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Self-motion evokes precise spike timing
in the primate vestibular system
Mohsen Jamali1, Maurice J. Chacron1 & Kathleen E. Cullen1

The accurate representation of self-motion requires the efficient processing of sensory input

by the vestibular system. Conventional wisdom is that vestibular information is exclusively

transmitted through changes in firing rate, yet under this assumption vestibular neurons

display relatively poor detection and information transmission. Here, we carry out an analysis

of the system’s coding capabilities by recording neuronal responses to repeated presentations

of naturalistic stimuli. We find that afferents with greater intrinsic variability reliably

discriminate between different stimulus waveforms through differential patterns of precise

(B6 ms) spike timing, while those with minimal intrinsic variability do not. A simple

mathematical model provides an explanation for this result. Postsynaptic central neurons also

demonstrate precise spike timing, suggesting that higher brain areas also represent

self-motion using temporally precise firing. These findings demonstrate that two distinct

sensory channels represent vestibular information: one using rate coding and the other that

takes advantage of precise spike timing.
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U
nderstanding the set of transformations by which the
brain processes incoming sensory input to ensure accurate
perception and behaviour remains a central problem

in neuroscience. The vestibular system provides information
about our self-motion and spatial orientation relative to the
world that is required for ensuring gaze stability, balance and
postural control during everyday life. This essential sensory
system comprises two classes of primary afferents that differ
in their morphology and response dynamics (reviewed in ref. 1).
Historically, these two afferent classes have been termed regular
and irregular because the distribution of resting discharge
variability is bimodal. The evolution of amniotes from
amphibian-like animals was accompanied by the appearance of
a new type of vestibular receptor cell that preferentially supplies
irregular afferents (reviewed in ref. 2). It has been hypothesized
that the relatively late appearance of the type I hair cell in
evolution demonstrates a neural adaptation to changes in natural
stimulus statistics following the transition from a water-based
to a land-based environment (reviewed in refs 1,3). However,
this proposal is at odds with recent findings that despite
displaying higher sensitivity, irregular afferents are actually
worse at detecting and transmitting information about
self-motion than their regular counterparts4,5. Accordingly, why
the vestibular system uses two distinct peripheral channels to
represent self-motion is currently an open question.

Conventional wisdom has been that the vestibular neurons
represent sensory input exclusively through firing rate (reviewed
in ref. 3). Specifically, previous studies have characterized how the
firing rates of vestibular afferents and their target neurons in the
vestibular nuclei encode self-motion information and determine
motion detection thresholds4,6–9. It is however possible that the
longstanding paradox regarding the functional role of two distinct
channels to represent self-motion mentioned above stems from
the fact that other aspects of spiking activity have not been
considered. Theory suggests that temporal codes, in which
sensory input is instead represented by the precise timing of
action potentials, more efficiently represent sensory stimuli than
rate codes10. In this context, rate coding has been commonly
defined as a neural code in which stimulus attributes are
encoded by the number of spikes occurring during a time
window whose length is determined by the stimulus timescale.
In contrast, temporal coding has been defined as a neural code
in which stimulus attributes are encoded by the precise timing
of spikes within the same time window11–13. This then leads
to the question of whether the vestibular system takes advantage
of precise spike timing to encode self-motion. Temporal precision
in action potential firing has been observed in many other sensory
systems14–20 and could, in theory, also exist in the vestibular
system4. However, no study to date has directly tested whether
self-motion information is represented by precise spike timing.

Here we explicitly tested whether neurons in early vestibular
pathways use precise spike timing to represent self-motion. The
recordings were made from vestibular afferents while monkeys
experienced repeated trials of naturalistic self-motion stimuli.
We found that, while regular afferents primarily encode
motion stimuli through changes in firing rate, irregular afferents
instead more reliably discriminated between different stimulus
waveforms through differential patterns of precise spike timing.
A simple mathematical model reproduced our findings, and
provided an explanation of how the nature of the neural code
is determined by a balance between neuronal variability and
sensitivity. Importantly, afferent target neurons in the central
vestibular nuclei also discriminated between self-motion
stimuli through precise spike timing, suggesting that spike timing
in higher brain areas ensures accurate self-motion perception and
behaviour.

Results
Precision of spike timing in the vestibular periphery. To study
whether the vestibular system uses precise spike timing to
represent self-motion information, single-unit recordings were
made from peripheral semicircular canal afferents (N¼ 22 regular
and N¼ 35 irregular) and their central target neurons within the
vestibular nuclei (N¼ 24). We applied naturalistic self-motion
stimuli, and first quantified the information encoded through
changes in firing rate. We then investigated whether spike timing
represents self-motion information. Such an encoding strategy is,
by definition nonlinear, and requires reliable and precise
spike timing responses. Thus, if early vestibular pathways use
spike timing to represent self-motion information, the following
three conditions must be met: (1) neurons should respond
nonlinearly to naturalistic self-motion stimuli, (2) neurons should
display low trial-to-trial variability in their responses to repeated
presentations of the same stimulus, and (3) different self-motion
stimuli should evoke distinctive and precise patterns of
action potentials11. Accordingly, we tested whether all three
conditions were met by recording vestibular neural spiking
responses to repeated trials of naturalistic self-motion and
then establishing whether precise spike timing could be reliably
used to discriminate between different stimulus waveforms
(see the ‘Methods’ section).

Information transmission via changes in firing rate. Vestibular
afferents display a wide range of resting discharge variability and
are typically classified as either irregular or regular (Fig. 1a–c).
We applied single presentations of time-varying naturalistic
stimuli and found that both irregular and regular afferents
responded through changes in firing rate (Fig. 1d,e). Notably,
firing rate modulations were markedly greater for irregular
afferents due to their greater sensitivity (see Supplementary
Fig. 1A for population averages), consistent with the results of
previous studies that used artificial stimuli (that is, single
sinusoids and band-pass noise) to characterize these cells4,5. If the
increased variability of irregular afferents reduces their
information transmission through changes in firing rate (that is,
rate coding), we hypothesized that they should encode less
information during natural stimulation. Indeed, using the direct
method21 and computing firing rate conditional probability
density as a function of head velocity (see the ‘Methods’ section),
we found that this was the case. The firing rate probability density
showed a marked increase as a function of head velocity and
displayed higher variance for irregular afferents as compared
with their regular counterparts (compare Fig. 1f,g). Nevertheless,
as shown for each population in Fig. 1h,i, regular afferents
transmitted significantly higher information than irregular
afferents through changes in firing rate (Po0.01). Thus,
consistent with previous results obtained using an indirect
method4 (Supplementary Fig. 1B), regular afferents transmitted
more information about natural stimuli through changes in firing
rate than irregular afferents. We further note that subdivision of
irregular afferents into two subgroups corresponding to putative
morphological origin22,23 did not alter the qualitative nature of
this finding (Supplementary Fig. 2).

Irregular afferents display nonlinear responses. The responses
of typical irregular and regular afferents to repeated presentations
of naturalistic stimuli are shown in Fig. 2a,b, respectively.
Irregular afferents appeared to exhibit more reliable spiking
responses across trials than their regular counterparts, leading us
to hypothesize that irregular afferents use precise spike timing to
represent self-motion. If this is the case, then they should respond
nonlinearly to repeated trials of naturalistic self-motion stimuli
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(that is, condition 1 above). We tested this hypothesis by
comparing the stimulus–response and response–response
coherence curves for each afferent class (Fig. 2c), as a difference

between both is indicative of response nonlinearity24. We
quantified the difference through a nonlinearity index (NI) that
was obtained by integrating the coherence measures over the
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Figure 1 | Regular afferents transmit more information through changes in firing rate than irregular afferents. (a) Schematic showing early vestibular

pathways and recording sites. Single unit recordings were made from individual regular and irregular afferents that project to central neurons within the

vestibular nuclei. These central neurons project to the thalamus and cortex and mediate self-motion perception, as well as to the spinal cord for posture

stabilization. (b,c) Interspike interval probability distribution from example irregular and regular afferents, respectively. Insets: spiking activity from these

units. (d,e) Spiking (middle) and firing rate (bottom) response of example irregular and regular afferents to a time-varying head velocity stimulus (top),

respectively. The linear firing rate predictions for the irregular and regular afferents are also shown in red and blue, respectively. (f,g) Firing rate probability

density for example irregular and regular afferents, respectively. (h) Population-averaged mutual information transmitted by firing rate for regular (blue,

N¼ 22) and irregular (red, N¼ 35) afferents (P¼0.0028). (i) Population-averaged normalized mutual information for regular (blue, N¼ 22) and irregular

(red, N¼ 35) afferents (P¼ 1.6� 10� 5).
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stimulus frequency range and taking the ratio between the two
(see the ‘Methods’ section for details). NI is null when the
response-response and stimulus-response coherence curves are

equal, and approaches 100% with increasing levels of
nonlinearity. Indeed, consistent with our prediction, the
example irregular afferent showed strong response nonlinearity
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Figure 2 | Irregular afferents display nonlinear responses to repeated stimulus presentations. (a,b) Spiking (middle) and firing rate (bottom) responses

of the same example irregular and regular afferents shown in Fig. 1 to repeated stimulus (top) presentations, respectively. (c) Schematic showing repeated

presentations of the same stimulus and different spiking responses to each trial. The stimulus–response (SR) coherence (blue) measures correlations between

stimulus and response (top). In contrast, the response–response (RR) coherence (red) measures correlations between responses to repeated stimulus

presentations (bottom). (d,e) SR (red and blue) and square-rooted RR (purple and cyan) coherence curves obtained for the same example irregular and

regular afferents shown in a and b, respectively. (f,g) Population-averaged SR (red and blue) and square-rooted RR (purple and cyan) coherence curves

obtained for irregular and regular afferents, respectively. Shaded bands illustrate s.e.m. Inset: population-averaged nonlinearity index for regular (blue, N¼ 22)

and irregular (red, N¼ 35) afferents (P¼6.3� 10� 6). ‘*’ indicates statistical significance at the P¼0.05 level using a Wilcoxon rank-sum.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13229

4 NATURE COMMUNICATIONS | 7:13229 | DOI: 10.1038/ncomms13229 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


(Fig. 2d, NI¼ 22%). In contrast, the example regular afferent
showed weak response nonlinearity (Fig. 2e, NI¼ 5.7%).
Qualitatively similar results were obtained across our data set
(Fig. 2f,g, respectively; irregular: 31.5±3.2%, regular: 9.6±2.9%;
Po0.001), indicating that irregular afferents displayed strongly
nonlinear responses to naturalistic self-motion stimuli.

Irregular afferents use spike timing to encode self-motion. If
irregular afferents preferentially use spike timing to represent self-
motion information as compared to regular afferents, then there
are two additional conditions that must be met: they should
display low trial-to-trial variability in their responses to repeated
presentations of the same stimulus (condition 2) and different
self-motion stimuli should evoke distinctive and precise
patterns of action potentials (condition 3). To test whether these
conditions were met, we next compared the action potential
patterns evoked by different stimuli. Specifically, we quantified
the ability of an ideal observer to discriminate between these
different stimuli using the recorded spike trains.

Figure 3a shows the spiking responses of the same example
irregular afferent described above in Fig. 2 to three different
time-varying stimuli with identical statistics (mean¼ 0 deg s� 1,
standard deviation¼ 20 deg s� 1). Each stimulus was repeated
multiple times and we found that, over short timescales (that is, 1
and 6 ms; Fig. 3b, left and middle panels), the variability
between responses to different stimuli was often substantially
larger than that between responses to the same stimulus
(indicated by the grey shading around the three response
waveforms). In such cases, stimulus separation was possible and
was better at 6ms. In contrast, at longer (for example, 100 ms)
timescales, there was significant overlap between responses
thereby limiting discriminability (Fig. 3b, right panel). To directly
quantify this observation, we used the Victor–Purpura distance
metric25 and compared the distance between a neuron’s
responses to a given stimulus and the distance between
its responses to different stimuli. Then, to determine whether a
given response was correctly predicted as having been elicited by
a given stimulus (see the ‘Methods’ section), the discrimination
performance was computed from the confusion matrix whose
element ij gives the conditional probability that a response
generated by stimulus i is classified as being generated by
stimulus j. Thus, if self-motion is represented by precise spike
timing in irregular afferents, then we should expect that they
would show maximum discrimination performance at timescales
much shorter than those contained in the stimulus.

The confusion matrices obtained from the example irregular
afferent are illustrated in Fig. 3c for the same timescales shown in
Fig. 3b. Indeed, consistent with our prediction, discrimination
performance was maximal for timescales shorter than those
contained in the stimulus (Fig. 3c, left and middle panels) and
considerably less for longer timescales (Fig. 3c, right panel).
Moreover, systematically varying both the timescale and the
stimulus duration further revealed that peak discrimination
performance was consistently achieved for a timescale of 6 ms
(Fig. 3d). Thus, given that this timescale is much shorter than
those contained in the stimulus, we conclude that the precise
spike timing patterns of this irregular afferent can indeed be used
to reliably discriminate between different stimuli.

We next performed the same analysis on the example regular
afferent (Fig. 4a). In contrast to the irregular afferent shown
above in Fig. 3, the regular afferent’s responses to different stimuli
consistently overlapped for both short (1 ms) and long (100 ms)
timescales (Fig. 4b, left and right panels) making stimulus
separation difficult. This neuron’s responses could be better
discriminated at an intermediate timescale (26 ms; Fig. 4b, middle

panel) as quantified by performance (Fig. 4c). Indeed, when
timescale and stimulus duration were systematically varied, we
consistently obtained maximum performance at an intermediate
timescale of B30 ms (Fig. 4d); a timescale comparable to
those contained in stimulus and therefore consistent with rate
coding. Furthermore, comparisons between this neuron and
example irregular afferent revealed that its performance at short
timescales (that is, lower than those contained in the stimulus)
was far poorer, and that its maximum performance was
actually much lower (compare maximum values in the middle
panels of Figs 4c and 3c). In summary, our analysis revealed
that unlike the example irregular afferent shown in Fig. 3, our
example regular afferent did not represent self-motion through
precise spike timing.

Figure 5 illustrates the comparison of the population-averaged
results for irregular and regular afferents. Discrimination
performance values were consistently greater for irregular than
regular afferents at all timescales ranging between 1 and 100 ms
(Fig. 5a). Notably, irregular afferents displayed maximum
performance at lower timescales (B6 ms versus B30 ms; Fig. 5a,
compare red and blue traces) as compared with regular afferents.
Accordingly, irregular afferents displayed higher (B160 Hz)
temporal precision (defined as the inverse of the timescale for
which performance is maximal) than regular afferents (B30 Hz).
Importantly, the peak performance of irregular afferents was
substantially higher than that of their regular counterparts and
furthermore occurred at B6 ms—a timescale over which the
stimulus does not vary significantly.

To better emphasize the implications of this result, Fig. 5b
replots the performances of regular (blue trace) and irregular
(red trace) afferents as a function of frequency (that is, the inverse
of timescale) with the stimulus power spectrum (grey area)
superimposed. At lower frequencies (for example, 1 Hz, leftmost
green arrow) for which there is significant stimulus power, the
performance of regular afferents was greater than that of irregular
afferents. This is consistent with our finding above that
significantly more information is transmitted by the firing rate of
regular versus irregular afferents (Fig. 1h,i). Indeed, the perfor-
mance of regular afferents approaches its maximum value for
frequencies that are contained in the stimulus (that is, for which
there is significant stimulus power; B20 Hz, middle green arrow).
However, this is not the case for irregular afferents. Instead their
performance is maximal at a much higher frequency (B100 Hz)
where the stimulus power is negligible. Taken together, the results
in Fig. 5b show that, whereas the performance of irregular afferents
increases substantially (B50%) for frequencies greater than those
contained in the stimulus (that is, 4B20 Hz and up to B100 Hz)
or conversely for smaller and smaller timescales (that is, down to
B10 ms), this was not the case for regular afferents. Instead, there
was only a negligible increase in their performance.

Thus, these results suggest that irregular afferents transmit
substantially more information through precise spike timing than
their regular counterparts. It is important to note that the higher
spike timing precision of irregular afferents as compared with
their regular counterparts was not due to differences in firing rate.
This is because the mean firing rates of regular and irregular
afferents in our data set during stimulation were not significantly
different from one another (regular: 105±6 spk s� 1; irregular:
96±6 spk s� 1, P¼ 0.31, tstat¼ 1.03, df¼ 55).

We further found strong positive correlations between spike
timing precision (that is, the frequency at which performance is
maximal) and baseline variability (Fig. 5c, R¼ 0.8, Po0.001)
as well as response nonlinearity (Fig. 5d, R¼ 0.7, Po0.001).
As expected, a comparable analysis of our data using the van
Rossum metric26, which has also been commonly used to
quantify the distance between spike trains (see the ‘Methods’
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section, compare Fig. 5a–c with Supplementary Fig. 3), yielded
comparable results. Thus, taken together, these results suggest
that resting discharge variability strongly influences the nature of
the neural code since regular and irregular afferents preferentially
use different strategies to encode the sensory stimuli.

Variability and sensitivity both influence encoding strategy.
Our results above have shown that afferents with greater intrinsic
variability reliably discriminated between different stimulus
waveforms through differential patterns of precise (B6 ms) spike
timing, while more regular afferents primarily encoded motion

stimuli through changes in firing rate. To gain an understanding
of why regular and irregular afferents exhibit different neural
coding properties, we built a simple neuron model based on the
integrate-and-fire formalism and adjusted parameters so that its
spiking output matched experimental data from both afferent
classes (Fig. 6a,b, see the ‘Methods’ section). In brief, our model
comprised a leak term, a bias term that determines the resting
discharge, an input current ssignal� S(t), which consists of
broadband noise with 20 Hz cutoff similar to the actual head
velocity stimuli used in our experiments, and a noise term
snoise� x(t) that determines resting discharge variability. We
found that this model accurately reproduced our experimental
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results. Although the model regular afferent transmitted more
information through changes in firing rate as compared with the
model irregular afferent (Fig. 6c,d), maximum discrimination
performance as computed from the confusion matrix was
consistently achieved at timescales of B6 ms and B50 ms for the
irregular and regular model afferents, respectively. Thus,
consistent with our experimental observations, the model
irregular afferent more accurately represented time varying
stimuli via precise spike timing than the model regular afferent
(Fig. 6e,f).

Why does resting discharge variability influence encoding
strategies used by the vestibular periphery? Using this model,
it becomes possible to systematically and independently vary
sensitivity (ssignal) and variability (snoise). Our results show that
higher levels of variability lead to decreased information

transmission through firing rate, while increases in neuronal
response sensitivity lead to increased information transmission
through firing rate (Fig. 6g). Furthermore, our model predicted
that the information transmitted will be approximately constant
when sensitivity and variability were co-varied such that their ratio
(that is, the input signal-to-noise ratio (SNR)) is constant (Fig. 6g,
solid white line). Indeed, this finding is consistent with
theory because mutual information is determined by the input
SNR10. As such, our modelling results provide additional strong
evidence in agreement with our previous observations, and suggest
that the irregular afferents transmit less information through firing
rate because they displayed a greater amount of variability relative
to sensitivity (compare star with circle in Fig. 6g).

We next quantified the effects of sensitivity and variability on
discrimination performance by precise spike timing. Results
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qualitatively different than those found for information
transmission by firing rate were obtained. Specifically, we found
that: (i) increasing variability and sensitivity led to decreases
and increases in discrimination performance, respectively;
(ii) increasing both variability and sensitivity at the same rate
actually increased performance (Fig. 6h, solid white line); and
(iii) constant discrimination performance was achieved only
when variability increased at a rate that was roughly twice that of
sensitivity (Fig. 6h, dashed black line). Notably, the timescale for
which maximum performance was achieved decreased to values
much lower than those contained in the stimulus, which in turn
resulted in high precision values (compare Fig. 6h and Fig. 6i).
This indicates that co-varying sensitivity and variability while
keeping the input SNR constant causes a transition in encoding
strategy in which coding by precise spike timing becomes more
important (Fig. 6i, white line). Thus, our model shows that both
variability and sensitivity can strongly influence the information
carried by both firing rate and spike timing, consistent with our
experimental results shown above in Fig. 5c,d.

Taken together, our modelling results suggest that irregular
afferents represent self-motion through precise spike timing more
accurately than their regular counterparts because their increased
variability is actually accompanied by a nearly proportional
increase in sensitivity. The strong co-variation between variability
and sensitivity previously demonstrated experimentally in
vestibular afferents1,6,27 is consistent with our modelling results
and thus provides support for this proposal.

Precise spike timing in central vestibular neuron responses.
Thus far, we have addressed whether the peripheral vestibular

system uses precise spike timing to represent self-motion
information. We found that afferents with greater intrinsic
variability reliably discriminated between different stimulus
waveforms through differential patterns of precise spike timing.
A priori, if higher brain areas use temporal precision to represent
self-motion, then we speculate that postsynaptic central neurons
in the vestibular nuclei receiving direct synaptic input from
afferents (Fig. 7a) should also demonstrate precise spike
timing. Figure 7b illustrates the responses of an example central
vestibular neuron to time-varying naturalistic stimuli. The
neuron encoded the stimulus through changes in firing rate
(Fig. 7b), consistent with previous results5,28. However, as was the
case for irregular afferents, the information transmitted through
firing rate was relatively low because this neuron’s firing rate
conditional probability displayed high variance, (compare Fig. 7c
and Fig. 1f with Fig. 1g). It is important to note, however, that
further analysis of the precision of this neuron’s spiking in
response to repeated stimulus presentations revealed strikingly
similar results to those obtained above for our analysis of
irregular afferents. Specifically, when discrimination performance
was quantified from the confusion matrix, we found that
maximum performance was consistently achieved at B6 ms
(Fig. 7d)—a timescale that matches that of irregular afferents
(compare with Fig. 3d).

Our analysis of the central neuron population further
established that they actually transmitted less information than
either regular or irregular afferents through changes in firing rate
(Po0.001, Wilcoxon rank-sum test with Bonferroni correction;
Fig. 7e). However, the discrimination performance from spike
timing was comparable to that of irregular afferents (Fig. 7f).
Indeed, peak performance was achieved for low timescales
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(B6 ms, corresponding to high frequencies of B160 Hz for
which the stimulus power is negligible; Fig. 7f and Fig. 7f, insets).
Thus, we conclude that central vestibular neurons, similar to
irregular vestibular afferents, represent self-motion through
precise spike timing. This implies that a temporally precise
neural representation of self-motion is sent to targets in spinal
cord, cerebellum and thalamus to ensure the maintenance of
posture and accurate self-motion perception.

Discussion
Our central finding is that early vestibular pathways use
temporally precise firing to represent self-motion. Specifically,
we report for the first time that irregular afferents more reliably
discriminate between different stimulus waveforms through
differential patterns of precise (B6 ms) spike timing than their
regular counterparts. In contrast, regular afferents transmitted
more information through firing rate as compared with their
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irregular counterparts. A simple mathematical model accurately
reproduced our experimental data and further explained how
variability influences encoding strategies. Furthermore, we found
that postsynaptic central vestibular neurons also reliably
discriminate between different stimulus waveforms through
differential patterns of spike timing, and that the temporal
precision of this coding was comparable to that observed for
irregular afferents. Taken together, our results indicate that early
vestibular pathways use both firing rate and precision of spike
timing to represent self-motion. This constitutes a major
paradigm shift for the field as previous studies have instead
mostly focused on neural responses at relatively (450 ms) long
timescales (reviewed in ref. 3). Moreover, we provide new insight
into how the balance between neural variability (a widespread
phenomenon across brain structures) and sensitivity can
determine encoding strategies.

Conventional wisdom had been that early vestibular pathways
use a rate code to encode self-motion information (reviewed in
ref. 3). Indeed, this view is supported by numerous studies
showing that both afferents and central neurons accurately
encode the detailed time course of head rotations through linearly
related changes in firing rate over a wide range of frequencies
reviewed in refs 1,5,29. Moreover, prior investigations
had established that both peripheral30 and central28 vestibular
neurons can respond nonlinearly to single repetitions of
naturalistic stimuli1,4. However, while this property is required
for temporal coding, it is not sufficient. A major contribution of
our study is that it shows that early vestibular pathways use
precise spike timing to represent self-motion. Although our
results show that self-motion information is present in the precise
spike timing of central vestibular neurons, this information must
ultimately be decoded to be behaviourally relevant. One
possibility is that precise spike timing information is discarded
at higher stages of vestibular processing, as observed in the
somatosensory system31,32 (also see refs 17,18,20). However, this
is unlikely because neurons in higher vestibular areas are actually
much less sensitive than the organism33–35, suggesting
that substantial pooling of neuronal activity must occur to drive
perception5,6,33. We further speculate that, at the population level,
both irregular afferents and central vestibular neurons will display
precisely timed synchronized firing that carries information about
naturalistic stimuli, resulting in neuronal thresholds that
approach perceptual values. Future studies should focus on how
higher vestibular areas (that is, thalamus, cortex) decode precise
and potentially synchronized spike timing information.

It is important to note that, under natural conditions,
vestibular stimulation results from both active and passive
self-motion. Although all the stimuli in the present study were
passively applied, previous studies have established that afferents
respond similarly to both classes of stimuli27,36,37. Thus, the
encoding of self-motion by precise spike timing found in
the vestibular periphery is predicted to also be present during
active self-motion. However, the central neurons that were the
focus of the current study display markedly attenuated
responses to active self-motion (reviewed in ref. 3) owing to
integration of vestibular and extra-vestibular signals (for example,
proprioception and motor). Further studies are needed to
uncover whether precise spike timing is also used to represent
active self-motion in central vestibular pathways.

Our present results provide the first direct demonstration that
precise spike timing of both irregular afferents and central
vestibular neurons can be used to reliably discriminate between
different stimulus waveforms. We note that a previous study4

postulated a seemingly contradictory proposal, namely that
regular but not irregular afferents use temporal coding to
represent self-motion. This prior study, however, did not record

or quantify afferents responses to multiple presentations of the
same stimulus. Instead, temporal coding was only indirectly
inferred on the basis of the addition of artificial jitter to the spike
train response to a single stimulus presentation. In contrast,
our present findings directly quantified the precision of spiking
to repeated stimulus presentations and directly showed that
different spike patterns elicited by different stimuli can be used
for discrimination.

By quantifying the precision of the spiking of both irregular
afferents and central vestibular neurons to repeated stimulus
presentations, we further found that neurons at both stages of
processing represent time-varying stimuli through precise spike
timing, thereby providing evidence for coding via precise spike
timing in early vestibular pathways. In contrast and consistent
with previous studies, regular afferents encode self-motion stimuli
through changes in firing rate. Taken together, these results
indicate that the vestibular nuclei neurons receive two parallel
streams of sensory input coded through firing rate and spike
timing. Prior studies tracing the projections of the physiologically
identified central VO neurons characterized in this report have
demonstrated terminations in the spinal cord, consistent with a
role in the vestibulospinal reflexes that control posture38–40. In
addition, VO neurons project to the cerebellum and
thalamus41,42, and are thus thought to play a key role in
relaying self-motion information to higher-order areas that
contribute to spatial perception and voluntary behaviour. Thus,
the major contribution of our study is that it provides the first
evidence that the precise spike timing observed in the first two
stages of vestibular processing facilitates the discrimination of
different self-motion stimuli thus contributing to the control and
accuracy of these essential functions.

We posit that parallel streams of afferent sensory input coded
preferentially through firing rate and spike timing found at the
vestibular periphery are not only preserved but are further refined
centrally. Interestingly, previous studies have proposed that central
VO neurons primarily receive input from irregular afferents1,3.
Our results showing that both irregular afferents and central VO
neurons display similar spike-timing precision is consistent with
this proposal. The second primary class of neurons found in the
vestibular nuclei, termed position-vestibular-pause (PVP), has a
markedly different projection pattern than VO neurons.
Specifically, while PVP neurons also receive inputs from
vestibular afferents, in contrast to VO neurons, they project to
the extraocular motoneurons that control the eye muscles.
Accordingly, PVP neurons mediate the vestibulo-ocular reflex
(VOR), which stabilizes gaze by moving the eye in the opposite
direction to ongoing head motion. Previous studies have shown
that the VOR precisely follows and compensates for head motion
over a temporal frequency range 425 Hz (ref. 43), implying that
detailed information about the stimulus’ timecourse is preserved in
the VOR pathway. Since such information regarding the detailed
patterning of vestibular input is most reliably transmitted through
the firing rates of regular afferents4, we speculate that PVP neurons
preferentially decode and transmit information originating from
regular afferents to extraocular motoneurons primarily through
changes in firing rate. Further studies investigating the trial-to-trial
variability in the spiking responses of PVP neurons across repeated
presentations of self-motion stimuli will be required to address this
question.

Our simple mathematical model provides an explanation of the
mechanism underlying the influence of variability on encoding
strategies in early vestibular pathways. Specifically, we found
that co-varying sensitivity and variability to keep the input
signal-noise relation constant triggered a transition from rate
coding to temporal coding (as commonly defined by Theunissen
and Miller11). By increasing variability and sensitivity, we found a
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shift from rate coding to temporal coding as quantified
by a decrease in discrimination performance through firing
rate and an increase in discrimination performance through
precise spiking, respectively. Notably, temporal coding on a
timescale comparable to that found here for irregular
vestibular afferents has been observed across other sensory
pathways (visual15,16,44–46, olfactory47,48, somatosensory19,20 and
auditory49–51). However, in contrast to our current findings, these
prior studies did not establish the influence of sensitivity and
variability on the nature of neural code. This raises the interesting
question of whether the mechanism underlying the parallel
coding that we observed in early vestibular pathways might
similarly mediate the analogous coding by firing rate and spike
timing that has been reported in the somatosensory19,20 and
auditory50,52 systems.

We speculate that the mechanism uncovered in the present
study reveals a general feature of neural coding in which a
trade-off between sensitivity and variability determine the
nature of the neural code. For instance, strong similarities
between the vestibular and auditory periphery provide
support for common mechanisms. Irregular afferents are more
likely than regular afferents to have low voltage-activated
potassium currents. Notably these currents, which are critical
for determining the characteristics of the membrane recovery
time following an action potential53–55, are thought to contribute
to the increased sensitivity and variability of irregular afferents2.
Likewise, low voltage-activated potassium currents have
been shown to play a key role in regulating precise spike timing
in early auditory pathways56–60. Thus, we hypothesize that
similar heterogeneities in intrinsic properties of neurons in the
auditory system as well as other sensory pathways are key
determinants of the nature of the neural code.

Methods
All the procedures were approved by the McGill University Animal Care
Committee and were in compliance with the guidelines of the Canadian Council on
Animal Care.

Surgical preparation. Two male (Macaca fascicularis) and two female (Macaca
mulatta) macaque monkeys were implanted with a head post for immobilization
and recording chambers, which were oriented stereotaxically towards the vestibular
nerve and the vestibular nuclei, respectively. The surgical preparation was similar
to that previously described61.

Data acquisition and experimental design. We made recordings from two
classes of neurons: (1) vestibular afferents that innervate the horizontal semi-
circular canals, and (2) a group of non-eye movement sensitive neurons in the
medial vestibular nuclei, termed vestibular-only (VO) neurons using previously
described methodology28. Horizontal semicircular canal afferents and VO neurons
within the vestibular nuclei were identified as done previously28,37,62. Each neuron
was stimulated using a broadband noise angular velocity stimulus (20 Hz cutoff)
that had a Gaussian distribution with zero mean and standard deviation of
B20 deg s� 1. At least four identical 20 s-long epochs of broadband noise stimulus
were concatenated to build a ‘frozen noise’ stimulus.

Analysis of neuronal discharges. Regularity of resting discharge was determined
by means of a normalized coefficient of variation (CV*, after Goldberg, Smith54) of
the interspike intervals (ISIs) recorded during spontaneous activity. Afferents with
CV*o0.1 were classified as regular whereas those with CV* Z0.1 were classified as
irregular27,63. Irregular afferents were further subdivided into two groups based on
their response gain at 2 Hz stimulation (high-gain and low-gain) corresponding to
putative morphological origin as previously described22,23 for some analyses.

Neural firing rates fr(t) were generated by convolving the spike trains with a
Gaussian spike density function (standard deviation of 10 ms) as previously
described64. Estimates of firing rates were computed using a least-squares
regression analysis between the stimulus and filtered spike trains that were aligned
with the stimulus waveform as described previously28. Note that the mean
firing rates during stimulation of regular and irregular afferents were not
significantly different (regular: 105±6 spk s� 1; irregular: 96±6 spk s� 1; P¼ 0.31,
tstat¼ 1.03, df¼ 55), consistent with previous characterizations of these neurons
(see for example, ref. 27).

The response gain was computed from G(f)¼ |PSR(f)/PSS(f)| where PSR(f) is the
cross-spectrum between the stimulus S(t) and spike train R(t), and PSS(f) is the
power spectrum of the stimulus S(t). Here R(t) is the binary sequence
corresponding to the spike train with bin width 1 ms. All spectral quantities (that is,
power-spectra, cross-spectra) were estimated using multitaper estimation
techniques with eight Slepian functions65 as previously described4.

We note that the stimuli used in the present study do not elicit simple (that is,
rectification, saturation) static nonlinearities in either regular or irregular
afferents5,30. To detect the presence of other nonlinearities in the response, we
quantified correlations between the neuronal response R(t) and the stimulus
S(t) using the stimulus-response (SR) coherence CSR(f), as in ref. 24:

CSR fð Þ ¼ PSR fð Þj j2

PSS fð ÞPRR fð Þ ð1Þ

where PSR(f) is the cross-spectrum between S(t) and R(t), and PSS(f) and PRR(f) are
the power spectra of S(t) and R(t), respectively. The response–response (RR)
coherence between sequences of action potentials was computed by:

CRR fð Þ ¼
oPRi Rj fð Þ4i;j

�� ��2
oPRi Ri fð Þ4ioPRj Rj fð Þ4j

ð2Þ

where PRiRj(f) is the cross-spectrum between binary sequence Ri(t) and Rj(t), and
PRiRi(f) and PRjRj(f) are the power spectra of Ri(t) and Rj(t), respectively, and
oy4 denotes the average. For k repetitions of the stimuli, the equation above
becomes:

CRR fð Þ ¼
2

kðk� 1Þ
Pk

i¼2

Pi� 1
j¼1 PRi Rj fð Þ

��� ���2
PRR fð Þ2

ð3Þ

Since in general
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRR fð Þ

p
� CSR fð Þ, a linear model is optimal if the SR coherence

equals the square root of the RR coherence. A significant difference between these
two quantities indicates that a nonlinear model is necessary to explain the
relationship between the stimulus S(t) and the response R(t) for a given frequency
f (ref. 24). Accordingly, we computed a nonlinearity index (NI) as previously
described66:

NI ¼ 100� 1�
R 20

0 CSR fð ÞdfR 20
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CRR fð Þdf

p
 !

ð4Þ

A perfectly linear response results in an NI of zero whereas with increasing non-
linearity NI approaches 100%.

To determine the precision of spike timing in the activity of vestibular neurons,
and to quantify the timescales at which these neurons operate to encode head
velocity, we used metric-space analysis of the spike train. First, we split each
20 s-long epoch of broadband noise stimulus into 20 1 s-long segments (that is,
20 different categories of head velocity stimuli). For each category, one spike train
was randomly chosen as a template and the remaining spike trains were assigned to
one of 20 categories of stimuli based on the spike distance measure (see below).
This procedure was repeated 30 times by drawing different template choices and
averages were then computed to construct a confusion matrix (Figs 3c and 4c)
whose element (i,j) gives the probability that a response was assigned as being
generated by stimulus j given that it was actually generated by stimulus i. The
diagonal elements of this matrix are the probabilities that a stimulus was correctly
assigned, whereas non-zero off-diagonal elements indicate misclassification. For
each confusion matrix obtained from the metric-space analysis, we computed the
discrimination performance by averaging over the diagonal elements. The
discrimination performance can thus vary between 0 (no discrimination) and 1
(perfect discrimination). Note that the chance level for discrimination performance
was 0.05 (that is, 1/20) because we used 20 stimuli.

To determine the dissimilarity between two spike trains, we used two well-
known measures of spike distance:

The Victor–Purpura metric (VPspike) is a cost-based metric that measures
dissimilarity between two spike trains based on the minimum cost of transforming
a spike train into another spike train through a series of basic operations: insertion
and deletion of a single spike are permitted for a cost of 1, and a spike can be
shifted by an amount Dt for a cost of qDt25,67, where q (in units of s� 1) is a
parameter that determines the relative sensitivity of the metric to spike count and
spike timing68. When q¼ 0, spike trains are compared under the assumption of a
rate code, whereas for high values of q, they are compared under the assumption of
a temporal code25,67. The quantity 1/q is a measure of temporal precision in this
metric; by varying q (1r1/qr2,000 ms) and repeating the classification procedure
mentioned above, we investigated the impact of different timescales of the neuronal
response on discrimination performance. We assessed the algorithm’s performance
by constructing the confusion matrix and computing the discrimination
performance as described above.

When using the van Rossum spike distance metric, each spike train was
convolved with a decaying exponential kernel with time constant t:

f tð Þ¼
XM

i¼1
Hðt� tiÞe

�ðt� ti Þ
t ð5Þ

where ti is ith spike time, M is the total number of spikes and H(t) is the Heaviside
step function (H(x)¼ 0 if xo0 and H(x)¼ 1 if xZ0). The distance between two
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spike trains Rj(t) and Rk(t) was then defined as the Euclidean distance between their
corresponding filtered traces, fRj

and fRk
:

D2ðfRj ; fRk Þt ¼
1
t

Z1
0

½fRj � fRk �
2dt ð6Þ

The parameter t is related to the quantity 1/q in the Victor–Purpura metric and
governs the temporal precision of the metric. Again, we varied t between 1 and
2,000 ms. When t is small, the metric acts as a ‘coincidence detector’ since even
minor differences in spike timing contribute to the distance, whereas at larger
timescales, the difference in total spike count matters, thus the metric becomes
more of a ‘rate difference counter’26. Note that the qualitative nature of our results
does not depend on the specific metric used; (compare Fig. 5 using Victor–Purpura
with Supplementary Fig. 3 using van Rossum).

We calculated mutual information between the stimulus and response using the
instantaneous firing rate (MIfiring rate). We computed MIfiring rate by first obtaining
the instantaneous firing rate fr(t) as described above and after adjusting for any
time shift between the stimulus and fr(t), we plotted the neuron’s time dependent
firing rate as a function of the shifted stimulus. Next, we used an angular velocity
bin-width of 1 deg s� 1 and a firing rate bin-width of 1 spk s� 1, to construct a set of
stimulus S and response R. For each stimulus sAS and response rAR, we
determined the conditional probability p(r|s) and then the joint probability p(s,r)
by p(s)*p(r|s). Finally, the mutual information (MIfiring rate) between the stimulus
set S and the response set R was computed as21:

MIfiring rate¼
X
s2S

X
r2R

p s; rð Þlog2
pðs; rÞ

p sð ÞpðrÞ

� �
ð7Þ

To facilitate the comparison with the discrimination performance obtained using
metric-space analysis, we normalized the MIfiring rate by the entropy of the response
(that is, Hresp¼�

P
r2R

p rð Þlog2 p rð Þð Þ) such that:

Normalized MIfiringrate¼ MIfiringrate=Hresp ð8Þ

Note that the normalized MIfiring rate can vary between 0 and 1.
We built a leaky integrate-and-fire neuron to model the activity of semicircular

canal afferents using equations as follows.

Cm
dV
dt
¼� gVðtÞþ Ibias þssignalS tð Þþ snoisex tð Þ

V tð Þ � y! V tþð Þ¼0
ð9Þ

where Cm is the membrane capacitance (Cm¼ 1 nF), V(t) is the membrane
potential, g is the membrane conductance for the leak current (g¼ 0.243 mS), Ibias is
a bias current (to simulate the resting discharge of semicircular canal afferents), S(t)
is the input current, which consisted of a broadband noise current (20 Hz cutoff)
similar to the actual head velocity stimuli applied to stimulate the afferents, and x is
a Gaussian white noise process with zero mean and standard deviations of snoise.
To account for the known response dynamics of both regular and irregular
semicircular canal afferents, the stimulus S(t) used in the model was obtained by
filtering the original broadband noise current using the transfer functions of
regular and irregular units as done previously30. The parameters snoise and ssignal

determine the response variability and the strength of the signal, respectively.
When V(t) is greater than or equal to the threshold y (that is, � 50 mV), V(t) is
immediately reset to 0 mV and a spike is said to have occurred at time t.
Equation (9) was numerically integrated using an Euler–Maruyama algorithm with
a time step of 0.025 ms. The spiking responses from the model were analysed in the
same way as the experimental data.

For the regular model neuron, parameter values were: Ibias¼ 4.14 nA,
snoise¼ 0.28 nA, ssignal¼ 0.58 nA. For the irregular model neuron, parameter
values were: Ibias¼ 3.71 nA, snoise¼ 2.1 nA, ssignal¼ 2.9 nA. The parameter values
were set such that responses of regular and irregular model neurons mimicked
experimental data. We also systematically varied both sensitivity (that is, ssignal)
and variability (that is, snoise) in our model and computed information transmitted
by firing rate and spike timing as described above for the experimental data. Note
that we used the van Rossum metric to minimize computation time as we
extensively varied model parameters.

All the values are expressed as mean±s.e.m. Statistical significance was set at
Po0.05, using Wilcoxon rank-sum tests unless otherwise indicated. To account for
multiple comparisons, a Bonferroni correction was applied whenever applicable.

Data availability. All data supporting the findings of this study are available
within the article and the Supplementary Information file.
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Supplementary	Figure	1:	Gain	and	SR	coherence	curves	 for	regular	and	 irregular	
afferents.	A,B,	Population-averaged	gain	and	stimulus-response	coherence	obtained	
for	irregular	(N=57)	and	regular	(N=38)	afferents	as	a	function	of	frequency.	Despite	
lower	gain,	regular	afferents	display	higher	coherence	with	respect	to	the	stimuli.	
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Supplementary	 Figure	 2:	Gain	 and	 SR	 coherence	 for	 regular	 and	 two	 groups	 of	
irregular	afferents.	A,B,	Population-averaged	gain	and	stimulus-response	coherence	
obtained	 for	 low-gain	 (red,	 N=10),	 high-gain	 (purple,	 N=47)	 irregular,	 as	well	 as	
regular	(blue,	N=38)	afferents.
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Supplementary Figure 3: Discrimination performance and precision of spike timing for 
vestibular afferents using the van Rossum spike train metric. A, Population-averaged 
discrimination performance through spike timing for regular (blue, N=22) and irregular 
(red, N=35) afferents as a function of timescale. The shaded red and blue bands show the 
standard error. B, Population-averaged discrimination performance for regular (blue, 
N=22) and irregular (red, N=35) afferents as a function of frequency. The shaded red and 
blue bands show the standard error. The shaded grey represents the normalized power 
spectra of the stimulus as a function of frequency. The three arrows highlight the 
performances at 1, 20 and 100 Hz. C, Spike timing precision as a function of baseline 
variability as quantified by CV* for regular (blue, N=22) and irregular (red, N=35) 
afferents. Inset: Population-averaged spike timing precision for regular (blue, N=22) and 

-7irregular (red, N=35) afferents (p=2.6*10 ). “*” indicates statistical significance at the 
p=0.05 level using a Wilcoxon rank-sum test.
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