16-21. PDF icon 2016_zhang_msurj.pdf
  • Deemyad, T., Kroeger, J., Chacron, M.J. (2012). Sub and Suprathreshold adaptation currents have opposite effects on frequency tuning. Journal of Physiology 590: 4839-4858. PDF icon 2012_deemyad_jphysiol.pdf

 

Population Coding

  • Hofmann, V., Chacron, M.J. (2020). Neural On- and Off-type heterogeneities improve population coding of envelope signals in the presence of stimulus-induced noise. Scientific Reports 10: 10194. PDF icon 2020_hofmann_scirep.pdf
  • Hofmann, V., Chacron, M.J. (2018). Population Coding and Correlated Variability in Electrosensory Pathway. Frontiers in Integrative Neuroscience 12: 56. PDF icon 2018_hofmann_currbiol.pdf
  • Hofmann, V., Chacron, M.J. (2017). Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish. PLoS Computational Biology 13: e1005716. PDF icon 2017_hofmann_ploscompbiol.pdf
  • Metzen, M.G., Chacron, M.J. (2017). Stimulus background influences phase invariant coding by correlated neural activity. eLife 6: e24482. PDF icon 2017_metzen_elife.pdf
  • Metzen, M.G., Hofmann, V., Chacron, M.J. (2016). Neural correlations enable invariant coding and perception of natural stimuli in weakly electric fish. eLife 5: e12993. PDF icon 2016_metzen_elife.pdf
  • Metzen, M.G., Jamali, M., Carriot, J., Ávila-Ǻkerberg, O., Cullen, K.E., Chacron, M.J. (2015). Coding of envelopes by correlated but not single neuron activity requires neural variability. Proceedings of the National Academy of Sciences of the USA 112: 4791-4796. PDF icon 2015_metzen_pnas.pdf
  • Simmonds, B., Chacron, M.J. (2015). Activation of parallel fiber feedback by spatially diffuse stimuli simultaneously reduces signal and noise correlations via independent mechanisms in a cerebellum-like structure. PLoS Computational Biology 11: e1004034. PDF icon 2015_simmonds_ploscompbiol.pdf
  • Litwin-Kumar, A., Chacron, M.J., Doiron, B. (2012). The spatial structure of stimuli shapes the timescale of correlations in population spiking activity. PLoS Computational Biology 8: e1002667. PDF icon 2012_litwinkumar_ploscompbiol.pdf
  • Chacron, M.J., Bastian, J. (2008). Population Coding by Electrosensory Neurons. Journal of Neurophysiology 99: 1825-1835. PDF icon 2008_chacron_jneurophys.pdf

 

Optimized coding of sensory input

  • Huang, C.G., Metzen, M.G., Chacron, M.J. (2019). Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. Science Advances 5: eaax2211. PDF icon 2019_huang_sciadv.pdf
  • Mitchell, D.E., Kwan, A., Carriot, J., Chacron, M.J., Cullen, K.E, (2018). Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways. eLife 7: e43019. PDF icon 2018_mitchell_elife.pdf
  • Huang, C.G., Metzen, M.G., Chacron, M.J. (2018). Feedback optimizes neural coding and perception of natural stimuli. eLife 7: e38935. PDF icon 2018_huang_elife.pdf
  • Huang, C.G., Chacron, M.J. (2017). SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus features: a review. Channels 11: 281-304. PDF icon 2017_huang_channels.pdf
  • Huang, C.G., Chacron, M.J. (2016). Optimized parallel coding of second-order stimulus features by heterogeneous neural populations. Journal of Neuroscience 36: 9859-9872. PDF icon 2016_huang_jneurosci.pdf
  • Huang, C.G., Zhang, Z.D., Chacron, M.J. (2016). Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli. Nature Communications 7: 11353. PDF icon 2016_huang_naturecomms.pdf
  • Schneider, A.D., Jamali, M., Carriot, J., Chacron, M.J., Cullen, K.E. (2015). The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli. Journal of Neuroscience 35: 5522-5536. PDF icon 2015_schneider_jneurosci.pdf

 

Envelope coding

  • Marquez, M.M., Chacron, M.J. (2020). Serotonergic modulation of sensory neuron activity and behavior in Apteronotus albifrons. Frontiers in Integrative Neuroscience 14: 38. PDF icon 2020_marquez_frontintegrneurosci.pdf
  • Marquez, M.M., Chacron, M.J. (2020). Serotonin modulates optimized coding of natural stimuli through increased neural and behavioral responses via enhanced burst firing. Journal of Physiology. 598: 1573-1589. PDF icon 2020_marquez_jphysiol.pdf 
  • ​​​​​​​Hofmann, V., Chacron, M.J. (2020). Neural On- and Off-type heterogeneities improve population coding of envelope signals in the presence of stimulus-induced noise. Scientific Reports 10: 10194.  PDF icon 2020_hofmann_scirep.pdf
  • Metzen, M.G., Chacron, M.J. (2019). Envelope Coding and Processing: Implications for Perception and Behavior. In: Carlson B., Sisneros J., Popper A., Fay R. (eds) Electroreception: Fundamental Insights from Comparative Approaches. Springer Handbook of Auditory Research, vol 70. Springer, Cham. 
  • Huang, C.G., Metzen, M.G., Chacron, M.J. (2019). Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. Science Advances 5: eaax2211. PDF icon 2019_huang_sciadv.pdf
  • Huang, C.G., Metzen, M.G., Chacron, M.J. (2018). Feedback optimizes neural coding and perception of natural stimuli. eLife 7: e38935. PDF icon 2018_huang_elife.pdf
  • Thomas, R.A., Metzen, M.G., Chacron, M.J. (2018). Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts. Journal of Experimental Biology 221: jeb178244. PDF icon 2018_thomas_journalexpbiol.pdf
  • Huang, C.G., Chacron, M.J. (2017). SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus features: a review. Channels 11: 281-304. PDF icon 2017_huang_channels.pdf
  • Carriot, J., Jamali, M., Cullen, K.E., Chacron, M.J. (2017). Envelope statistics of self-motion signals experienced by human subjects during everyday activities: implications for vestibular processing. PLoS One 12: e0178664. PDF icon 2017_carriot_plosone.pdf
  • Huang, C.G., Chacron, M.J. (2016). Optimized parallel coding of second-order stimulus features by heterogeneous neural populations. Journal of Neuroscience 36: 9859-9872. PDF icon 2016_huang_jneurosci.pdf
  • Huang, C.G., Zhang, Z.D., Chacron, M.J. (2016). Temporal decorrelation by SK channels enables efficient neural coding and perception of natural stimuli. Nature Communications 7: 11353. PDF icon 2016_huang_naturecomms.pdf
  • Zhang, Z.D., Chacron, M.J. (2016). Adaptation to second order stimulus features by electrosensory neurons causes ambiguity. Scientific Reports 6: 28716. PDF icon 2016_zhang_scirep.pdf
  • Zhang, Z., Chacron, M.J. (2016). Scale-invariant adaptation in response to second-order electro-sensory stimuli in weakly electric fish. McGill Science Undergraduate Research Journal 11: 16-21. PDF icon 2016_zhang_msurj.pdf
  • Metzen, M.G., Jamali, M., Carriot, J., Ávila-Ǻkerberg, O., Cullen, K.E., Chacron, M.J. (2015). Coding of envelopes by correlated but not single neuron activity requires neural variability. Proceedings of the National Academy of Sciences of the USA 112: 4791-4796. PDF icon 2015_metzen_pnas.pdf
  • Metzen, M.G., Chacron, M.J. (2015). Neural heterogeneities determine response characteristics to second-, but not first-order stimulus features. Journal of Neuroscience 35: 3124-3138. PDF icon 2015_metzen_jneurosci.pdf
  • Metzen, M.G., Chacron, M.J. (2014). Weakly electric fish display behavioral responses to envelopes naturally occurring during movement: implications for neural processing. Journal of Experimental Biology 217:1381-1391. PDF icon 2014_metzen_jeb.pdf
  • Stamper, S.A., Fortune, E.S., Chacron, M.J. (2013). Perception and coding of envelopes in weakly electric fishes. Journal of Experimental Biology 216: 2393-2402. PDF icon 2013_stamper_jeb.pdf
  • McGillivray, P., Vonderschen, K., Fortune, E.S., Chacron, M.J. (2012). Parallel coding of first and second order stimulus attributes by midbrain electrosensory neurons. Journal of Neuroscience 32: 5510-5524. PDF icon 2012_mcgillivray_jneurosci.pdf
  • Savard, M., Krahe, R., Chacron, M.J. (2011). Neural heterogeneities influence envelope and temporal coding at the sensory periphery. Neuroscience 172: 270-284. PDF icon 2011_savard_neuroscience.pdf

 

Neuromodulation

  • Marquez, M.M., Chacron, M.J. (2020). Serotonin and sensory processing. In: Muller, C., Cunningham, K. (eds) Handbook of the Behavioral Neurobiology of Serotonin, vol 31. Academic press 
  • Marquez, M.M., Chacron, M.J. (2020). Serotonergic modulation of sensory neuron activity and behavior in Apteronotus albifrons. Frontiers in Integrative Neuroscience 14: 38. PDF icon 2020_marquez_frontintegrneurosci.pdf
  • ​​​​​​​Marquez, M.M., Chacron, M.J. (2020). Serotonin modulates optimized coding of natural stimuli through increased neural and behavioral responses via enhanced burst firing. Journal of Physiology. 598: 1573-1589. PDF icon 2020_marquez_jphysiol.pdf ​​​​​​​
  • Huang, C.G., Metzen, M.G., Chacron, M.J. (2019). Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. Science Advances 5: eaax2211. PDF icon 2019_huang_sciadv.pdf
  • Marquez, M.M., Chacron, M.J. (2018). Serotonin selectively increases detectability of motion stimuli in the electrosensory system. eNeuro 5: ENEURO.0013-18.2018. PDF icon 2018_marquez_eneuro.pdf
  • Larson, E.A., Metzen, M.G., Chacron, M.J. (2014). Serotonin modulates electrosensory processing and behavior via 5-HT2-like receptors. Neuroscience 271: 108-118. PDF icon 2014_larson_neuroscience.pdf
  • Toscano-Márquez, B., Krahe, R., Chacron, M.J. (2013). Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish. Journal of Experimental Biology 216: 2442-2450. PDF icon 2013_toscanomarquez_jeb.pdf
  • Deemyad, T., Metzen, M.G., Pan, Y., Chacron, M.J. (2013). Serotonin selectively enhances perception and sensory neural responses to stimuli generated by same-sex conspecifics. Proceedings of the National Academy of Sciences of the USA 110: 19609-19614. PDF icon 2012_deemyad_jphysiol.pdf
  • Mehaffey, W.H., Ellis, L.D., Krahe, R., Dunn, R.J., Chacron, M.J. (2008). Ionic and Neuromodulatory Regulation of Burst Discharge Controls Frequency Tuning. Journal of Physiology (Paris) 102: 195-208 (invited contribution). PDF icon 2008_mehaffey_jphysiolparis.pdf
  • Ellis, L.D., Krahe, R., Bourque, C.M., Dunn, R.J., Chacron, M.J. (2007). Muscarinic Receptors Control Frequency Tuning Through the Downregulation of an A-type Potassium Current. Journal of Neurophysiology 98: 1526-1537. PDF icon 2007_ellis_jneurophys.pdf

 

Feature Invariant Coding of natural Electro-communication stimuli

  • Metzen, M.G., Hofmann, V., Chacron, M.J. (2020). Neural synchrony gives rise to amplitude- and duration-invariant encoding consistent with perception of natural communication stimuli. Frontiers in Neuroscience 14: 79. PDF icon 2020_metzen_frontneurpersci.pdf
  • Metzen, M.G., Chacron, M.J. (2017). Stimulus background influences phase invariant coding by correlated neural activity. eLife 6: e24482. PDF icon 2017_metzen_elife.pdf
  • Sproule, M.K.J., Chacron, M.J. (2017). Electrosensory neural responses to natural electro-communication stimuli are distributed along a continuum. PLoS One 12: e0175322. PDF icon 2017_sproule_plosone.pdf
  • Metzen, M.G., Hofmann, V., Chacron, M.J. (2016). Neural correlations enable invariant coding and perception of natural stimuli in weakly electric fish. eLife 5: e12993. PDF icon 2016_metzen_elife.pdf
  • Aumentado-Armstrong, T., Metzen, M.G., Sproule, M.K.J., Chacron, M.J. (2015). Electrosensory midbrain neurons display feature invariant responses to natural communication stimuli. PLoS Computational Biology 11: e1004430. PDF icon 2015_aumentado-armstrong_ploscompbiol.pdf
  •  Vonderschen, K., Chacron, M.J. (2011). Sparse and dense coding of natural stimuli by distinct midbrain neuron subpopulations in weakly electric fish. Journal of Neurophysiology 106: 3102-3118. PDF icon 2011_vonderschen_jneurophys.pdf

 

Information coding in the vestibular system

  • Jamali, M., Carriot, J., Chacron, M.J., Cullen, K.E., (2019). Coding strategies in the otolith system differ for translational head motion vs static orientation relative to gravity. eLife 8: e45573. PDF icon 2019_jamali_elife.pdf
  • Mitchell, D.E., Kwan, A., Carriot, J., Chacron, M.J., Cullen, K.E, (2018). Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways. eLife 7: e43019. PDF icon 2018_mitchell_elife.pdf
  • Carriot, J., Jamali, M., Cullen, K.E., Chacron, M.J. (2017). Envelope statistics of self-motion signals experienced by human subjects during everyday activities: implications for vestibular processing. PLoS One 12: e0178664. PDF icon 2017_carriot_plosone.pdf
  • Carriot, J., Jamali, M., Chacron, M.J., Cullen, K.E. (2017). The statistics of the vestibular input experienced during natural self-motion differ between rodents and primates. Journal of Physiology 595: 2751-2766. PDF icon 2017_carriot_jphysiol.pdf
  • Jamali, M., Chacron, M.J., Cullen, K.E. (2016). Self-motion evokes precise spike timing in the primate vestibular system. Nature Communications 7: 13229. PDF icon 2016_jamali_naturecomms.pdf
  • Schneider, A.D., Jamali, M., Carriot, J., Chacron, M.J., Cullen, K.E. (2015). The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli. Journal of Neuroscience 35: 5522-5536. PDF icon 2015_schneider_jneurosci.pdf
  • Metzen, M.G., Jamali, M., Carriot, J., Ávila-Ǻkerberg, O., Cullen, K.E., Chacron, M.J. (2015). Coding of envelopes by correlated but not single neuron activity requires neural variability. Proceedings of the National Academy of Sciences of the USA 112: 4791-4796. PDF icon 2015_metzen_pnas.pdf
  • Carriot, J., Jamali, M., Chacron, M.J., Cullen, K.E. (2014). Statistics of the vestibular input experienced during natural self-motion: implications for neural processing. Journal of Neuroscience 34: 8347-8357. PDF icon 2014_carriot_jneurosci.pdf
  • Jamali, M., Carriot, J., Chacron, M.J., Cullen, K.E. (2013). Strong correlations between sensitivity and variability give rise to constant discrimination thresholds across the otolith afferent population. Journal of Neuroscience 33: 11302-11313. PDF icon 2013_jamali_jneurosci.pdf
  • Massot, C., Schneider, A.D., Chacron, M.J., Cullen, K.E. (2012). The vestibular system implements a linear-nonlinear transformation in order to encode self-motion. PLoS Biology 10: e1001365. PDF icon 2012_massot_plosbio.pdf
  • Schneider, A.D., Cullen, K.E., Chacron, M.J. (2011). In vivo conditions induce faithful encoding of stimuli by reducing nonlinear synchronization in vestibular sensory neurons. PLoS Computational Biology 7: e1002120. PDF icon 2011_schneider_ploscompbiol.pdf
  • Massot, C., Chacron, M.J., Cullen, K.E. (2011). Information transmission and detection thresholds in the vestibular nuclei: single neurons versus population encoding. Journal of Neurophysiology 105: 1798-1814. PDF icon 2011_massot_jneurophysiol.pdf
  • Sadeghi, S.G., Chacron, M.J., Taylor, M.C., Cullen, K.E. (2007). Neural Variability, Detection Thresholds, and Information Transmission in the Vestibular System. Journal of Neuroscience 27: 771-781. PDF icon 2007_sadeghi_jneurosci.pdf

 

Natural Stimulus statistics

  • Huang, C.G., Metzen, M.G., Chacron, M.J. (2019). Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. Science Advances 5: eaax2211. PDF icon 2019_huang_sciadv.pdf
  • Carriot, J., Jamali, M., Chacron, M.J., Cullen, K.E. (2017). The statistics of the vestibular input experienced during natural self-motion differ between rodents and primates. Journal of Physiology 595: 2751-2766. PDF icon 2017_carriot_jphysiol.pdf
  • Schneider, A.D., Jamali, M., Carriot, J., Chacron, M.J., Cullen, K.E. (2015). The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli. Journal of Neuroscience 35: 5522-5536. PDF icon 2015_schneider_jneurosci.pdf
  • Carriot, J., Jamali, M., Chacron, M.J., Cullen, K.E. (2014). Statistics of the vestibular input experienced during natural self-motion: implications for neural processing. Journal of Neuroscience 34: 8347-8357. PDF icon 2014_carriot_jneurosci.pdf
  • Metzen, M.G., Chacron, M.J. (2014). Weakly electric fish display behavioral responses to envelopes naturally occurring during movement: implications for neural processing. Journal of Experimental Biology 217:1381-1391. PDF icon 2014_metzen_jeb.pdf

 

Back to top