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Scale-Invariant Adaptation in Response to 
Second-Order Electro-Sensory Stimuli in 
Weakly Electric Fish

Zhubo Zhang1, Maurice J. Chacron

Abstract

Background: Natural stimuli can range orders of magnitude, and their encoding by the brain remains a 
central issue in neuroscience. An efficient way of encoding a natural stimulus is by changing a neuron’s cod-
ing rule in tandem with changes in the stimulus. This phenomenon is called sensory adaptation. However, 
sensory adaptation creates ambiguity in the neural code, as different stimuli can produce the same neural 
response.

Methods: One way to resolve this ambiguity is to encode additional stimulus information through parallel 
channels. We performed in vivo extracellular recordings from pyramidal cells in two parallel maps, the lateral 
segment (LS) and the centro-medial segment (CMS), within the hindbrain of the weakly electric fish Aptero-
notus leptorhynchus, in response to stimuli that resemble the presence of another conspecific.

Results: We found that CMS pyramidal cells generally adapted less strongly than LS cells (p<0.05). Signal 
detection theory confirms that the lesser degree of adaptation leads to a stronger ability to disambiguate 
between two input stimuli (p<0.05). In addition, the time course of adaptation in LS strictly followed a power 
law while that of CMS followed a power law only for a certain set of stimuli.

Limitations: The design of our study allowed for a stimulus that oscillated only between two distributions. 
Further studies into the hindbrain’s ability to disambiguate the adaptive code will require confusion analysis 
of a stimulus that changes between more distributions. For confusion studies, cells in different areas can be 
compared as long as they have receptive fields in similar areas.

Conclusions: Through recording from two parallel segments of the electro-sensory system in the hindbrain, 
we observed that different segments adapted with different strengths to similar stimuli. Different amounts 
of adaptation allude to a balance between the need to preserve absolute stimulus information while simul-
taneously encoding a stimulus efficiently through adaptation.

Introduction

Our senses enable us to experience our surroundings through a multitude 
of sensations, which are then encoded by the nervous system. One of the 
most basic ways in which neurons encode information is in their firing 
rate (1), but a sensory stimulus often contains characteristics that vary 
over more orders of magnitude than the firing rate can encode. (2) For 
example, the light intensity outside on a clear winter day is much greater 
than it is indoors, and our eyes need some time to adjust when moving 
from one to the other. This adjustment highlights an efficient mechanism 
for the encoding of light intensity—adaptation. A neuron adapts to a cer-
tain stimulus by changing its coding strategy to match the current distri-
bution of the stimulus. (2) In the human visual system, adaptation is more 
complex than the adaptation of individual neurons, but this process allows 
individual neurons to encode light intensities over a wide range of magni-
tudes. Nevertheless, a problem arises with adaptability – ambiguity. Given 
a certain firing rate, the absolute value of the stimulus it encodes cannot be 
determined without additional contextual information.

There is much discussion on how the nervous system resolves this problem 
of ambiguity. In experiments on the fly visual system, Fairhall and col-
leagues (3) demonstrate that ambiguity can be fully resolved at the level of 
the individual cell. Other researchers such as Hildebrandt and colleagues 
(4) describe a circuit-level approach, where the neural circuitry establish-
es context at the beginning of a stimulus, encoding the remainder of the 
stimulus relative to it.

Our group has previously suggested a neural computation called parallel 
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coding, where distinct populations of cells encode different features of a 
stimulus. (5) We believe that parallel coding is another mechanism which 
can resolve ambiguity—while one population of neurons may adapt to 
a stimulus, another may not, thus preserving the context of a stimulus. 
Our model organism is the weakly electric fish Apteronotus leptorhyn-
chus. These fish emit an electric organ discharge (EOD) that can interfere 
with the EODs of their peers, creating amplitude modulations (AMs). (6) 
These AMs can indicate the presence of their peers, and are sensed by pe-
ripheral electroreceptors located on the surface of the fish. Afferent fibres 
from the peripheral electroreceptors trifurcate onto three parallel topo-
graphical maps in the hindbrain electrosensory lateral line lobe (ELL): the 
centro-medial (CMS), centro-lateral (CLS), and lateral (LS) segments. (7)

Previous studies have shown that pyramidal cells in these three seg-
ments process first-and second-order properties of AMs, such as mean 
and variance, respectively, relaying them to higher order areas. (5,7) Al-
though adaptation to first-order properties of electrosensory stimuli has 
been described (5), adaptation to second-order properties has not been 
characterized. Second-order properties of AMs are defined as the depth 
of modulation of interference signals, and relate to the distance between 
the fish and its peer. We will refer to the depth of modulation of an EOD 
signal as its envelope.

In this paper we compare the responses of LS and CMS cells to step chang-
es in the envelope of the AMs. We chose these areas because of their con-
trasting frequency tuning properties, acknowledging that the frequency 
response of CLS cells is intermediate of the two. (7) The frequency tuning 
of LS and CMS is due in part to the differential expression of small conduc-
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tance Ca2+ activated K+ (SK) channels in pyramidal cells (6), where high 
expression of these channels in LS cells corresponds with its high-pass 
tuning, and low expression in CMS cells corresponds with its low-pass 
tuning. Since the spike-triggered SK current is hyperpolarizing, we hy-
pothesized that the amount of adaptation of LS and CMS cells to the AM 
envelope would also follow the frequency tuning of these areas, where py-
ramidal cells in LS should adapt more than CMS pyramidal cells. Through 
peri-stimulus time histogram and signal detection analyses, we found that 
our results were consistent with this hypothesis. We also characterized the 
time courses of adaptation between these two areas and found that they 
could be modelled by a power-law decay for all frequencies in LS, and for 
frequencies up to 1 Hz in CMS.

Materials & Methods

Surgery & Recording Procedures

All procedures were approved by the McGill University Animal Care Com-
mittee. We paralysed the fish with an intramuscular injection of Tubocu-
rarine chloride pentahydrate (Sigma, 1 µg/g body weight), and respirated 
the fish at a flow rate of 10 mL/min. The fish was kept partially submerged 
in water, with the top of its head exposed. We then locally anesthetized 
the site of surgery with 2% lidocaine, removed 6 mm2 of the skin above 
the skull, and glued the skull to a metal post to stabilize it. To access the 
ELL, we first located a major vein known as T0. We then drilled a 2 mm2 
hole through the skull, above the eminentia granularis posterior that lies 
caudal to T0. (10)

We performed differential extracellular recordings from pyramidal cells in 
areas LS and CMS with Woods metal electrodes. (11) For area LS, we placed 
electrodes laterally, halfway from the junction between the cerebellum and 
eminentia granularis posterior, and rostrally, a third of the way from T0 
to the back of the brain, no more than 900 µm from the brain surface. For 
area CMS, we placed electrodes medially and caudally, halfway from T0 
to the back of the brain. These recordings were done at a depth of at least 
1200 µm. We identified pyramidal cells based on their responses to a 4 Hz 
sinusoidal search stimulus—well-isolated cells responded preferentially to 
a single phase of the stimulus. (7) The signal recorded from the electrodes 
was amplified (Model 1000 amplifier, A-M systems) and digitized at 16 bits 
and 10 kHz using a CED Power1401 and Spike2 software. (7)

Stimulus

We stimulated with a sinusoidal electric signal that superimposes with, 
and creates amplitude modulations (AMs), of the animal’s EOD. To phase-
lock our output signal with the animal’s EOD, we first recorded the EOD 
with chloridized silver electrodes placed at the head and tail. The zero 
crossings of the amplified EOD (DAM50, World Precision Instruments) 
triggered a function generator to create a sine wave at a frequency 40-50 
Hz higher than the EOD frequency (Agilent 33220A). The sine waves were 
multiplied by a waveform, described below as our “stimulus” (MT3 multi-
plier, Tucker Davis Technologies). The output was then attenuated (LAT45 
attenuator, Leader Electronics), and sent to the tank by a stimulus isolator 
(A395 linear stimulus isolator, World Precision Instruments). These sine 
waves changed the amplitude of the EOD depending on the polarity of 
the waveform. The signal was delivered via two electrodes placed 20 cm 
from the sides of the fish. A dipole was placed approximately 2 mm from 
the surface of the fish to record the signal sensed by the fish, in order to 
adjust the attenuation so that the high-low contrast of the AMs was about 
10-15%.

Although our stimuli were the EOD-triggered sine waves described above, 
we will refer to the “stimulus” as the amplitude modulations of the EOD 
resulting from the sine waves. We used three types of stimuli in our ex-
periments (see below): a 4 Hz AM, randomly modulated 5-15 Hz AMs, 
and randomly modulated 60-80 Hz AMs. We used the 4 Hz stimulus to 
test whether our cell in question responded to the stimulus, as described 
above. The randomly modulated stimuli were designed based on the fre-
quency responses of the segments of the ELL. Areas LS and CLS preferred 
higher AM frequencies between 40 and 80 Hz, while CMS responded 
maximally to frequencies below 40 Hz. (8) 

All of the stimuli were generated through MATLAB (Mathworks). The 5-15 
Hz and 60-80 Hz stimuli were composed of band-pass filtered (fourth-or-
der Butterworth), normally distributed white noise. For these, we modu-
lated the envelope, a second-order property of the AMs, by multiplying 
the signal with a square wave function that switched between high and low 
amplitude with frequencies that spanned over three orders of magnitude: 
0.05, 0.1, 0.25, 0.5, 1, 2, and 4 Hz for the 5-15 Hz and 60-80 Hz stimuli, 
and an additional 8 and 16 Hz for the 60-80 Hz stimulus. Each stimulus 
contained 15-180 cycles of the switch where, between cycles, amplitude 
modulations came from the same distribution but were uncorrelated. For 
analysis, we pooled data from both the 5-15 Hz and 60-80 Hz stimuli since 
the results were identical between the frequency ranges.

Spike Time Extraction

Data analysis was also performed in MATLAB. We first filtered the dig-
ital extracellular recording with a high-pass eighth-order Butterworth 
filter with a cut-off frequency of 0.02 Hz in order to remove low-frequen-
cy noise and isolate our spikes for extraction. We selected a time range 
that corresponded to a single stimulus trial and applied an appropriate 
threshold above the noise to capture the spike times. We then applied a 
spike selection algorithm for further isolation from noise. For each time 
the spike crossed the threshold, we took a window of 0.8 ms centered at 
the time of crossing and plotted the maximum against the minimum of 
the signal in the window. From the plot, a neuron’s action potentials were 
seen as a cluster distinctly separate from the noise, and could be selected 
and isolated. We stored the spike times as a binary sequence with each el-
ement corresponding to a bin of width equal to the sampling period of the 
digitized signal, containing 1 if there was a spike, and 0 if there was none.

Peri-Stimulus Time Histograms

We constructed peri-stimulus time histograms (PSTHs) by averaging each 
cycle of the switch from low to high variance, for each switch frequency. 
First, we divided the cycle period into a predetermined number of bins be-
tween 40 and 60. For each bin, we summed the number of spikes in time, 
within a single repeat and also across all repeats, divided by the number 
of repeats as well as the binwidth. The result was an averaged firing rate 
over time, centered on the middle of each bin. We spaced the binwidths 
logarithmically with time, to capture the fast changes in firing rate at the 
beginning of the switch in variance, and linearly with time for the creation 
of figures.  The results were identical in both binning methods. To prepare 
the PSTH for fitting, we separated the PSTH into two halves, the first be-
ing the neuron’s response during low variance, and the second being its 
response to high variance. Since the stimulus switched between high and 
low variances periodically, the rapid increase in firing rate followed by a 
decay due to adaptation when the stimulus switched to high variance was 
captured entirely within the PSTH corresponding to high variance, and 
the rapid drop in firing rate followed by an increase when the stimulus 
switched to low variance was captured within the PSTH corresponding to 
low variance.

Adaptation Strength

We quantified a cell’s adaptation strength by its change in mean firing rate 
during high envelope for the 0.1 Hz step. We pooled data for both 5-15 
Hz and 60-80 Hz carrier frequencies as there was no significant difference 
between them. To compute the firing rates, we took the difference between 
the peak firing rate during the first quarter of high envelope, and the firing 
rate just before the step down to low envelope.

Adaptation Time Course Estimation

We isolated the decay in firing rate during high envelope by discarding 
the first few bins of the PSTH, if any, that preceded the bin containing the 
maximum firing rate. If the maximum was attained on more than one bin, 
we discarded the data up to the last maximum. We then re-centered the 
PSTH in time so that the first bin corresponded to the bin with the highest 
firing rate. We fitted the time course of decay in firing rate at high envelope 
with both exponential (Eq. 3) and power law (Eq. 4) models. Before doing 
so, we first obtained two estimates of the steady-state firing rate at high 
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stimulus envelope by fitting the decay with the following models using 
MATLAB’s nlinfit function, using evenly spaced bins in the PSTH:

rexp(t)=Ae-t/τ +C,              [1] 

rpow(t)=Bt-α+D,                 [2] 

where rexp(t) and rpow(t)  are the respective firing rates for the exponential 
and power law fits, A is a normalizing constant for the exponential model, 
t is time, τ is the exponential time constant in seconds, B is a normalizing 
constant for the power law model, α is the power law constant, and C and 
D are the respective estimated steady-state firing rates for the exponential 
and power law models.

After obtaining estimates of the steady-state firing rate, we created dupli-
cate PSTHs with logarithmically spaced bins, and subtracted the steady-
state estimates obtained from both the above models separately. We then 
normalized each PSTH with respect to the maximum firing rate, and again 
fitted the normalized data with the following corresponding models:

rexp(t)=Ae-t/τ,                  [3] 

rpow(t)=Bt-α,                   [4] 

where rexp(t) and rpow(t) are now the normalized respective firing rates for 
the exponential and power law fits, A is the new normalizing constant for 
the exponential model, τ is the normalized time constant in seconds, B is 
the new power law normalizing constant, and α is the normalized power 
law constant.

Receiver-Operator Characteristic Curves

We quantified the ability of a neuron to distinguish between high and low 
variance through receiver-operating characteristic (ROC) analysis of a 
neuron’s firing rate. We computed the probability distributions of firing 
rate for a single cell over the course of a 0.1 Hz switch by separating the 
time course into 500 ms bins, computing the firing rate during each bin 
over each repetition, and creating a histogram of those rates. To compute 
the ability to discriminate an input envelope, we set the distribution of 
firing rates just before the step up to high envelope as the “false” detection 
and the distribution at another point in time as the “correct” detection. Us-
ing a moving threshold, we computed the probability of correct detection 
and of false alarm as the area under their respective distributions above 
the threshold during high envelope, and below the threshold during low 
envelope. We created ROC curves from these probabilities and quantified 
discriminability as the area under this curve, where a value of 1 means the 
cell can discriminate perfectly and 0.5 means that the cell cannot discrim-
inate at all.

To compute the average discriminability of LS cells and CMS cells, we nor-
malized the firing rate probability distributions for each cell with respect 
to the reference distribution taken from just before the onset of high vari-
ance, setting the mean of that distribution to zero and scaling all other val-
ues by the standard deviation of the reference. This normalization allowed 
us to compare firing rate histograms between cells. We computed the ROC 
curve of each cell separately from these distributions. To compute the av-
erage ROC curve, we first rotated all points of the curve clockwise by π/4 
radians. We binned the interval [0, √2] into 7 bins, set the “centre” of each 
bin as the average abscissa value of the points contained in the bin, the 
mean of the ROC curve as the mean of the ordinate values in that bin, 
and the 95% confidence intervals of the ROC curve as the 95% confidence 
intervals of those same ordinate values. These points were then rotated 
counter-clockwise π/4 radians back to the ROC-style orientation.

Results

We obtained extracellular recordings from 45 pyramidal cells in LS and 32 
cells in CMS of the ELL of A. leptorhynchus while we played electrosen-
sory stimuli that mimicked interference signals, or AMs, that are present 
in the presence of another peer (Fig. 1A, blue and green). We periodically 

switched the depth of modulation, or envelope, of these AMs to simulate 
different distances between our fish and the mimicked conspecific. Since 
electromagnetic effects are stronger at closer distances, two fish in close 
proximity would create AMs with high envelope, and two fish further 
away lead to AMs with lower envelope. Fig. 1B shows sample responses 
from LS and CMS cells in response to three repeats for a switching fre-
quency of 0.1 Hz.

Since pyramidal cells in the ELL preferentially respond to specific phases 
of AMs (8), by averaging over multiple repeats of a high-low modulation 
cycle we can obtain an averaged PSTH of a cell in response to envelope 
even when the underlying AMs are uncorrelated. The phase preference of 

Fig. 1. (A) Schematic of experiment. Electrodes to the side of 
the fish send sinusoidal stimuli, superimposing with the fish’s 
electric field (bottom right, grey) to create amplitude modula-
tions (bottom right, black). The envelope of the stimulus’s am-
plitude modulations change periodically with time. Extracellular 
recordings were taken from two areas of the hindbrain known 
to respond to these modulations, LS and CMS (left). (B) Sample 
responses of LS and CMS neurons to a stimulus whose envelope 

(top) steps from low to high with a period of 10 seconds.

Fig. 2. (A) Averaged PSTH from an LS neuron in response to the 
stimulus described in Figure 1B. The binwidth used is 500 mil-
liseconds. We define the adaptation strength for each neuron 
as the difference between the firing rates at the beginning and 
end of high envelope. (B) Sample response from a CMS neuron 
(binwidth 500 ms). (C) Changes in firing rates from sample pop-
ulations in CMS (n=32) are significantly lower than those from 
LS (n=32, p=0.0377, one-way ANOVA). Black indicates the means 

and standard error of the means.
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ELL cells can be grouped into two categories: I-cells that prefer the falling 
phase of a cycle and E-cells that prefer the rising phase. Since we found 
no significant difference between the responses of the two types of cells 
(p>0.15 for cells in either segment, in terms of adaptation strength and 
area under ROC curve), we grouped them together in the presentation of 
these results. Figs. 2A and 2B show two sample responses from neurons 
in LS and CMS, respectively. In response to an increase in envelope, both 
neurons increase their firing rates. However, the LS neuron depicted in Fig. 
2A decreases its firing rate over the course of high envelope, suggesting 
that that neuron adapts. The CMS neuron in Fig. 2B does not noticeably 
adapt in the same manner. We computed the change in firing rate from the 
peak to the last bin of the PSTH at high envelope to create a measure of 
adaptation. Fig. 2C shows aggregate adaptation strengths obtained in this 
manner. Overall, CMS cells on average maintained their firing rate during 
high envelope more so than LS cells (p<0.05, one-way ANOVA). However, 
we note that there is a large degree of heterogeneity in adaptation respons-
es, with a smaller number of LS cells and a larger number of CMS cells that 
do not adapt a considerable amount.

In terms of adaptation, previous experimenters (3, 9-11) have report-
ed that the time course of adaptation resembles a power-law relation 
rather than an exponential relation with time. We hypothesized that a 
power-law relation could also describe the time course of ELL pyrami-
dal cell firing rate adaptation in response to changes in envelope. One 
of the hallmarks of power-law spike frequency adaptation is that the de-
cay is self-similar over different timescales (12), whereas the exponen-
tial model of adaptation has a single characteristic timescale and is not 

self-similar over different timescales. We fitted both exponential and pow-
er-law models to the decay in the PSTH in response to changes in envelope 
over frequencies spanning from 0.05 Hz to 16 Hz. In LS, we found that 
both models fit very well over a wide range of frequencies (Fig. 3A). How-
ever, the time constants of our exponential fits (τ in e-t/τ) were dependent 
on frequency of switch presented, whereas the power law constants (α in 
t-α) were independent. This held for both single cells (Fig. 3A-C) and the 
LS sample population (Fig. 3D and 3E), there was a correlation between 
frequency and time constant of adaptation (r=-0.317, p<10-5) whereas no 
correlation was found between frequency and power law constant (r=-
0.004, p>0.95).

Compared with the LS pyramidal cells, the CMS pyramidal cells adapt less 
to changes in envelope. Therefore, the exponential and power law fits have 
much more error (Fig. 4A-C). However, the exponential time constant of 
decay still depends on the frequency of envelope steps both at the individ-
ual cell level (Fig. 4B) and across the CMS sample population (Fig. 4D). 
Estimates for the power law constant of decay is independent of envelope 
step frequencies up to 1 Hz (r=0.0498, p>0.5). However, there is a slight 
positive correlation when considering envelope frequencies above 1 Hz 
(Fig. 4E, r=0.213, p<0.05).

Due to the long duration of some of our stimuli, we considered habitua-
tion affecting adaptation during and between trials. However, compari-
sons of the first 30 to the last 30 repeats of the 0.1 Hz stimulus, our longest 
stimulus at thirty minutes, revealed no significant differences in the time 
course response. Additionally, the order of stimuli presented were shuffled 
randomly for each cell that we recorded from a single fish.

To quantify changes in ambiguity as a result of adaptation, we constructed 

Fig. 3. Exponential and power law fits for LS. (A) Comparison of 
the decay in firing rate a sample LS cell for three different fre-
quencies of the switch from low to high envelope. We fitted 
each response with exponential (dark grey) and power-law 
(black) functions. (B) Exponential time constants for the fits in 
A, with error bars as 95% confidence intervals. (C) Power-law 
exponents for the fits in A, with 95% confidence intervals. (D) 
Time constants of the LS sample population (n=45) as a function 
of frequency. The axes are logarithmic scale. The solid line is a 
linear regression fit of the data, the slope of which is significantly 
different from zero (p<10-5). (E) Power law coefficients of the LS 
sample population, with a line indicating a linear regression fit. 

The slope here is not different from zero (p>0.9).

Fig. 4. (A-C) Same format as Figure 3 for CMS. CMS neurons 
respond weaker than LS neurons to envelope, and adapt less, 
hence the large error bars that overlap across zero in panels B 
and C. (D) Time constants for CMS sample population (n=32) 
with regression fits for frequencies from 0.05 Hz to 1 Hz (grey) 
and 0.05 Hz to 8 Hz (black). For both frequency ranges, the 
slopes are significant (p<10-4). (E) Power law constants with lin-
ear fits for frequencies up to 1 Hz (grey) and up to 8 Hz (black). 
The slope for the fit incorporating frequencies from 0.05 Hz to 1 

Hz is not significant (p>0.5).
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ROC curves based on the trial-by-trial firing rates of each cell and com-
puted the area under the curves during the course of the 0.1 Hz low-high 
step in envelope. We took a reference distribution from the distribution 
of firing rates just before the step up to high envelope, and compared that 
distribution with the firing rate distributions just after the step up to high 
envelope and again five seconds later (Figs. 5A,B and 6A,B). We calculated 
the amount of ambiguity of a cell as the area under the ROC curve at those 
times (Figs. 5C,D and 6C,D). In both LS and CMS cells, the area under 
the ROC curve is highest at the onset of high envelope, and decreases as a 
result of adaptation (Figs. 5E-G, 6E-G). While the steady-state ambiguity 
at 5 seconds is not significantly different between LS and CMS (p>0.8), the 
drop in the area under the curve across 5 seconds is significantly greater in 
LS than CMS (Fig. 6G, inset).

Discussion

We investigated the responses of neurons in two segments of the electro-
sensory hindbrain to changes in second-order properties of naturalistic 
stimuli and found that generally, these neurons adapted to second-order 
properties, and the degree of adaptation varied between different areas of 
the hindbrain. Additionally, our results suggest that the time course of ad-
aptation does not follow a single-timescale exponential decay in the seg-

ments sampled. Instead, the two segments adapted differently: one whose 
time course follows a power law, and another that only resembles a power 
law for lower frequencies.

The differential expression of SK channels between the segments of the 
ELL can in part explain the differences in adaptation between the seg-
ments. A combination of adapting and non-adapting cells could be a solu-
tion to the issue of ambiguity—while non-adapting cells encode the con-
text of a stimulus, adapting cells could code for information relative to that 
context. Higher expression of SK channels in area LS could also contribute 
to power law adaptation to changes in envelope. Since increases in Ca2+ 
are associated with increases in synaptic activity, frequent high envelopes 
during fast high-low cycle lengths increase the build-up of Ca2+, SK chan-
nel activation, and, consequently, adaptation. At longer cycle lengths, the 
long duration of low envelopes decreases pyramidal cell firing, decreasing 
the build-up of Ca2+ and leading to slower adaptive processes during high 
envelope. This scaling of the adaptation time course with the cycle length 
of the switch could lead to the scale-invariant characteristic of a power-law 
decay.

One of the advantages of power law adaptation is that it has the potential 
to whiten the frequency content of a stimulus. (11) A major theme of neu-
ral coding is the decorrelation of input signals between cells, eliminating 
redundant coding of information and increasing the efficiency of a neural 
network. (13) Given an input with a non-white frequency content, power 
law adaptation has the potential to tune an individual neural response to 
equally represent all input frequencies of the stimulus, maximizing infor-
mation transfer. (2)

Although the time constants of adaptation in areas CMS and LS vary 
with the frequency of changes in envelope, the power law constants vary 
in CMS neurons as well, at least over the range of envelope frequencies 

Fig. 5. (A) PSTH for the neuron in Figure 2A displaying the vari-
ability of firing rates over each repetition. Dashed lines indicate 
one standard deviation from the mean. (B) Distribution of firing 
rates for three sections of the PSTH highlighted in A. (C) ROC 
curves for the distributions at the beginning (black) and end 
(grey) of high envelope in comparison to end of low envelope. 
(D) Areas under the ROC curve across the PSTH in comparison to 
the end of low envelope. (E) Averaged distributions for the bins 
highlighted in A across LS sample population (n=32). (F) Aver-
aged ROC curves corresponding to those in C. (G) Averaged area 
under the ROC curve throughout the entire high-low envelope 
cycle for LS population. The grey shading in E-G indicate the 

standard errors of the means.

Fig. 6. (A-G) Same format as Figure 5 for CMS population (n=32). 
(G, inset) Change in area under ROC curve for LS is significantly 

greater than that of CMS (p<0.05, one-way ANOVA).
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presented. This dependence of the power law constant with frequency in 
CMS neurons is not present for frequencies up to 1 Hz, suggesting two 
different mechanisms for envelope processing in the CMS. The low-pass 
frequency tuning of CMS to envelopes, as suggested by its low amount 
of adaptation, could render high envelope frequencies (>1 Hz) irrelevant, 
since these higher envelope frequencies begin to overlap with possible 
AMs from other fish. We reason that CMS neurons preferentially respond 
to envelopes of low frequencies indicative of the presence and movement 
of another fish. In comparison, the frequency tuning of LS to first-order 
AMs is high-pass (8), allowing more second-order envelope frequencies to 
be represented in that area.

In our framework of parallel coding, the slowly-adapting CMS cells could 
serve as a channel to keep track of absolute stimulus features, while the 
faster-adapting LS cells could allow for encoding of relative stimulus fea-
tures. One limitation of this model was that there was still a heterogeneity 
in adaptation in the CMS, where some cells adapted more than others. 
However, some CMS and even  LS cells did not adapt at all, and it could be 
that these non-adapting cells are the true channels for absolute stimulus 
information. Further studies investigating adaptation among the different 
populations of LS and CMS pyramidal cells may reveal the different chan-
nels available to disambiguate information provided by spike frequency 
adaptation.
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