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Abstract
Neurons that respond selectively but in an invariant manner to a given feature of natural sti-

muli have been observed across species and systems. Such responses emerge in higher

brain areas, thereby suggesting that they occur by integrating afferent input. However, the

mechanisms by which such integration occurs are poorly understood. Here we show that

midbrain electrosensory neurons can respond selectively and in an invariant manner to het-

erogeneity in behaviorally relevant stimulus waveforms. Such invariant responses were not

seen in hindbrain electrosensory neurons providing afferent input to these midbrain neu-

rons, suggesting that response invariance results from nonlinear integration of such input.

To test this hypothesis, we built a model based on the Hodgkin-Huxley formalism that

received realistic afferent input. We found that multiple combinations of parameter values

could give rise to invariant responses matching those seen experimentally. Our model thus

shows that there are multiple solutions towards achieving invariant responses and reveals

how subthreshold membrane conductances help promote robust and invariant firing in

response to heterogeneous stimulus waveforms associated with behaviorally relevant sti-

muli. We discuss the implications of our findings for the electrosensory and other systems.

Author Summary

We provide the first experimental evidence showing that midbrain electrosensory neurons
in the weakly electric fish species Apteronotus leptorhynchus can respond in an invariant
manner to the heterogeneous stimulus waveforms associated with natural electrocommu-
nication stimuli. Interestingly, hindbrain neuron populations providing afferent input did
not display feature invariant responses. In order to understand the mechanisms that medi-
ate the emergence of feature invariance in midbrain neurons, we built a model based on
the Hodgkin-Huxley formalism. An evolutionary algorithm identified multiple combina-
tions of parameter values that all gave rise to responses that matched those seen experi-
mentally. In particular, balanced input from ON and OFF-type cells was necessary to
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observe feature invariance. Moreover, while a spiking nonlinearity was sufficient to
observe invariant responses, the addition of subthreshold membrane conductances to the
model enhanced the regions in parameter space for which feature invariant responses
were observed. Further analysis of membrane potential responses confirmed our modeling
predictions. Our model thus makes the important prediction that multiple mechanisms
will lead to feature invariance and we discuss the implications for sensory processing in
the electrosensory and other systems.

Introduction
Efficient processing of incoming sensory information is essential to an organism’s survival.
Thus, understanding the strategies used by the brain to process such information (the neural
code) remains an important problem in neuroscience. There is growing experimental evidence
that the representation of sensory information changes from a dense code, in which neurons
respond differentially to most if not all behaviorally relevant stimuli, to a sparse code, in which
neurons instead respond selectively but in an invariant manner to a given stimulus (e.g. a
human face) [1–12]. This is thought to reduce energy consumption, enhance the ability to rec-
ognize a particular feature, and facilitate readout by higher brain structures [13].

Despite their seemingly contrary nature, both response selectivity and invariance to identity
preserving transforms of the target stimuli (e.g. the same object seen from different viewpoints
or the same sound heard at different intensities) have been shown to progressively increase as
information propagates to higher brain regions [8, 10–12, 14]. Most strikingly, neurons in the
medio-temporal cortex can respond similarly to stimulus patterns that are only abstractly
related (a picture of a given person vs. the name of this person written on a piece of paper) [6].
The mechanisms by which sparse coding and feature invariance emerge in the vertebrate brain
remain largely unknown but are critical for understanding brain disorders as well as improving
artificial intelligence [15].

Here we studied the emergence of feature invariant representations of natural stimuli in the
electrosensory system of the gymnotiform weakly electric fish Apteronotus leptorhynchus.
These animals continuously emit a quasi-sinusoidal electric field through an electric organ dis-
charge (EOD) and rely on perturbations of this field caused by objects whose conductivity is
different than that of the surrounding water (e.g. prey, conspecifics) to obtain information
about their surroundings (see [16–21] for review). Peripheral electroreceptor neurons respond
to increases in EOD amplitude through increases in firing rate and relay this information to
pyramidal neurons within the hindbrain electrosensory lateral line lobe (ELL) that in turn proj-
ect to the midbrain torus semicircularis (TS), which is at a similar processing stage as the infe-
rior colliculus in mammals [17]. Natural stimuli are comprised in part by those caused by
conspecifics. In particular, the interference between the EODs of two fish that come into con-
tact (<1 m distance) will give rise to a sinusoidal amplitude modulation stimulus, a beat,
whose frequency is equal to the difference between the two EOD frequencies. Due to a sexual
dimorphism in EOD frequency, interactions between same-sex and opposite-sex conspecifics
give rise to low (<30 Hz) and high (>30 Hz) frequency beats, respectively [22]. These fish
moreover will display electrocommunication stimuli called “chirps” that consist of brief (<40
ms) increases in EOD frequency, which occur on top of the beat and can give rise to very differ-
ent waveforms [22–26].

Previous electrophysiological studies have found that both peripheral electroreceptors
[27–29] as well as hindbrain pyramidal neurons [30–32] tend to use dense neural codes as they
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give strong responses to both beat and chirp stimuli that vary based on the waveform used. In
contrast, TS neurons tend to use a sparse neural code as they display much more selectivity. In
particular, some TS neurons can respond selectively but differentially to chirps [32]. Here we
report that some TS neurons can instead respond selectively but in an invariant fashion to dif-
ferent chirp waveforms, thereby providing a potential neural correlate of robust perception of
natural electrocommunication signals by permitting reliable signal detection and information
extraction in higher brain areas. Since hindbrain ELL neurons providing afferent input to TS
neurons did not display such invariant responses, we concluded that feature invariance
emerges at the level of the TS presumably by nonlinear integration of ELL afferent input. In
order to investigate the underlying mechanisms, we built a model of a TS neuron receiving
realistic input based on the Hodgkin-Huxley formalism. Our results show that multiple combi-
nations of parameter values could give rise to feature invariant responses to different chirp
waveforms mimicking those seen experimentally. Importantly, while a spiking nonlinearity
was sufficient to observe such responses, the addition of subthreshold h- and T-type currents
increased the regions in parameter space that gave rise to feature invariance. Our results have
important implications for understanding the emergence of feature invariant responses in sen-
sory systems.

Results
Our study focuses on how the electrosensory system of weakly electric fish can give rise to
invariant neural responses to heterogeneous waveforms associated with natural electrocommu-
nication stimuli. Such stimuli occur during interactions between two individual fish (Fig 1A).
Because each individual fish has a different EOD frequency, interaction between the quasi-
sinusoidal waveforms gives rise to a beat (Fig 1B, black trace in bottom panel) [22, 25]. Electro-
communication stimuli (i.e. “chirps”) consist of a brief (<40 ms) increase in the emitter fish’s
EOD frequency (Fig 1B, green trace in top panel) while the EOD frequency of the receiver fish
remains constant (Fig 1B, blue trace in top panel). Chirps have been traditionally segregated
into type I (“big”) and type II (“small”): big chirps consist of a large increase in frequency
(>150 Hz) accompanied by a decrease in the emitter fish’s EOD amplitude and tend to occur
for large (>30 Hz) beat frequencies while small chirps instead consist mostly of a smaller (>30
Hz and<150 Hz) increase in the EOD frequency of the emitter fish that tend to occur for
small (<30 Hz) beat frequencies [22, 23, 33].

Natural electrocommunication stimuli display heterogeneities
While it is well known that natural electrocommunication stimuli display heterogeneous wave-
forms [25, 27], a systematic investigation and quantification of these heterogeneities has not
been done to date. Thus, we first investigated and quantified heterogeneities in naturally occur-
ring electrocommunication stimuli. We used a well-established behavioral assay [34] in which
the restrained animal receives a stimulus mimicking another fish’s EOD and recorded the ani-
mal’s behavioral responses (see Methods). On average the EOD frequency increases associated
with small and big chirps were 50.1±0.5 Hz (min: 30.1 Hz; max: 76.5 Hz; n = 486) and 261.2
±2.2 Hz (min: 155.4 Hz; max: 459.3 Hz; n = 395), respectively. Overall, we found large differ-
ences between the waveforms associated with small chirps as evidenced from the four example
traces shown in the top panel of Fig 1C. In contrast, we found smaller differences amongst the
waveforms associated with big chirps that were all relatively similar to each other as they were
mainly characterized by a pronounced decrease in the beat amplitude (Fig 1C, bottom panel).
We quantified the difference between the observed small chirp and big chirp waveforms using

Feature Invariant Responses to Natural Electrocommunication Stimuli

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004430 October 16, 2015 3 / 28



a similarity index (see Methods) and found overall larger values for big chirps than for small
chirps (two-sample K-S test, p = 0.0013) (Fig 1D).

In order to investigate the source of the observed heterogeneities in the recorded small chirp
but not big chirp waveforms, we quantified each by two attributes: namely duration and beat
phase (see Methods). Our results show that both small and big chirp duration were distributed
over different but relatively narrow ranges of values (Fig 1E). In contrast, both small and big
chirps occurred at all phases of the beat with uniform probability (Fig 1E). Thus, our results
suggest that the phase of the beat at which the chirp occurs but not its duration is an important

Fig 1. Natural electrocommunication stimuli display heterogeneous waveforms. A) Two weakly electric
fish with their electric organ discharges (EODs) and a communication signal (“chirp”) from the emitter fish
(green) to the receiver fish (blue). B) Schematic showing the EODs of the emitter and receiver (middle) fish as
a function of time as well as the instantaneous EOD frequencies (top). The chirp consists of a transient
increase in the emitter fish’s EOD frequency while the receiver fish’s frequency remains constant. The
compound signal (bottom, gray) then consists of a beat resulting from the interference between the two quasi-
sinusoidal EOD waveforms and the chirp then leads to a brief interruption in the beat. Note that the actual
stimulus is the AM of the compound signal (bottom, black).C) Example waveforms resulting from natural
chirping behavior. Note the large heterogeneities in the waveforms associated with the small (top) but not big
chirps (bottom).D) Probability distribution of the similarity measure for big and small chirps. E) Chirp stimuli
occur on all phases of the beat with uniform probability density but have fixed durations.

doi:10.1371/journal.pcbi.1004430.g001
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source of heterogeneity in the resulting stimulus waveform for small but not big chirps. This
result can be understood intuitively as follows. First, we note that small and big chirps tend to
occur on top of lower and higher frequency beats, respectively. Thus, the beat period is then
longer relative to the chirp duration for the former and is thus expected to have more of an
effect in creating a heterogeneous set of waveforms. We nevertheless note that the fact that
there is a concomitant decrease in EOD amplitude for big but not small chirps also likely con-
tributes to the fact that there are less heterogeneities in the waveforms resulting from the
former.

TS neurons display invariant responses to electrocommunication stimuli
We next investigated whether electrosensory midbrain neurons responded to big and small
chirps in a feature invariant manner. To do so, we recorded the responses of TS neurons
(N = 137) (Fig 2A) to both small and big chirp stimuli that captured the relatively heteroge-
neous waveforms seen for the former and the relatively homogeneous waveforms seen for the
latter (Fig 2B). Previous studies have found that TS neurons either do not respond selectively
or respond selectively but differentially to different chirp stimulus waveforms [32]. Here we
focused on neurons that responded selectively to the chirp stimulus and not the beat and
whose responses to different chirp waveforms were similar (see Methods). We found that some
TS neurons in our dataset (N = 9) responded selectively to both small and big chirp stimuli but
in a similar manner through silence during the beat and by the firing of 1–2 action potentials at
a short latency (~15 ms) after the chirp onset (Fig 2B). We quantified whether the response
was selective to the chirp waveform using the chirp selectivity index (CSI) as done previously
[32] (see Methods) and we quantified differences between spiking responses to different chirp
waveforms using the Victor-Purpura distance metric (VPD) [35] (see Methods). We obtained
CSI = 1 and VPD = 1.19 for the example neuron shown in Fig 2. We also computed a feature
invariance index (FI) score that captured a neuron’s ability to respond selectively but invar-
iantly to chirps. We obtained FI = 0.99 for the example neuron shown in Fig 2.

ELL pyramidal neurons do not display invariant responses to
electrocommunication stimuli
Perhaps the simplest potential explanation for the experimentally observed invariant responses
of TS neurons described above is that they are simply inherited from their afferent ELL pyrami-
dal neurons. Previous studies have found two types of ELL pyramidal neurons [36]: ON-type
neurons respond with excitation while OFF-type neurons instead respond with inhibition to
increases in EOD amplitude, respectively. We thus recorded ELL pyramidal neuron responses
to the same stimuli presented to TS neurons (Fig 3A). In contrast to TS neurons and consistent
with previous results [37], ON (n = 25) and OFF-type (n = 20) ELL pyramidal cells displayed
pronounced responses to the beat in the form of phase locking (Fig 3B and 3C). Although ON
and OFF-type ELL pyramidal cells also responded to all chirp waveforms, they did not do so in
an invariant manner as they were excited by some chirp waveforms but inhibited by others
(Fig 3B and 3C). We quantified the responses of ON and OFF-type ELL pyramidal cells to
chirps using CSI, VPD, and FI. Overall, both ON and OFF-type ELL neurons displayed signifi-
cantly smaller CSI values than TS neurons (Fig 3D, left) indicating that they tended to respond
to both the beat and the chirp, consistent with previous findings [30–32]. Moreover, there were
significantly greater differences between the responses of ON and OFF-type ELL neurons to
different chirp waveforms as compared to that of TS neurons (Fig 3D, middle). Therefore, the
responses of TS neurons to chirps were significantly more invariant than those of ELL neurons
(ON: 0.000±0.000, OFF: 0.004±0.004, TS: 0.54±0.09, one-way ANOVA with Tukey-Kramer
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correction, p<0.05) (Fig 3D, right). We conclude that the feature invariant responses observed
in TS are not simply inherited from ELL neurons and must rather result from TS neurons inte-
grating such input.

Feature invariant responses in TS neurons require nonlinear integration
of ELL afferent input
We next tested whether pooling the activities of ON and OFF-type pyramidal cells might give
rise to feature invariant responses. This is important because previous results have found
strong heterogeneities in the responses of ON and OFF-type pyramidal cells to chirp stimuli
[30, 31]. Overall, we found that pooling the responses across either ON-type, OFF-type, or
both types did not give rise to feature invariant responses to natural electrocommunication

Fig 2. Midbrain electrosensory neurons display feature invariant responses to natural
electrocommunication stimuli. A) Schematic showing a fish with stimulation electrodes on each side as
well as a recording electrode from the midbrain region Torus semicircularis (TS). B)Responses of an
example TS neuron to different chirp stimuli (black). The blue dots mark the occurrence of action potentials to
20 repeated presentations of the stimulus waveform (raster plot) and the red curve shows the firing rate
response averaged over trials (PSTH). Note the similarity in the response to each waveform as the neuron
fires at the chirp onset with one-two spikes in each case.

doi:10.1371/journal.pcbi.1004430.g002
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stimuli (Fig 3E). While such pooling gave rise to slightly higher FI values than seen for single
neurons, the FI values were still much lower than those observed in TS neurons (Fig 3E). We
thus conclude that nonlinear integration of ELL input by TS neurons is necessary to give rise to
the experimentally observed feature invariant responses in the midbrain.

A Hodgkin-Huxley model displays feature invariant responses to natural
electrocommunication stimuli
To investigate whether, and if so how, nonlinear integration of ELL input by TS neurons is suf-
ficient to observe feature invariant responses to chirp stimuli, we built a model TS neuron
based on the Hodgkin-Huxley formalism that included different membrane conductances seen
experimentally in TS neurons (Fig 4). Importantly, the afferent ELL input to the model was the
weighted sum of the population-averaged experimentally observed responses of ON and OFF-
type pyramidal neurons to chirp stimuli convolved with an alpha function to mimic synaptic
input (see Methods). Model parameters were similar to those used in previous modeling stud-
ies of TS neurons [38–40] or varied systematically. We then used a constrained differential evo-
lution algorithm to identify combinations of parameter values that gave rise to the highest
feature invariant responses as quantified by FI (see Methods).

This algorithm identified multiple sets of physiologically realistic parameter values that all
gave rise to feature invariant responses that matched those seen experimentally. Fig 5 shows

Fig 3. Hindbrain electrosensory neurons projecting to midbrain do not display feature invariant
responses to natural electrocommunication stimuli. A) Schematic showing a fish with stimulation
electrodes on each side as well as a recording electrode from the hindbrain region Electrosensory lateral line
lobe (ELL).B,C)Responses of example ON and OFF-type ELL pyramidal neurons to different chirp stimuli
(black), respectively. The blue dots mark the occurrence of action potentials to 20 repeated presentations of
the stimulus waveform (raster plot) and the red curve shows the firing rate response averaged over trials
(PSTH). Note the different responses to chirps as a given cell responds sometimes with excitation and
sometimes with inhibition. D) Population-averaged VPD (left), CSI (middle), and FI (right) values for ELL ON,
OFF-cells, and TS neurons. “*” indicates statistical significance at the p = 0.05 level using a one-way
ANOVA. Values for ON, OFF, and TS cells, respectively, are VPD = 53.3±5.3, 46.8±3.4, 7.4±1.9; CSI = -0.05
±0.02, -0.03±0.04, 0.61±0.08; FI = 0.00±0.00, 0.004±0.004, 0.536±0.093. E) FI values obtained from the
population-averaged responses for ON-cells, OFF-cells, and ON+OFF-cells are also shown and are all much
lower than FI values obtained for TS neurons.

doi:10.1371/journal.pcbi.1004430.g003

Fig 4. Modeling TS neuron responses to natural electrocommunication stimuli.Our model consists of
summing the population-averaged responses of ON and OFF-type ELL pyramidal neurons with weights σB

and 1-σB, respectively, and giving the resulting signal as synaptic input to a model TS neuron that includes
various membrane conductances that were modeled using the Hodgkin-Huxley formalism: leak gleak, spiking
sodium gNa, delayed rectifier potassium gK, T-type calcium gT, hyperpolarization activated inward rectifier gh.

doi:10.1371/journal.pcbi.1004430.g004
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five such examples. For each set of parameter values, the model neuron responded to each
chirp with 1–4 action potentials, as seen experimentally, in a similar fashion as quantified by
similar FI scores despite having different parameter values. Importantly, we had both T- and h-
type conductances set to zero (i.e. gT = gh = 0 μS) for model 2 indicating that these subthreshold
membrane conductances are not necessary to observe feature invariance. Thus, our model pre-
dicts that the spiking nonlinearity is sufficient to produce feature invariant responses to natural
electrocommunication stimuli.

Effect of varying model parameters on feature invariance
We next investigated why different combinations of parameter values all gave rise to feature
invariant responses to natural electrocommunication stimuli. To do so, we systematically var-
ied model parameters. Specifically, we varied the bias current Ibias, the T-type calcium conduc-
tance gT, the h-type conductance gh, the maximum synaptic conductance gsyn, the noise
intensity σnoise, and the fraction of ON-type input σB. We observed negatively sloped bands
when varying any two parameters except σB within this set (Fig 6A and 6B and 6C as well as
the left panels of Figs 7A and 8A and 8C), indicating that increases/decreases in one parameter

Fig 5. Widely different combinations of parameter values give rise to feature invariant responses in
our model. Five example model neurons and their responses to the different chirp stimuli. The FI values for
models 1 to 5 were 0.90, 0.79, 0.91, 0.77, and 0.89, respectively. Parameter values for models 1 to 5 where
σB = 0.42, 0.41, 0.35, 0.40, 0.42; Ibias = -9.4, -6.6, -18.1, -5.2, -6.5 nA; gsyn = 0.10, 0.13, 0.16, 0.10, 0.09 μS;
gh = 0.24, 0, 0.48, 0.02, 0 μS; gT = 2.10, 0, 3.99, 0, 5.6 μS. Other parameter values were the same as that
indicated in the methods.

doi:10.1371/journal.pcbi.1004430.g005
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could be compensated for by decreases/increases in the other parameter. In contrast, we did
not observe such negatively sloped bands when varying both σB and any of Ibias, gT, gh, gsyn, or
σnoise (Fig 6D and left panels of Figs 7B and 7C and 8B), indicating that proper tuning of σB,
which gives the relative balance of ON vs. OFF-type input received by the model neuron is nec-
essary to achieve feature invariance as a change in this parameter cannot be compensated for
by changing other parameters. We note that, by definition, parameter regions with high feature
invariance correspond to regions with high CSI and low VPD values (S1 and S2 Figs). The
implications of these findings are discussed below.

Fig 6. The balance of ON vs. OFF input is critical to observe feature invariance whereas compensation
was observed for other parameters. A) Invariance as a function of Ibias and gT (left) and of Ibias and gh (right).
B) Invariance as a function of σnoise and gT (left) and σnoise and gh (right).C) Invariance as a function of σnoise
and gT (left) and σnoise and gh (right).C) Invariance as a function of gsyn and gT (left) and gsyn and gh (right). For
A,B,C, note the negatively sloped red band indicating that a decrease/increase in the former can be
compensated by an increase/decrease in the latter.D) Invariance as a function of σB and gT (left) and σB and gh
(right). Note that the highest feature invariance was observed when σB* 0.4 in both cases. Other parameter
values were gsyn = 0.063 μS, gh = 2.34 μS, gT = 0.21 μS, Ibias = –5.72 nA, and σB = 0.41.

doi:10.1371/journal.pcbi.1004430.g006
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Subthreshold membrane conductances increase regions in parameter
space for which feature invariance is observed
While our modeling results have shown that the subthreshold membrane conductances gh and
gT were not necessary to observe feature invariance, we nevertheless investigated whether these
might increase the regions in parameter space for which feature invariance was observed. To
do so, we compared the robustness of feature invariance to varying model parameters as quan-
tified by the % of pixels for which we had FI� 0.7 when varying parameters pairwise in models
with and without subthreshold membrane conductances. Figs 7 and 8 show the FI values

Fig 7. Subthreshold membrane conductances increase the set of parameter values for which feature
invariance is observed. A) Invariance as a function of Ibias and gsynwith (left) and without (right) the
subthreshold membrane conductances gT and gh. Robustness (i.e. the % of pixels for which the feature
invariance score FI was greater of equal to 0.7, see Methods) was 20% (left) vs. 4% (right). B) Invariance as a
function of Ibias and σBwith (left) and without (right) the subthreshold membrane conductances gT and gh.
Robustness was 7.8% (left) vs. 0.5% (right).C) Invariance as a function of gsyn and σBwith (left) and without
(right) the subthreshold membrane conductances gT and gh. Robustness was 5.9% (left) vs. 0.3% (right). For
the panels on the left, we had gT = 0.236 μS and gh = 2.1 μS whereas for those on the right, we had gT = gh =
0 μS. Other parameter values were gsyn = 0.063, 0.128 μS; Ibias = –9.39, –6.57 nA; and σB = 0.42, 0.41 for the
panels on the left and right columns, respectively.

doi:10.1371/journal.pcbi.1004430.g007
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obtained when varying parameters pairwise in model neurons with (left panels) and without
(right panels) subthreshold conductances. It is seen that high FI values were obtained for larger
regions in parameter space with subthreshold conductances (Figs 7 and 8, compare left and
right panels). On average, the robustness with subthreshold conductances was higher (*16%)
than without (*3%), indicating that the subthreshold membrane conductances gh and gT,
while not necessary to obtain feature invariant responses, do significantly increase the regions
in parameter space for which feature invariance is observed.

Testing the model’s predictions
Our model made important predictions that: 1) a spiking nonlinearity was sufficient to give
rise to feature invariance and that 2) maximum feature invariance was obtained when our
model neuron received inputs from both ON and OFF-type sources. To test 1), consider that, if

Fig 8. Subthresholdmembrane conductances increase the set of parameter values for which feature
invariance is observedwhen varying noise intensity. A) Invariance as a function of Ibias and σnoisewith (left)
and without (right) the subthreshold membrane conductances gT and gh. Robustness was 24% (left) vs. 4%
(right).B) Invariance as a function of σB and σnoisewith (left) and without (right) the subthreshold membrane
conductances gT and gh. Robustness was 24% (left) vs. 3.6% (right).C) Invariance as a function of gsyn and
σnoisewith (left) and without (right) the subthreshold membrane conductances gT and gh. Robustness was
16.8% (left) vs. 3.6% (right). For the panels on the left, we had gT = 0.03 μS and gh = 2.1 μSwhereas for those
on the right, we had gT = gh = 0 μS. Other parameter values were gsyn = 0.102, 0.129 μS; Ibias = –9.39, –6.57 nA;
and σB = 0.42, 0.41 for the panels on the left and right columns, respectively.

doi:10.1371/journal.pcbi.1004430.g008
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a spiking nonlinearity is sufficient to give rise to feature invariance, which first requires that the
neural response be selective to the chirp stimulus, then we expect that the membrane potential
response would display less selectivity than the spiking response. We tested this hypothesis by
comparing CSI values obtained from the membrane potential to those obtained from spikes
across chirp stimuli for two neurons that were recorded from intracellularly. Confirming our
hypothesis, we found that the CSI values obtained from the membrane potential (0.40±0.06)
were significantly less than that obtained from the spiking responses (0.85±0.06) (p = 0.002,
signrank test, N = 10).

To test 2), we investigated the membrane potential responses of feature invariant TS neu-
rons to sinusoidal input. We note that ON and OFF-type ELL pyramidal cells respond only
during the rising and falling phases of such stimuli, respectively [36, 37]. Thus, if feature invari-
ant TS neurons receive excitatory input from both ON and OFF-type ELL pyramidal cells, then
we would expect to see membrane potential depolarizations during both the rising and falling
phases of the sinusoidal stimulus. Fig 9A shows the membrane potential response of an exam-
ple TS neuron to sinusoidal stimulation. Confirming our hypothesis, we observed depolariza-
tions during both the rising and falling phases of the stimulus (Fig 9A, dashed red lines). The

Fig 9. Verifying the model’s prediction. A)Membrane potential response (blue) of an example feature
invariant TS neuron to sinusoidal stimulation (black). Membrane depolarizations were observed during both
the rising and the falling phases of the stimulus (red dashed lines).B) The average membrane potential
response (blue) during one stimulus cycle (black) was clearly bimodal and displayed two peaks that were
approximately 180° out of phase (red dashed lines). C) The membrane potential power spectrum displayed
most power (red arrow) at frequencies higher than that of the sinusoidal stimulation (black arrow). Inset:
Bimodality index computed from 2 feature invariant TS neurons that were recorded from intracellularly.

doi:10.1371/journal.pcbi.1004430.g009
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average membrane potential response to one stimulus cycle (Fig 9B) was clearly bimodal. This
was confirmed by computing the power spectral density of the membrane potential that
showed maximum power at twice the stimulus frequency (Fig 9C, red arrow) and much less
power at the stimulus frequency (Fig 9C, black arrow). We computed a bimodality index
whose value is 1 if the neuron responds equally at two phases π radians apart and zero if the
neuron only responds at one phase (see Methods). We found values of 0.67 and 0.52 for both
TS neurons (Fig 9C, inset). The implications of these results are discussed below.

Discussion

Summary of results
We investigated the coding of natural electrocommunication stimuli in both hindbrain and
midbrain electrosensory neurons. Our characterization of natural electrocommunication sti-
muli revealed strong heterogeneities in waveforms that gave rise to differential response pat-
terns in hindbrain pyramidal neurons. Surprisingly, we found that some TS neurons displayed
feature invariant responses to natural electrocommunication stimuli through nonlinear inte-
gration of balanced hindbrain ELL neuron afferent input. In order to understand the underly-
ing mechanisms, we built a model based on the Hodgkin-Huxley formalism. Systematically
varying model parameters and finding parameter values giving rise to the highest levels of fea-
ture invariance through an evolutionary algorithm revealed that very different combinations of
parameter values could give rise to approximately similar degrees of feature invariance. This
was because the effects of changing a given parameter could be compensated for by changing
another parameter. This compensation was seen for all parameters tested with the notable
exception of the balance between ON and OFF-type inputs. Although a spiking nonlinearity
was sufficient to observe feature invariance, our results nevertheless showed that subthreshold
membrane conductances enhanced the robustness of feature invariance overall. We then veri-
fied our modeling predictions experimentally and found that: 1) the membrane potential
response was less selective to chirps than the spiking response; 2) feature invariant TS neurons
responded with membrane potential depolarizations during both the rising and the falling
phase of sinusoidal stimuli suggesting that they do indeed receive input from both ON and
OFF-type ELL pyramidal neurons.

Multiple combinations of model parameters lead to feature invariant
responses
Our model made the important novel prediction that multiple combinations of parameter val-
ues can give rise to feature invariant responses to natural electrocommunication stimuli. The
occurrence of similar neural network output despite considerable differences in underlying cel-
lular properties has been previously observed in mathematical models [41–46]. However, such
phenomena have mostly been observed experimentally in invertebrate model systems where a
given neuron type can be reliably identified across individuals [47–51]. The invariance in out-
put pattern is thought to promote robust function despite perturbations or variability during
development [49, 52, 53] by permitting homeostasis through compensatory mechanisms [54–
56] as well as genetic alterations [49, 57]. Our results have shown that feature invariant
responses to natural electrocommunication stimuli could be obtained in a realistic model
through multiple combinations of parameter values. This was because changes in some param-
eters could be compensated for through changes in others, thereby leading to correlations
between parameters as observed elsewhere [58]. Previous studies have suggested that such opti-
mization can be achieved through coupled control of ion channels [48, 53, 58], which could be
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applicable for h- and T-type currents in this case. Such studies are needed to uncover whether
the electrosensory system uses most if not all of the solutions available to give rise to feature
invariance. In general experimental studies have found the variability in neuronal and circuit
properties to be less than that found in mathematical models: this is likely due to an incomplete
understanding of the more complex biological constraints imposed on the molecular, cellular,
and network levels [51, 52, 59]. Interestingly, we found that not all changes in parameter values
could be compensated for as the best feature invariant responses were observed when the
model TS neuron received nearly balanced inputs from ON and OFF-type ELL pyramidal neu-
rons, which was confirmed experimentally. This suggests that these TS neurons correspond to
the “ON-OFF” (or type 3) neurons that have been previously observed in TS [60, 61] and that
were found to respond selectively to the second order features of electrosensory stimuli [40].
The fact that the neurons responding selectively to the second order features of electrosensory
stimuli considered previously tended to spike in response to sinusoidal stimuli [40] whereas
the neurons displaying selective but invariant responses to chirps considered here did not sug-
gest that these are not the same neuron type. Since only a small percentage (*5%) of TS neu-
rons in our dataset displayed selective and invariant responses to chirps, we hypothesize that
these must correspond to 1 of the 50 previously anatomically identified cell types within TS
[62]. An experimental verification of these predictions is at best challenging as it would require
identification of which neural class(es) in TS show selective and invariant responses to chirps
as well as selective responses to second order features of electrosensory stimuli. Such experi-
ments should also directly verify whether these neurons do indeed receive inputs from both
ON and OFF-type ELL pyramidal neurons through direct stimulation of afferent synaptic con-
nections in vitro. These studies are beyond the scope of this paper. Moreover, while previous
studies have found that TS neurons receive large amounts of neuromodulatory inputs [63, 64],
the effects of these on sensory processing have only been studied in hindbrain pyramidal neu-
rons [34, 65–67]. Thus, further studies are needed to understand how neuromodulators affect
sensory processing within TS and whether the feature invariant responses seen in this study are
robust to such neuromodulators as seen elsewhere [68].

We also note that previous anatomical studies have found that TS neurons receive inhibi-
tory input exclusively from other neurons located within TS [62]. While our modeling results
show that such inhibition is not necessary in order to observe selective but feature invariant
responses to chirps, it is conceivable that such inhibition could be used to enhance response
selectivity as well as similarity. Further studies are needed to understand the role played by
inhibition on sensory processing by TS neurons.

Finally, we note that future studies should test whether TS neurons display feature invariant
responses to more chirp waveforms. In particular, previous studies have reported that small
chirps can occur on top of high frequency beats [24, 29]. The fact that TS neurons responded
similarly to both big chirps occurring on top of high frequency beats and small chirps occur-
ring on top of low frequency beats would suggest that they would respond similarly to small
chirps occurring on top of high frequency beats but further studies are required to test this
prediction.

Feature invariant responses to natural electrocommunication stimuli:
Consequences on perception/behavior
While previous studies have reported that both peripheral electroreceptor [27–29] as well hind-
brain pyramidal [30–32, 69] neurons can respond to natural electrocommunication stimuli,
these have all shown differential responses to different chirp waveforms. In contrast, behavioral
studies have shown that weakly electric fish display robust and similar behavioral responses to
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small chirps despite such heterogeneous waveforms [23, 24, 70], thereby suggesting that the
animal perceives these waveforms as similar. If this hypothesis is true, then our results showing
that some TS neurons respond in a feature invariant manner would provide a neural correlate
of such invariant behavioral responses implying that perception of natural electrocommunica-
tion stimuli is largely independent of their characteristics. However, previous studies have
shown large heterogeneities in the responses of TS neurons to stimuli: some neurons respond
to moving objects in a directionally selective manner [39, 71, 72], others to second order stimu-
lus features [40], and others to natural electrocommunication stimuli [32]. Such diversity in
responses is likely to be a signature of several different parallel processing pathways for natural
electrosensory stimuli. The feature invariant responses of some TS neurons to natural electro-
communication stimuli are likely to serve as a reliable detection signal for their occurrence in
time [32]. Such a signal would be advantageous as small and big chirp stimuli respectively
occur during aggressive and courtship behavior [23, 24, 26], which might help the animal bet-
ter prepare for each context.

It is nevertheless possible that previously described other TS neurons that respond selec-
tively but differentially to different chirp waveforms convey information about chirp attributes
in parallel [32]. This is an attractive hypothesis as these TS neurons tended to respond either to
small or to big chirps, which would provide a neural correlate of behavioral results suggesting
that the animal can actually distinguish between small and big chirp waveforms, which is con-
sistent with the fact that big chirps instead constitute an attractive signal for a potential mate
(see [26] for review). Behavioral studies in which the behavioral responses to different small
and big chirp waveforms are explicitly considered and compared are needed to test whether
the animal can actually distinguish between different waveforms and to test whether and, if so,
how perception depends on natural electrocommunication stimulus attributes.

We furthermore note that previous studies have found that electrosensory pyramidal neu-
rons display large heterogeneities and can be classified into different classes that are associated
with differential expression of ionic conductances [73, 74], amount of descending input [37,
75], and dendritic morphology [76]. Anatomical studies have shown that the electrosensory
lateral line lobe is organized into columns each containing one member from each pyramidal
cell class. While all classes project to the midbrain TS [75], the specific pattern of innervation is
not known. Further studies are needed to uncover this pattern.

Implications for other systems
The emergence of feature invariant neuronal responses appears to be a ubiquitous strategy for
sensory processing across species and systems. Indeed, such neurons have been observed in
both the visual [6, 12, 14, 77, 78] and auditory [9–11, 79] pathways. In general, previous studies
have noted an increase in both response selectivity and invariance as information propagates
to higher brain regions [10, 12, 14]. Thus, feature invariance appears to be linked to sparse cod-
ing [1]. Moreover, it is generally agreed that feature invariance develops in stages with neurons
in higher brain areas displaying progressively more invariant responses [10, 12, 14]. Hence, our
results showing that some TS neurons display feature invariant responses to natural electro-
communication stimuli, together with previous results showing the emergence of sparse coding
in TS [32], are consistent with those obtained elsewhere. In particular, we found that nonlinear
integration of balanced input from ON and OFF-type neurons was sufficient to give rise to fea-
ture invariant responses. This mechanism is likely to be applicable to other systems: this is
because neurons in more peripheral brain areas also tend to respond to identity preserving
transformations of a stimulus through different patterns of excitation and inhibition [79]. Fur-
ther, ON and OFF-type neurons have been observed in the more peripheral brain areas (e.g.
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retina) of other systems [80, 81] and studies have shown that higher order neurons likely
receive mixed input from both ON and OFF-type neurons [82, 83]. Additionally, the mem-
brane conductances used in our model are generic and found ubiquitously in the central ner-
vous system [84–86]. These observations, together with many anatomical and physiological
similarities between the electrosensory and other systems (see [17–19] for review), suggest that
the results obtained in this study are applicable to other systems.

Conclusion
We have provided the first experimental evidence that some midbrain electrosensory neurons
respond to heterogeneous natural electrocommunication stimuli selectively but in an invariant
manner. We have further shown that a simple model receiving input from ON and OFF-type
hindbrain neurons that is consistent with known anatomy could reproduce experimental find-
ings for multiple parameter combinations. While a spiking nonlinearity was sufficient to give
rise to feature invariance in our model, the addition of subthreshold membrane conductances
increased the set of parameter values leading to such invariance. It is likely that the mecha-
nisms giving rise to feature invariance in the electrosensory system will also be found
elsewhere.

Methods

Ethics statement
McGill University’s animal care committee approved all procedures. McGill University holds a
certificate of ‘Good Animal Practice’ from the Canadian Council on Animal Care and is also
certified by the US National Institutes of Health Public Health Service under the 'Policy on
Humane Care and Use of Laboratory Animals' with Assurance number A-5006-01.

Animals and surgery
The weakly electric fish Apteronotus leptorhynchus was used exclusively in this study. Fish were
acquired from tropical fish suppliers, acclimated to the laboratory as per published guidelines
[87, 88]. Surgical procedures were explained in detail previously [32, 34, 39, 40, 89, 90]. The
animal was immobilized with 0.1–0.5 mg injection of tubocurarine (Sigma) intramuscularly.
The fish was then transferred to a recording tank and respirated via a mouth tube with flow
rate of 10 mL/min. We then glued a metal post rostral to the exposed area of the skull after top-
ical application of lidocaine (2%) to ensure stability during recording. We then drilled a small
hole of*2 mm2 over the cerebellum and the ELL area in the case of ELL recordings [34, 91–
94], and over the midbrain optic tectum in the case of TS recordings [32, 38–40].

Behavior
Fish were restrained by placing them in a “chirp chamber” as previously described [34]. Chirps
were identified as increases in the animal’s own EOD frequency that exceeded 30 Hz and were
segregated into small (type II) and big (type I) as done previously [33]. We recorded chirp
responses to sinusoidal waveforms mimicking another fish’s EOD whose frequency was set 10
and 80 Hz above the animal’s own EOD frequency for type II and type I chirps, respectively.
The fish’s EOD was recorded and the instantaneous EOD frequency was computed from the
inverse of the timing difference between successive zero crossings. The chirp duration was
defined as the full width at half-maximum of the frequency increase. The time of occurrence of
the chirp was defined as the time at which the EOD frequency is maximal. The beat phase at
which the chirp occurred was obtained by expressing the time at which the chirp occurred at
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relative to the nearest time occurrence of a local maximum of the beat in the past, dividing by
the beat period, and multiplying the result by 360°. We computed a similarity metric to capture
the variability for small and big chirps that was defined by:

SM ¼ 1� RMSE=s;

where RMSE is the root-mean squared error between two chirp waveforms computed as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½Si � hSii � Sj þ hSji�2i

q
and σ is the maximum error given by:

s ¼ max
maxðSiÞ �minðSiÞffiffiffi

2
p ;

maxðSjÞ �minðSjÞffiffiffi
2

p
� �

Here<. . .> denotes the average over time which was computed over a time window of
37.5 ms centered on the chirp onset. Density plots were constructed using a binwidth of 0.55
ms for duration, 14 degrees for the phase distribution and a binwidth of 0.038 for the similarity
metric. The number of events occurring per bin were counted and normalized to the maximum
number of events found. To assess whether the phase at which a chirp (small chirp or big
chirp) occurred was homogeneously distributed, we generated 1000 surrogate phase values.
These were obtained by randomly permuting a set of phase values between 0 and 2π with the
same number of elements as the actual dataset for small and big chirps. The confidence interval
was set to be 3 times the standard deviation obtained from the surrogate phase values.

Recordings
Extracellular recordings were made from pyramidal cells within the lateral segment of the ELL
because these are most sensitive to the stimuli used in this study [30, 31] and from TS neurons
using metal filled micropipettes [95] as described previously [91]. Intracellular recordings from
TS neurons were made using patch pipettes as described previously [71, 72, 96]. The recorded
signals were sampled at 10 kHz and were digitized by a Power1401 with Spike2 software. ON
and OFF-type pyramidal cells can easily be distinguished based on their responses to sinusoidal
stimuli as their responses are then in and out of phase, respectively [36].

Stimulation
We note that the electric organ of A. leptorhynchus is neurogenic and is thus not affected by
injection of curare-like drugs. All stimuli consisted of amplitude modulations (AMs) of the ani-
mal’s own EOD. They were produced by first generating a train of sinusoidal waveforms that
were triggered by the zero crossing of each EOD cycle with a frequency slightly greater than the
fish’s own EOD frequency. The train thus remains synchronized to the animal’s EOD and will
either add or subtract depending on its polarity. The modulation waveform (i.e. the stimulus)
is then multiplied (MT3 multiplier, Tucker Davis Technologies) with the train and the result-
ing signal was applied to the experimental tank after being isolated from ground (A395 linear
stimulus isolator, World Precision Instruments) via two chloridized silver wire electrodes
located ~15 cm on each side of the animal [37]. Stimulus intensities were similar to those used
in previous studies [34, 91]. Chirp stimuli were generated as previously described [32] and
were each presented at least 20 times to each neuron.
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Analysis
All analysis was performed using custom-built routines in Matlab (The Mathworks, Natick,
MA). Action potential times were defined as the times at which the signal crossed a suitably
chosen threshold value. From the spike time sequence we created a binary sequence X(t) with
binwidth dt = 0.5 ms and set the content of each bin to equal the number of spikes the time of
which fell within that bin. Peri-stimulus time histograms (PSTHs) were obtained by averaging
the neural responses across repeated presentations of a given stimulus with binwidth Δt = 0.1
ms and were smoothed with a 10.8 ms long boxcar filter for the small chirps and 5 ms for the
big chirp.

To quantify the selectivity of a given neuron for the chirp stimulus, the chirp selectivity
index (CSI) was computed as follows:

CSI ¼ RC � RB

RC þ RB

where RC and RB represent the maximum firing rates of the PSTH during the chirp and beat,
respectively, similar to what was done previously [32]. The window used to define the chirp
time was 100 ms in length, starting at the onset of the chirp in the stimulus. The CSI ranges
between -1 and 1, representing perfect selectivity for the beat at -1 and the chirp at 1. To mea-
sure the selectivity of a model across multiple chirp stimuli, the average CSI was used:

CSIavg ¼
1

N

XN
i¼1

CSIi

where N is the number of chirp stimuli tested and CSIi is the CSI to chirp stimuli i. We also
computed the CSI from the membrane potential minus its minimum value in the same way as
described above.

We first computed the average membrane potential response to sinusoidal stimulation. The
bimodality index was computed from the average membrane potential response minus its min-
imum value in the same way as described previously [40]. First, we performed a circular per-
mutation such that the maximum signal value is now located at 0. The bimodality index was
then obtained by dividing the signal value at half the stimulus period by the signal value at 0.

The invariance of a neuronal response across different stimuli was quantified by comparing
the similarity of the spike trains across chirp types and trials. The Victor-Purpura distance
(VPD), a metric-space measure of the distance between two spike trains, was used to quantify
this [35]. Briefly, the VPD computes the total cost of transforming one spike train into another
via an optimal series of elementary operations and used q = 100 s−1 as done previously [32].
Thus, the feature invariance of a neuron was computed by the average VPD across all pairs of
trials as follows:

VPDavg ¼
1

M

XN
i¼1

XN
j¼i

XNT

k¼1

XNT

l¼uij

VPDð CiðkÞ;CjðlÞ Þ

where NT is the number of trials for each chirp stimulus,M is the number of combinations of
pairs of trials (i.e. the number of times the VPD is computed), uij is 1 if i 6¼ j and is k + 1 other-
wise, and VPD(Ci(k),Cj(l)) represents the VPD between the spike trains in response to the kth

presentation of chirp i and the lth presentation of chirp j, respectively.
For computing the invariance of neural responses of population averages, individual spike

trains were not accessible for calculating the VPD. Therefore, the root-mean squared error
(RMSE) between the PSTHs of the responses of the populations to the various chirps was
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computed instead. Average PSTHs were computed by averaging the PSTHs across a given pop-
ulation of cells for each chirp type, and these were used to compute the average pairwise RMSE
between all pairs of PSTHs as follows. First, in order to prevent small differences in timing
from biasing the result (because an identical response shifted slightly in time will have a high
RMSE), a cross-correlogram was computed between the two PSTHs, followed by a circular
shift of one PSTH by the time shift at the maximum value of the cross-correlogram (i.e. leading
to maximum overlap between the PSTHs). These PSTHs were then used to compute the final
average RMSE as:

RMSEavg ¼
1

P

XN
i¼1

XN
j¼i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL
k¼1

ð PSTHiðkDtÞ � PSTHjðkDtÞ Þ2
s

where P is the number of pairs of PSTHs considered, L is the number of bins for the PSTH and
Δt is the binwidth.

The measures for selectivity and spike train invariance were used to compute a feature
invariance (FI) score as follows:

FI ¼ H0ðCSIavg � aVPDavgÞ

whereH0 is the Heaviside step function, and α>0 is a constant. We note that the choice of
α>0 is arbitrary and does not affect the qualitative nature of our results as long as the value
chosen is not too large. We chose α = 0.01 in order to emphasize the fact that the responses of
some TS neurons to different chirp waveforms were far more similar and selective than those
of ELL neurons. We only included TS neurons for which we obtained FI>0.2. Importantly, we
obtained FI<0.2 for all ELL neurons in our dataset.

For computing FI scores of population averages via their PSTHs, an FI score based on the
RMSE was instead used:

FIRMSE ¼ H0ðCSIavg � gRMSEavgÞ

where γ = 0.0041 is a constant whose value was chosen by requiring that FI = FIRMSE for a rep-
resentative, feature invariant TS neuron. We also compared VPDavg and RMSEavg computed
from single ELL and TS neuron spike train and PSTH responses, respectively. Overall, we
found a strong positive correlation between both quantities (R = 0.90, N = 54, p<<10−3), indi-
cating that using either measure will not affect our results qualitatively. We furthermore found
similar values of FI and FIRMSE for ELL ON-cells (0.000±0.000 vs. 0.0055±0.0036), OFF-cells
(0.004±0.004 vs. 0.0232±0.0180), and TS neurons (0.54±0.09 vs. 0.577±0.082).

Statistics
Statistical significance was assessed through one-way analysis of variance (ANOVA) with the
Tukey-Kramer method of correcting for multiple comparisons at the p = 0.05 level. Values are
reported as mean ± standard error throughout the text.

Model
Our model is based on the Hodgkin-Huxley formalism and considers a single TS neuron
receiving excitatory synaptic input from ON and OFF-type ELL pyramidal cell populations
based on known anatomical data [62].

We obtained the synaptic input by pooling the recorded activities of ON and OFF-type
pyramidal cells in response to the chirp stimuli used in this study. The population-averaged

Feature Invariant Responses to Natural Electrocommunication Stimuli

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004430 October 16, 2015 20 / 28



PSTH was then converted to a time varying conductance as follows:

gONðtÞ ¼ z gmax PSTHEðtÞ �
t
tsyn

exp 1� t
tsyn

 !
H0½t�

" # !

gOFFðtÞ ¼ z gmax PSTHIðtÞ �
t
tsyn

exp 1� t
tsyn

 !
H0½t�

" # !

where “�” is the convolution operator and PSTHE, PSTHI are the population-averaged PSTHs
for ON and OFF-type pyramidal cells, respectively. We used gmax = 0.13 μS, z = 0.0005, and
τsyn = 20 ms. The time varying synaptic current applied to the model TS neuron was then equal
to:

IsynðtÞ ¼ �2 WsðsBgONðtÞ þ ð1� sBÞgOFFðtÞÞðV � EsynÞ
¼ �2gsynðsBgONðtÞ=gmax þ ð1� sBÞgOFFðtÞ=gmaxÞðV � EsynÞ

whereWs is a constant that was varied systematically, the parameter σB controls the relative
proportion of input from ON-type pyramidal cells, which is important as previous studies have
shown that this proportion can vary substantially across TS neurons [40], Esyn = 0 mV is the
reversal potential of the excitatory synapse. Note that we report the value of gsyn =Ws gmax in
the figures.

TS neurons were modeled with the Hodgkin-Huxley formalism [97], via the following sys-
tem of stochastic differential equations:

dV
dt

¼ 1

C
ðINa þ IKDR þ Ih þ IT þ Ileak þ Isyn þ Ibias þ snoise xðtÞÞ

dZ
dt

¼ F
Z1ðVÞ � Z

tZ

dh
dt

¼ h1ðVÞ � h
th

dn
dt

¼ n1ðVÞ � n
tn

where C = 1 μF is the cell membrane capacitance, V is the transmembrane voltage, INa is the
spiking sodium current, IKDR is the delayed rectifier potassium current, Ih is the hyperpolariza-
tion activated current mediated by HCN channels, IT is the low-threshold T-type calcium
channel current, Isyn is the synaptic current from the ELL defined above, Ileak is the leak current,
Ibias is a constant bias current, and η, h, and n represent the voltage-dependent channel activa-
tion variables with F = 2 and τη = 30 ms. ξ(t) is a time-varying stochastic Gaussian white noise
process with mean zero and standard deviation 0.8. We used σnoise = 1 nA unless otherwise
noted. The equations governing T-type calcium, sodium, and delayed rectifier potassium
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channel activation/inactivation were as follows:

m1ðVÞ ¼
amðVÞ

amðVÞ þ bmðVÞ

amðVÞ ¼
0:1ðV þ 40:7Þ

1� expð�0:1ðV þ 40:7ÞÞ
bmðVÞ ¼ 4expð�0:05ðV þ 49:7ÞÞ

Z1ðVÞ ¼
1

0:5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25þ exp

V þ 82

6:3

� �s

s1ðVÞ ¼
1

1þ exp �V þ 63

7:8

� �

n1ðVÞ ¼
anðVÞ

anðVÞ þ bnðVÞ

anðVÞ ¼
0:01ðV þ 40:7Þ

1� expð�0:1ðV þ 40:7ÞÞ
bnðVÞ ¼ 0:125expð�0:0125ðV þ 50:7ÞÞ

tnðVÞ ¼
0:05

anðVÞ þ bnðVÞ

h1ðVÞ ¼
1

1þ expð0:151ðV þ 73ÞÞ

th ¼
expð0:033ðV þ 75ÞÞ

0:011½1þ expð0:083ðV þ 75ÞÞ�

and the ionic currents are given by:

INa ¼ �gNa m
3
1ðVÞð0:85� nÞðV � ENaÞ

IKDR ¼ �gk n
4 ðV � EKÞ

Ih ¼ �gh hðV � EhÞ
IT ¼ �gT s

3
1ðVÞZ ðV � ECaÞ

Ileak ¼ �gleakðV � EleakÞ

where the reversal potentials of the ionic conductances are given by: ENa = 60 mV, EK = -85
mV, Eleak = -65 mV, Eh = -30 mV, ECa = 120 mV. The maximal conductances, unless otherwise
noted, are given by gNa = 30 μS, gK = 10 μS, gleak = 0.18 μS, gh = 7 μS, and gT = 0.32 μS. Parame-
ters for Ih were the same as those used previously [84, 98]. We concentrated on the subthresh-
old currents IT and Ih because these can promote spiking following hyperpolarization and have
furthermore been shown to be present in midbrain neurons [71, 99].

The above system of equations was numerically simulated with the Euler-Maruyama algo-
rithm [100], using an integration time-step of 0.025 ms. The model TS neuron’s output was
analyzed in the same fashion as the experimental data. The robustness of feature invariance to
changes in model parameter values was computed as the % of pixels for which we had FI� 0.7.
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Differential evolution search algorithm
We used a differential evolution (DE) algorithm [101, 102] in order to find sets of parameter
values for which the model neuron’s output to different input chirp waveforms matched that
seen experimentally in TS neurons. Specifically, we implemented a variant of a previously pro-
posed method for global parameter estimation of Hodgkin-Huxley models [102]. DE evolves a
set (or population) of parameter vectors (i.e. “individuals”) by minimizing a fitness function
Ffit over a series of iterations (i.e. “generations”). In keeping with the notation used in previous
studies [101, 102], we denote Xr

kðiÞ as parameter i for individual r of generation k. First, the
population of K individuals is randomly initialized with values for each of the D parameters,
uniformly distributed within the boundary constraints for each. Here, the parameter vector is
made up of σB,WS, Ibias, gh, gT (i.e. D = 5). For each individual at every generation, a new indi-
vidual is constructed by two operations consisting of "differentiation" and "recombination". In
differentiation, the rth new parameter vector Xr

k;trial is built by combining three other individuals

Xr1
k , X

r2
k , and X

r3
k , where r1 6¼r2 6¼r3:

Xr
k;trial ¼ Xr1

k þ ðXr2
k � Xr3

k ÞF 8 r ¼ 1; . . . ;N

where the differential weight F = 0.5, and the three individuals are chosen based on a probabil-
ity distribution that is preferentially weighted for more fit (i.e. lower fitness score) individuals:

prik ¼ lexp
�FfitðXri

k Þ
max8jðFfitðXj

kÞÞ

 !
8 ri ¼ 1; . . . ;N

where λ is a normalization constant such that the sum of probability values is equal to one.
Recombination is then performed as follows:

Xr
mutðiÞ ¼

Xr
k;trialðiÞ if u < CR

Xr
kðiÞ otherwise

8 r ¼ 1; . . . ;N; i ¼ 1; . . . ;D

(

where u is a random variable generated from a uniform distribution U(0,1) and with crossover
probability CR = 0.9. Selection is finally performed to produce the next generation via:

Xr
kþ1 ¼

Xr
mut if FfitðXr

mutÞ � FfitðXr
kÞ

Xr
k otherwise

8 r ¼ 1; . . . ;N

(

In this study, the fitness function for a given individual was defined as:

FfitðXr
kÞ ¼ expð�FIXr

k
Þ

where FIXr
k
is the FI score computed from simulating a model using the parameters encoded in

individual Xr
k on the five chirp stimuli. To encode boundary constraints of the parameter values

within physiologically realistic ranges, the “resampling” approach was adopted, based on previ-
ous empirical results [103]. Whenever a parameter (gene) value violates its constraints, resam-
pling enforces the boundary conditions by rerunning the differentiation step with three new
individuals chosen uniformly randomly.

Supporting Information
S1 Fig. Plots of VPD (top) and CSI (bottom) as a function of: A) gT and Ibias; B) gT and
σnoise; C) gT and gsyn; D) gT and σB. Parameter values are the same as in Fig 6.
(TIF)
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S2 Fig. Plots of VPD (top) and CSI (bottom) as a function of: A) gh and gT; B) gh and Ibias;
C) gh and gsyn; D) gh and σB. Parameter values are the same as in Fig 6.
(TIF)
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