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Abstract

Correlations between the activities of neighboring neurons are observed ubiquitously across systems and species and are
dynamically regulated by several factors such as the stimulus’ spatiotemporal extent as well as by the brain’s internal state.
Using the electrosensory system of gymnotiform weakly electric fish, we recorded the activities of pyramidal cell pairs within
the electrosensory lateral line lobe (ELL) under spatially localized and diffuse stimulation. We found that both signal and
noise correlations were markedly reduced (.40%) under the latter stimulation. Through a network model incorporating key
anatomical features of the ELL, we reveal how activation of diffuse parallel fiber feedback from granule cells by spatially
diffuse stimulation can explain both the reduction in signal as well as the reduction in noise correlations seen
experimentally through independent mechanisms. First, we show that burst-timing dependent plasticity, which leads to a
negative image of the stimulus and thereby reduces single neuron responses, decreases signal but not noise correlations.
Second, we show trial-to-trial variability in the responses of single granule cells to sensory input reduces noise but not signal
correlations. Thus, our model predicts that the same feedback pathway can simultaneously reduce both signal and noise
correlations through independent mechanisms. To test this prediction experimentally, we pharmacologically inactivated
parallel fiber feedback onto ELL pyramidal cells. In agreement with modeling predictions, we found that inactivation
increased both signal and noise correlations but that there was no significant relationship between magnitude of the
increase in signal correlations and the magnitude of the increase in noise correlations. The mechanisms reported in this
study are expected to be generally applicable to the cerebellum as well as other cerebellum-like structures. We further
discuss the implications of such decorrelation on the neural coding strategies used by the electrosensory and by other
systems to process natural stimuli.

Citation: Simmonds B, Chacron MJ (2015) Activation of Parallel Fiber Feedback by Spatially Diffuse Stimuli Reduces Signal and Noise Correlations via
Independent Mechanisms in a Cerebellum-Like Structure. PLoS Comput Biol 11(1): e1004034. doi:10.1371/journal.pcbi.1004034

Editor: Gunnar Blohm, Queen’s University, Canada

Received June 2, 2014; Accepted November 12, 2014; Published January 8, 2015

Copyright: � 2015 Simmonds, Chacron. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. The authors confirm that all data underlying
the findings are fully available without restriction. Data are available at: https://senselab.med.yale.edu/ModelDB/showmodel.asp?model = 168590.

Funding: This research was supported by the Canadian Institutes of Health Research and the Canada Research Chairs (MJC). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* maurice.chacron@mcgill.ca

Introduction

Understanding how the brain processes sensory information in

order to lead to perception and behavior remains a central

problem in neuroscience. Mounting evidence suggests that

studying correlations between neurons is required to understand

the neural code [1–4]. Such correlations have been observed

across systems and species and can have profound impact on

neural population coding by, e.g., either decreasing or increasing

information transmission depending on their sign [2,3,5–7].

Experimental results have further shown that correlations between

neurons are not static but are instead dynamically regulated by the

spatiotemporal structure of sensory input [8–10] as well as higher

order cognitive processes such as attention [11,12]. In particular,

attentional processes can reduce correlations between neural

responses [11], which is thought to reduce redundancy and thus

maximize information transmission as originally proposed by

Barlow [13,14]. Theoretical studies have proposed cellular and

circuit mechanisms that can modulate correlated activity [15–18]

but it is at best unclear how applicable these are in general [7].

Wave-type gymnotiform weakly electric fish offer an attractive

model system for studying modulation of correlated activity

because of well-characterized anatomy and natural sensory stimuli

[19–21]. These fish actively generate an electric field around their

body through the electric organ discharge (EOD). They can sense

perturbations of this field caused by objects with conductivity

different than that of the surrounding water (e.g. prey, conspecif-

ics) through an array of electroreceptors on their skin surface that

synapse onto pyramidal cells within the electrosensory lateral line

lobe (ELL). Anatomical and physiological studies have shown large

heterogeneities within the pyramidal cell population: on one hand,

superficial pyramidal cells (SPs) have large apical dendritic trees

and receive large amounts of plastic indirect feedback via parallel

fibers [22,23] while, on the other hand, deep pyramidal cells (DPs)

instead have small apical dendrites and are thought to receive little

or no indirect feedback [22], which is supported by results showing
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that pharmacological inactivation of indirect feedback input has a

strong effect on SPs and little or no effect on DPs [24,25]. While all

pyramidal cells project to the midbrain Torus semicircularis and

higher brain areas, only DPs project to the Eminentia Granularis

posterior (EGp) and give rise to the feedback input to SPs [22].

Multiunit recording from ELL pyramidal cells have revealed

that the baseline activities of neighboring pyramidal cells are

significantly correlated [26,27]. Further, such correlated activity is

highly modulated based on the spatial extent of the stimulus.

Indeed, stimuli mimicking prey items whose spatial extent was

constrained to a small portion of the sensory epithelium (i.e. local)

induced stronger correlations than stimuli mimicking conspecifics

whose spatial extent was commensurate with the sensory

epithelium (i.e. global) [26]. Interestingly, this effect was observed

for both signal (i.e. correlations due to the fact that the neurons

receive a common stimulus) and noise (i.e. correlations between

the trial-to-trial variabilities of neurons) correlations. Pyramidal

cells receive large amounts of feedback including a diffuse pathway

consisting of parallel fibers from granule cells within the EGp [28],

thereby making the ELL a cerebellar-like structure [29]. One of

the functions of this feedback pathway, which is activated by global

but not local stimulation [22,24,25,30], is to attenuate the

responses of single SPs but not DPs to low temporal frequency

(i.e. ,15 Hz) global stimulation relative to local stimulation by

providing a negative image that ‘‘cancels out’’ the stimulus:

thereby decorrelating the stimulus and the single neuron response

[22,24,25,30–34]. Recent studies have shown that a burst-time

dependent plasticity observed experimentally is necessary to obtain

this negative image at the single neuron level and to observe such

decorrelation [32,33,35]. At the population level, experimental

and theoretical work suggests that this feedback pathway can

contribute to reducing signal correlations amongst ELL pyra-

midal cells but did not include the burst-time dependent

plasticity [26,27]. Thus, how indirect feedback onto ELL

pyramidal cells in the form of a negative stimulus image

produced by burst-time dependent plasticity actually reduces

signal correlations between the activities of ELL pyramidal cells

has not been investigated to date. Moreover, the mechanisms

that underlie the experimentally observed changes in noise

correlations remain unknown.

In order to make progress towards understanding the mecha-

nisms that reduce both signal and noise correlations in ELL

pyramidal cells under global stimulation, we built a network model

of the ELL based on recently published results that accurately

reproduces the effects of feedback on single pyramidal cell activity

[32,33] and that incorporates spiking activity from individual

granule cells. We systematically varied model parameters in order

to understand the regimes in which activation of granule cell input

can reduce both signal and noise correlations. We found that the

formation of a negative image by burst-timing dependent plasticity

led to a reduction in signal correlations but not noise correlations.

On the other hand, including trial-to-trial variability in the spiking

responses of granule cells reduced noise but not signal correlations.

Thus, our model made two important predictions: 1) that

activation of the same feedback input onto ELL pyramidal cells

can simultaneously reduce both signal and noise correlations and;

2) that the reduction in signal and noise correlations are mediated

by independent mechanisms. We next validated these predictions

experimentally by pharmacologically inactivating parallel fiber

input onto ELL pyramidal cells. Consistent with prediction 1), we

observed an increase in both signal and noise correlations after

inactivation and; consistent with prediction 2), the increase in

signal correlations was not related to the increase in noise

correlations. Our combined experimental and modeling results

thus provide a generic mechanisms by which parallel fiber

feedback originating from cerebellar granule cells can simulta-

neously reduce both signal and noise correlations that are likely to

be generally applicable across cerebellum and cerebellar-like

structures in the brain.

Results

Model description
Our model is described in Fig. 1. The electroreceptor afferent

population activity is assumed to faithfully follow the timecourse of

the stimulus as observed experimentally [19,36] (note that

electroreceptor afferent spiking activities do not display significant

noise correlations [37]) and synapse onto SPs. Since experimental

studies have shown that noise correlations were proportional to the

amount of receptive field overlap between pyramidal cells [26],

which is largely due to feedforward input from electroreceptor

afferents [23], we assumed that noise correlations between our

model SPs were due to the fact that they receive shared input from

electroreceptor afferents and were modeled using shared noise

with !c being the fraction of common feedforward noise input (see

Methods). DPs are also assumed to faithfully follow the timecourse

of the stimulus as seen experimentally [24,25] and relay this

information to granule cells within the EGp. As seen experimen-

tally, we assume that granule cells phase lock in response to

sinusoidal global stimulation and are otherwise silent in the

absence of stimulation as well as during local stimulation

[22,24,25,38–40]. Further, as assumed in previous modeling

studies [32,33], only a few granule cells are active at a given

phase of the sinusoidal stimulus. However, unlike these, we

implemented spiking mechanisms for each granule cell, considered

trial-to-trial variability in their responses to the stimulus, and

moreover considered the effects of granule cell input onto ELL

pyramidal cells on correlated activity at the populations level (see

Methods).

Author Summary

Correlated activity is observed ubiquitously in the CNS but
how activation of specific neural circuits affects correlated
activity under behaviorally relevant contexts is poorly
understood. Here, through a combination of electrophys-
iology, pharmacology, and mathematical modeling, we
show that activation of the same parallel fiber feedback
pathway leads to simultaneous reductions in both signal
and noise correlations via independent mechanisms.
Specifically, we show that feedback in the form of a
negative image of the stimulus is necessary in order to
attenuate signal but not noise correlations. Moreover, we
show that trial-to-trial variability in the spiking responses
of neurons providing this feedback is necessary to
attenuate noise but not signal correlations. Our model
thus predicts that activation of the same feedback
pathway can simultaneously reduce both signal and noise
correlations through independent mechanisms. In agree-
ment with modeling prediction, pharmacological inactiva-
tion led to a strong increase in both signal and noise
correlations but the magnitude of the change in signal
correlation was not related to the magnitude of the
change in noise correlations. Our proposed mechanism for
simultaneous control of both signal and noise correlations
is generic and is thus likely to be applicable to the
cerebellum and to other cerebellar-like structures.

Parallel Fiber Feedback Reduces Signal and Noise Correlations
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Fig. 1. Anatomical and model schematic. Peripheral electroreceptor afferents receive the sinusoidal stimulus and project to both deep pyramidal
(DP) as well as superficial pyramidal (SP) cells. The DPs relay the stimulus faithfully to a set of granule cells within the Eminentia Granularis posterior
(EGp) that make direct excitatory synaptic contact onto SPs via parallel fibers as well as indirect inhibitory synaptic contact via local interneurons. It is
assumed that each granule cell responds to a given phase of the sinusoidal stimulus and project via excitation and inhibition to SPs.
doi:10.1371/journal.pcbi.1004034.g001
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Correlations between pyramidal cell spiking activities are
stimulus-dependent

We recorded from pyramidal cell pairs (see Methods) in

response to sinusoidal stimuli with frequency 4 Hz that were

delivered either locally (Fig. 2A) via a small dipole positioned

lateral to the animal or globally (Fig. 2B) via two electrodes

positioned far from the animal on each side. These stimuli were

used because of their relative simplicity, behavioral relevance, and

because previous studies have shown that globally but not locally

given 4 Hz sinusoidal stimuli will activate feedback from the EGp

onto ELL pyramidal cells [22]. It is important to realize that the

temporal aspect of the stimulus is the same in both cases and that it

is only the spatial extent that increases as we go from local to

global stimulation. Correlations between the recorded spike trains

were quantified using the cross-correlogram (CCG) that gives the

number of coincident spikes per unit time relative to chance levels

as a function of lag. The CCGs obtained under local and global

4 Hz sinusoidal stimulation were mostly symmetric with respect to

the 0 lag, indicating that correlated activity most likely arises

because of common input (Fig. 2C). However, we found marked

differences in their structure that were contingent on the stimulus’

spatial extent. Indeed, despite the fact that global stimulation

impinges on most if not all of the sensory epithelium and might

thus be expected to increase correlated activity, the CCG obtained

under local stimulation was actually larger than that obtained

under global stimulation (Fig. 2C, compare red and blue lines). To

separate the contributions of signal and noise correlations to the

CCG, we used the shuffle predictor [41] and computed the noise

CCG. The noise CCG obtained under local stimulation was also

significantly larger than that obtained under global stimulation

(Fig. 2D, compare red and blue lines).

Previous studies have shown that activation of granule cell input

onto ELL pyramidal cells under global stimulation can reduce

single neuron responses to stimulus by forming a negative image of

the stimulus [22,24,34], which can attenuate signal correlations at

the network level [27]. The formation of this negative image is

mediated by anti-Hebbian burst-time dependent plasticity at

parallel fiber-ELL synapses [32,33,35]. In order to gain better

understanding as to how activation of parallel fiber input onto

ELL pyramidal cells could mediate the experimentally observed

changes in correlated activity, we used the model described in

Fig. 1 that includes the anti-Hebbian burst-time dependent

plasticity (see Methods) in order to mediate the formation of a

negative image. We found that, for suitable parameters, our model

was able to reproduce the experimentally observed changes in

both the raw (Fig. 2E) and the noise CCG (Fig. 2F). The

magnitude of correlation was assessed using the cross-correlation

coefficient (see Methods). Overall, the cross-correlation coefficient

as well as the noise cross-correlation coefficient were reduced by

.40% when we transition from local to global stimulation in the

data (Fig. 2G). We found that our model was able to successfully

reproduce these results (Fig. 2H).

Anti-Hebbian burst timing dependent plasticity allows
for a reduction in signal correlations

Why does our model successfully reproduce the experimental

data? We first investigated the effects of burst-timing dependent

plasticity. Consistent with previous results [32], the synaptic

weights settled to their equilibrium values over time to form a

negative image of the stimulus over time (Figs. 3A, 3B): weights of

granule cells that fire at the stimulus’ local maximum were

depressed the most while those of granule cells that fire at the

stimulus’ local minimum were depressed at least (Fig. 3A, compare

red traces). As expected, the progressive formation of the negative

image progressively reduced the variations in the single model SP

cell’s firing rate due to the stimulus (Fig. 3C), which is consistent

with previous results [32] and experimental data [22]. At the

population level, our results show that the formation of the

negative image reduces the overall correlations between model SP

cells over time (Fig. 3D). However, as we did not observe any

changes in noise correlations (Fig. 3D), we conclude that it is signal

correlations only that are attenuated. Therefore, our model shows

that the mechanisms that lead to the formation of a negative image

are sufficient to explain the overall reduction in signal correlations

observed when parallel fiber feedback input onto ELL pyramidal

cells is activated. However, as no change in noise correlation was

observed, we conclude that these are regulated by other

mechanisms.

Trial-to-trial variability in the spiking activity of granule
cells is necessary in order to reduce noise correlations in
ELL pyramidal cells

In order to gain understanding as to the mechanisms by which

activation of granule cell input onto ELL pyramidal cells reduces

noise correlations in our model, we plotted the spiking activities of

four example model granule cells each firing at a different phase of

the sinusoidal input in the deterministic regime (i.e. no intrinsic

noise) and in the stochastic regime (i.e. intrinsic noise). In the

former regime, there is no trial-to-trial variability in the spiking

activity of a given granule cell (Fig. 4A) while this is not the case in

the latter regime (Fig. 4B) (we note that previous studies did not

consider spiking activity of granule cells or trial-to-trial variability

[32,33]). We found that increasing the noise intensity r in the

granule cells led to a decrease in the noise correlation coefficient

under global stimulation relative to that obtained under local

stimulation (Fig. 4C). Importantly, the noise correlation coeffi-

cients obtained under local and global stimulation were equal in

the absence of noise (i.e. r= 0). In contrast, increasing the noise

intensity r did not affect the signal correlation coefficient obtained

under global stimulation relative to that obtained under local

stimulation (Fig. 4D). Thus, trial-to-trial variability in the granule

cell spiking activity is not necessary in order to observe a reduction

in the amount of signal correlations, which is consistent with

previous studies [27] and is discussed further below. However, our

results reveal that trial-to-trial variability in the spiking activities of

granule cells is necessary in order to observe reduced noise

correlations under global stimulation. Thus, our model shows that

the mechanism that mediates the reduction in noise correlations

(i.e. trial-to-trial variability in granule cell spiking activity) is

independent of the one that mediates the reduction in signal

correlations (i.e. the negative image that is formed because of anti-

Hebbian burst-timing dependent plasticity).

Reduction in noise correlation is robust to changes in
model parameters

We next systematically varied model parameters in order to test

whether the changes in noise correlation were robust. We first

varied the correlation coefficient between the noise sources to each

SP cell c as well as the correlation coefficient e between the noise

sources to each granule cell and the DP cell population. Thus,

intuitively, c represents the correlation coefficient between the

variabilities in peripheral receptor afferent activities projecting to

each SP cell, which of course increases with increasing fraction of

shared receptor afferent input. On the other hand, e represents the

correlation coefficient between the noise received by the granule

cells and that received by the DP cells. Thus, e will be high if most

Parallel Fiber Feedback Reduces Signal and Noise Correlations
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Fig. 2. Stimulation geometry strongly influences signal and noise correlations in ELL pyramidal cells. A) For local stimulation geometry,
the stimulus is delivered via a small dipole located close to the animal’s skin. B) For global stimulation, the stimulus is instead delivered via two
electrodes located 15 cm away from the animal on each side. C) Population-averaged cross-correlograms (CCGs) from same type pyramidal cell pairs
recorded from simultaneously for global (blue) and local (red) 4 Hz sinusoidal stimulation. D) Population-averaged noise CCGs from same type
pyramidal cell pairs recorded from simultaneously for global (blue) and local (red) 4 Hz sinusoidal stimulation. E) CCGs from our model under
simulated global (blue) and local (red) 4 Hz sinusoidal stimulation. F) Noise CCGs from our model under simulated global (blue) and local (red) 4 Hz
sinusoidal stimulation. G) Population-averaged cross-correlation coefficient R for global (blue) and local (red) 4 Hz sinusoidal stimulation. H)
Population-averaged cross-correlation coefficient R for our model under simulated global (blue) and local (red) 4 Hz sinusoidal stimulation. ‘‘*’’
indicates statistical significance at the p = 0.05 level using a signrank test with N = 18.
doi:10.1371/journal.pcbi.1004034.g002

Parallel Fiber Feedback Reduces Signal and Noise Correlations

PLOS Computational Biology | www.ploscompbiol.org 5 January 2015 | Volume 11 | Issue 1 | e1004034



of the variability displayed by granule cells is inherited from the

input that they receive from DP cells and low if most of the

variability is due to intrinsic mechanisms (i.e. random openings of

ion channels). We note that we assumed that the sources of noise

to the DP and SP cells within a given ELL column were the same,

which is consistent with anatomical findings showing almost

complete overlap from sources of feedforward input [23] (see

Methods).

Under simulated local stimulation (i.e. no feedback), the noise

correlation coefficient is solely determined by the amount of

shared noise c received by both SPs (Fig. 5A). Thus, we have

Rnoise,local = 1 when c = 1 and Rnoise,local = 0 when c = 0. Since we

Fig. 3. The formation of a negative image mediated by anti-Hebbian burst time dependent plasticity reduces signal but not noise
correlations. A) One cycle of the 4 Hz sinusoidal stimulus (top, red trace) and synaptic weights (bottom, blue traces) as a function of time for (black
traces from top to bottom), t = 0, t = 0.5 sec, t = 1 sec, t = 1.5 sec, t = 2 sec, t = 2.5 sec, t = 3 sec, t = 3.5 sec, t = 4 sec, t = 4.5 sec, t = 5 sec, t = 5.5 sec.
The red trace (bottom) shows the synaptic weights at t = 1000 sec (steady state) for comparison. The vertical arrow shows the progression of time. B)
Time series of 5 synaptic weights during training. C) Cycle histograms from one SP cell neuron for the synaptic weights corresponding to (from top to
bottom): t = 25 sec, 50 sec, 75 sec, 100 sec, 150 sec, and 200 sec. The vertical arrow shows the progression of time. Note the progressive reduction in
response modulation as the negative image forms. D) Raw and noise correlation computed for the synaptic weights values obtained during training
for the same time shown on the x-axis. Note the progressive decrease in signal correlations but the relative constancy of noise correlations.
doi:10.1371/journal.pcbi.1004034.g003
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assume that the granule cell population is silent during local

stimulation, the fraction of shared noise with the SPs e has no

effect on Rnoise,local. Under simulated global stimulation, for which

the granule cells are active, we observed a reduction in noise

correlation as both c and e tend towards zero (Fig. 5B). Plotting the

difference between the noise correlation coefficients obtained

under local and global stimulation revealed that the greatest

reduction in noise correlations was seen for c near unity and e close

to zero (Fig. 5C). Thus, our model predicts that, for a given

intensity, trial-to-trial variability in the granule cell spiking activity

is most effective at reducing noise correlations amongst SPs when

the trial-to-trial variabilities of SP cells are strongly positively

correlated in the first place and when trial-to-trial variability in

granule cell firing activity is weakly correlated with trial-to-trial

variability in the DP cell population. Intuitively, this makes sense

as the variability of the granule cell population is then largely

independent of the variability in the SP cells, which will reduces

noise correlations between the spiking activities of SP cells.

We next systematically varied both the fraction of shared noise

received by the SPs c as well as the stimulation frequency f. For

simulated local stimulation (i.e. no feedback), the noise correlation

coefficient Rnoise,local had a similar dependence on c independently

of stimulation frequency f (Fig. 6A). However, under simulated

global stimulation (i.e. with feedback), the noise correlation

coefficient Rnoise,global decreased as a function of stimulation

frequency f for a given value of c except for c = 1 and c = 0
(Fig. 6B). As such, plotting the difference between Rnoise,local and

Rnoise,global reveals that the reduction in noise correlation tends to

be greatest for low stimulation frequencies (i.e. ,16 Hz) as well as

when SPs receive large amounts of correlated input (Fig. 6C).

Thus, our model predicts that the reduction in noise correlation

will be greatest for low stimulation frequencies and for pyramidal

cell pairs with high fraction of shared input (i.e. large amounts of

receptive field overlap). Intuitively, this makes sense as the

tendency for pyramidal cells to display burst firing is greatest for

low frequency stimulation [32,42] and because burst firing in ELL

Fig. 4. Trial-to-trial variability of granule cell firing reduces noise correlations under global stimulation. A) Raster plots showing
responses of four different granule cells to repeated cycles of the sinusoidal stimulus in the deterministic regime for the granule cells (i.e. r = 0). B)
Raster plots showing trial-to-trial variability in the responses of four different granule cells to repeated cycles of the sinusoidal stimulus in the
stochastic regime for the granule cells (i.e. r.0). C) Ratio of the noise correlation coefficients obtained under simulated local and global stimulation
as a function of the noise intensity r. Note that the ratio decreases from 1 as r is increased from 0. D) Ratio of the signal correlation coefficients
obtained under simulated local and global stimulation as a function of the noise intensity r.
doi:10.1371/journal.pcbi.1004034.g004

Parallel Fiber Feedback Reduces Signal and Noise Correlations
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Fig. 5. Correlated variability between SPs and granule cells
influences noise correlations. A) Noise correlation coefficient as a
function of the input noise correlation coefficient c for the SP cells and
of the fraction of shared noise with the SPs e for local stimulation. B)
Noise correlation coefficient as a function of c and e for global
stimulation. C) Reduction (local-global) in noise correlation coefficient
as a function of c and e.
doi:10.1371/journal.pcbi.1004034.g005

Fig. 6. Reduction of noise correlations by granule cell activity is
dependent on stimulation frequency. A) Noise correlation
coefficient as a function of c and the sinusoidal stimulation frequency
f for local stimulation. B) Noise correlation coefficient as a function of c
and f for global stimulation. C) Reduction (local-global) in noise
correlation coefficient as a function of c and f.
doi:10.1371/journal.pcbi.1004034.g006

Parallel Fiber Feedback Reduces Signal and Noise Correlations
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pyramidal cells tends to increase correlations between their spiking

activities [26].

Pharmacological inactivation of parallel fiber feedback
onto ELL pyramidal cells shows that the same feedback
pathway simultaneously reduces both signal and noise
correlations via independent mechanisms

Our model made two important predictions: 1) that the

activation of the same feedback pathway simultaneously reduces

both signal and noise correlations and; 2) that it does so via

independent mechanisms. We tested these predictions experimen-

tally by pharmacologically inactivating parallel fiber input onto

ELL pyramidal cells (Fig. 7A, see Methods). Consistent with

modeling prediction 1), pharmacological inactivation under global

stimulation led to a significant increase in both signal and noise

correlations (p,0.05, signrank tests) (Figs. 7B,C,D). We note in

passing that previous studies have shown that pharmacological

inactivation under local stimulation did not have such noticeable

effects [22,24,25]. Moreover, to test prediction 2), we plotted the

increase in signal correlation as a function of the increase in noise

correlations (Fig. 7D). If our modeling prediction were correct,

then we would expect to see no significant relationship between

both quantities. Consistent with our modeling prediction, no

significant correlation was observed (R = 0.32, p = 0.18, N = 14).

Discussion

Summary of results
In this study, we presented new experimental results showing

that correlated activity in ELL pyramidal cells is reduced under

Fig. 7. Pharmacological inactivation of indirect feedback input onto ELL pyramidal cells increases noise correlations. A) Schematic of
the pharmacological inactivation technique. B) Noise CCG from an example pair of same type ELL pyramidal cells under 4 Hz global stimulation
before (control, blue) and after (block, red) pharmacological inactivation of feedback pathways. C) Population-averaged noise correlation coefficients
under control (blue) and during the block (red). ‘‘*’’ indicates statistical significance at the p = 0.05 level using a signrank test with N = 14. D) Change
in signal correlation coefficient (block-control) as a function of the change in noise correlation coefficient (block-control). No significant correlation
was observed between both quantities (R = 0.32, p = 0.18, N = 14).
doi:10.1371/journal.pcbi.1004034.g007

Parallel Fiber Feedback Reduces Signal and Noise Correlations
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global 4 Hz sinusoidal stimulation relative to local 4 Hz sinusoidal

stimulation. We observed significant reduction in both signal and

noise correlations as was observed previously using broadband

(0–120 Hz) noise stimulation [26,27]. In order to explain the

observed reduction in noise correlations, we extended a previously

published model that accurately describes how feedback can

attenuate the responses of single pyramidal cells to global

stimulation [32,33] to include: 1) correlated activity of multiple

pyramidal cells and; 2) trial-to-trial variability in the spiking

activities of individual granule cells. Simulation of this model

revealed that it could qualitatively explain the changes in both the

signal and noise correlations observed experimentally. The

formation of a negative image of the stimulus via anti-Hebbian

burst timing dependent plasticity was necessary to induce a

reduction in signal but not noise correlations. In contrast, the

magnitude of trial-to-trial variability in granule cell spiking activity

strongly influenced the magnitude by which noise but not signal

correlations are reduced under global stimulation. By systemati-

cally varying model parameters, we found that this reduction was

strongest in our model when the shared noise amongst pyramidal

cells was highest, when the noise sources between the pyramidal

and the granule cell populations were least correlated, and for low

sinusoidal stimulation frequencies. Our model made the important

predictions that activation of the same feedback pathway can

simultaneously reduce both signal and noise correlations via

independent mechanisms. We verified these predictions by

pharmacologically inactivating parallel fiber feedback input onto

ELL pyramidal cells. Consistent with modeling predictions,

pharmacological inactivation led to increases in both signal and

noise correlations that were not significantly related to one

another.

Reduced noise correlations under global stimulation,
implications for neural coding

The effects of noise correlations on neural coding have been the

subject of much study and it is generally agreed that noise

correlations will limit information transmission by introducing

redundancy in the neural code [2,3,43–46] (but see [47]). In

particular, even small amounts of noise correlations can have

significant effects on information transmission by large neural

populations [45]. From this point of view, if the brain is trying to

maximize information transmission, then redundancy must be

minimized by reducing noise correlations [14]. While the reduced

noise correlations observed under some behavioral states [11,48]

does lend some support to this hypothesis, the fact that neural

correlations are dynamically regulated across systems and species

instead suggest that the brain uses different coding strategies based

on both its internal state as well as the spatiotemporal character-

istics of the stimulus [7,13].

In wave-type gymnotiform weakly electric fish, local and global

stimuli arise in different behavioral contexts: local stimuli are

mostly caused by prey [49] while global stimuli are caused in part

by conspecifics [50,51]. The fact that single pyramidal neurons

display reduced responses to low frequency global stimuli

[22,24,25,31,52] is thought to better enable them to detect signals

caused by prey items [27]. At the population-level, we propose

that activation of parallel fiber feedback input onto ELL pyramidal

cells by low frequency global stimuli contributes to reducing noise

correlations in the superficial pyramidal cell population. This

would enable downstream neurons within the midbrain Torus

semicircularis to better detect transient increases in correlated

activity that would be caused either by prey stimuli as well as

communication stimuli. Indeed, previous studies have shown that

single ELL pyramidal cells will increase the precision of their spike

timing in response to chirp stimuli which is expected to give rise to

increase in correlated activity at the population level [53,54].

While additional support for this hypothesis comes from evidence

showing that neurons within the torus semicircularis can respond

selectively to communication stimuli [55,56] (see [20] for review),

further studies investigating how ELL pyramidal cell populations

respond to communication stimuli are needed in order to test these

predictions.

Previous studies have shown that there are large heterogeneities

in the pyramidal cell population: while SPs receive the largest

amount of feedback, DPs instead receive little or no feedback

[23,57]. Previous studies point to different functional roles for

these different classes as DPs actually give rise to the feedback

input to SPs [22]. All evidence shows that the activities of single

DPs is not dependent on the stimulus’ spatial extent and that these

cells tend to be broadly tuned [24,25,58]. At the population-level,

correlations between DPs are also largely independent of the

stimulus’ spatial extent [27]. All these results support the

hypothesis that deep pyramidal cells give a faithful representation

of the incoming sensory input that is: 1) sent to higher brain

centers and 2) used to reduce single SP cell responses as well as

decorrelated SP cell activity at the population level to low

frequency global stimuli.

Implications for other systems
Our results showing that activation of granule cell spiking

activity by spatially diffuse stimuli can reduce noise correlations

are likely to be applicable to other systems. This is because the

ELL shares many anatomical features with the mammalian

cerebellum as well as other cerebellar-like structures such as the

dorsal cochlear nucleus for which a layer of principal cells receive

parallel fiber input from a set of granule cells [59]. In fact, our

proposed mechanisms by which activation of granule cell input

onto ELL pyramidal cells actually reduces correlated activity are

likely to be applicable to other cerebellum-like structures as well as

the cerebellum. In fact, they might help explain seemingly

paradoxical experimental results showing that correlations be-

tween the simple activities of pairs of cerebellar Purkinje cells is

low even when they receive common parallel fiber input [60].

We note that our modeling assumption that granule cells fire at

all phases of the input is reasonable given available anatomical

data [61]. The trial-to-trial variability in granule cell firing

responses to the stimulus is also consistent with experimental data

from mormyrid weakly electric fish [62]. While the source of this

trial-to-trial variability is still a matter of debate, the fact that

granule cells are compact and thus receive only a small number of

inputs makes it likely that this variability is the result of both the

random openings of ion channels (intrinsic) as well as inherited

from input from the DP population. Our modeling results show

that the relative amount of noise shared with pyramidal cells does

not qualitatively influence the overall reduction of noise correla-

tions over a wide range.

Recent results from a recent study in mormyrid weakly electric

fish have shown that, while granule cells are activated with a wide

distribution of delays, the distribution was not uniform [62], which

is unlike the assumption made here. However, we do not expect

this to be an issue as long as there is at least one granule cell that is

firing at any given phase of the sinusoidal input whose trial-to-trial

variability will effectively increase the amount of uncorrelated

noise received by the pyramidal cell population and thereby

reduce noise correlations.

Finally, we note that there exists important similarities between

the electrosensory and visual systems. Indeed, like primary visual

cortical (i.e. V1) neurons [63], ELL pyramidal neurons respond to
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stimulation within a particular region of sensory space (i.e. the

classical receptive field) [31]. Importantly, responses to classical

receptive field stimulation are modulated by stimulation outside

but within the non-classical receptive field in similar ways in both

systems. Specifically, non-classical receptive field stimulation

decorrelates the single neural response from low frequency as

well as enhances information transmission about higher frequency

classical receptive field stimulation [52,64,65]. Modeling studies in

the visual system have proposed that such decorrelation is a form

of predictive coding that removes the redundant aspects of natural

visual stimuli [66–68]. We note that this is also the case for ELL

pyramidal cells [22,27]. Previous studies have shown that, for ELL

pyramidal cells, at least part of the non-classical receptive field

effects are being mediated by indirect feedback [24]. In the visual

system, both anatomical [69] and modeling [66] studies support

the hypothesis that the non-classical receptive field of V1 neurons

also originates, at least in part, from feedback input. It is thus likely

that the effects described here also apply to the neurons within the

primary visual cortex, where activation of feedback input via non-

classical receptive field stimulation also decorrelates neural

responses to classical receptive field stimulation at the population

level [64].

Conclusion
We have shown a viable mechanism by which sensory neuron

populations can have correlations within their trial-to-trial

variabilities markedly reduced under a particular behavioral

context. This mechanism is expected to be generally applicable

to cerebellum and other cerebellar-like structures. Further

experimental studies recording from cerebellar granule cells in

gymnotiform weakly electric fish are needed to verify our modeling

predictions.

Methods

Ethics statement
McGill University’s animal care committee approved all

procedures.

Animals and surgery
The weakly electric fish Apteronotus leptorhynchus was used

exclusively in these studies. Fish were purchased from tropical fish

suppliers and were acclimated to laboratory conditions and housed

in groups of 8–10. Water conductivity was between 400 and

800 mS, the pH was maintained between 6.8 and 7.2, and the

temperature was kept between 27 and 29uC [70,71]. Surgical

procedures were explained in detail previously [26,72–74]. Briefly,

to immobilize the fish, we injected 0.1–0.5 mg of tubocurarine

(Sigma) intramuscularly. We then transferred the fish to a

recording tank and respirated it via a mouth tube at a flow rate

of 10 mL/min. We glued a metal post rostral to the exposed area

of the skull after topical application of lidocaine (2%) to stabilize

the head during recording. We then drilled a small hole of

,2 mm2 over the cerebellum and the ELL area, caudal to the

border between hindbrain and midbrain in order to access the

pyramidal neurons [56,73–76].

Recordings
Extracellular recordings from pyramidal cells within the centro-

lateral and lateral segments were obtained using metal filled

micropipettes [77]. Recordings from N = 18 pyramidal cell pairs

were achieved as described previously [26,27]: two separate

electrodes were advanced independently in order to ensure that a

well-isolated single unit was present on each one. Recordings were

sampled at 10 kHz and were digitized using a Power1401 with

Spike2 software (Cambridge Electronic Design, Cambridge, UK).

Previous studies have shown a strong negative correlation between

the baseline firing rate (i.e. the firing rate in the presence of the

animal’s unmodulated EOD) and dendritic morphology [22,57],

such that deep pyramidal cells tend to have the highest (.30 Hz)

firing rates while superficial pyramidal cells tend to have the lowest

(,15 Hz) firing rates [24,25,31,58,72,78].

Pharmacology
Previous techniques were used to pharmacologically inactivate

indirect feedback onto N = 9 pairs of ELL pyramidal cells [22,24–

27,30,74,79]. Briefly, a double-barrel pipette was advanced into

the ELL molecular layer. One barrel contained a glutamate

solution (1 mM) while the other contained a solution of CNQX

(1 mM), which is a non-NMDA glutamate receptor antagonist. All

drugs were obtained from Sigma and were dissolved in saline.

Both barrels were connected to a picospritzer (Hannifin). Pressure

ejection of glutamate was used to determine whether the double-

barrel pipette was in the vicinity of the cell pair recorded from:

close vicinity typically resulted in short latency excitation of both

cells [26]. We then ejected CNQX as done previously [24–26].

Stimulation
As the electric organ discharge of A. leptorhynchus is

neurogenic, it is not affected by immobilization with curare-like

drugs. All stimuli consisted of amplitude modulations (AMs) of the

animal’s own EOD and were produced by applying a train of

sinusoidal waveforms to the fish. Each sinusoid was triggered at

the zero crossing of each EOD cycle and had a period slightly less

than that of the EOD waveform; hence the train remains

synchronized to the animal’s discharge and, depending on its

polarity, either adds to or subtracts from the animal’s own

discharge. A modulation waveform was then multiplied with the

train of sinusoidal waveforms (MT3 multiplier; Tucker Davis

Technologies) and the resulting signal was first isolated from

ground (A395 linear stimulus isolator; World Precision Instru-

ments) before being delivered using either global or local

stimulation geometry. For global stimulation, signals were

delivered through pairs of chloridized silver wire electrodes

positioned 15 cm away from the fish in either side of the

recording tank. In contrast, for local stimulation, we used a small

local dipole electrode that was located 1–3 mm from the skin. The

intensities of local and global stimuli were similar to those used

previously [56,74,75] and were adjusted such as to give rise to

similar changes in EOD amplitude as measured by a small dipole

close to the animal’s skin [22,31]. Stimuli consisted of 4 Hz

sinusoidal AMs of the animal’s own EOD.

Analysis
All analysis was performed using custom-built routines in

Matlab (The Mathworks, Natick, MA). Action potential times

were defined as the times at which the signal crossed a suitably

chosen threshold value. From the spike time sequence we created a

binary sequence X(t) with binwidth dt = 0.5 ms and set the content

of each bin to equal the number of spikes the time of which fell

within that bin. The auto-correlogram (ACG) A(t) was computed

using:

A(t)~
XN

i~1

X (t)X (tzt)=(dt N){m, ð1Þ

where N is the total number of action potentials and m is the mean
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number of action potentials per unit time (i.e. the mean firing rate).

The cross-correlogram (CCG) between spike trains X1(t) and

X2(t), C(t), was computed using:

C(t)~
XN1

i~1

X1(t)X2(tzt)=(dt N1){m2, ð2Þ

where N1 is the total number of action potentials for spike train

X1(t) and m2 is the number of action potentials per unit time for

spike train X2(t). We note that the sum is performed over the

spikes of cell 1 and that the labeling of cells within the pair is

completely arbitrary. The particular cell used for averaging does

not matter for our data as the CCGs were symmetric with respect

to lag 0 (see Fig. 2). The cross-correlation coefficient was

computed for each cell pair as [44]:

R~
SC(t)Ttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SA1(t)Tt SA2(t)Tt

p , ð3Þ

where S:::T~
Ðz?

{?
dt ::: denotes the average over lag t.

We distinguished the contributions of signal and noise

correlations to the CCG using the shuffle predictor [41,80]. Let

M be the total number of cycles of the sinusoidal stimulus and let

Xi,j(t) be the response of neuron i to cycle j at time t, the shuffle

predictor is then a measure of signal correlations and is given by:

Csignal(t)~

2

M(M{1)

XM
k~1

XM
j~kz1

XN1,k

i~1

X1,k(t) X2,j(tzt)=(dt N1,k){m2,j , ð4Þ

where N1,k is the total number of action potentials for spike train

X1,k(t) and m2,j is the number of action potentials per unit time for

spike train X2,j(t). The noise CCG, Cnoise(t), is then given by:

Cnoise(t)~C(t){Csignal(t): ð5Þ

Model
Our model is an extension of a model considered by previous

studies [32,33]. We consider two superficial ELL pyramidal cells

(i.e. SP cells) from transmembrane voltages are solutions to the

following system of equations:

Ci
dVi

dt
~{gleak,i(Vi{Eleak)zF IizsijSP,i(t)zk sin(2pf t)

� �

zDAPi(t){
X100

s~1

gAMPA,i,s(t) (Vi{EAMPA){gGABA,i(Vi{EGABA),

ð6Þ

where, for cell i, Vi is the transmembrane voltage, Ci is the

membrane capacitance, gleak,i is the leak conductance, Ii is a

constant bias current, si is the noise standard deviation, jSP,i is

low-pass filtered (fourth order Butterworth with cutoff frequency

500 Hz) Gaussian white noise with zero mean and variance unity,

k is the stimulus amplitude, f is the stimulation frequency, DAPi(t)
is the depolarizing afterpotential current (described below), gGABA,i

is a constant inhibitory conductance with reversal potential EGABA,

and gAMPA,i,s(t) is the time varying excitatory conductance of

parallel fiber s with reversal potential EAMPA. The function F(x)

half-wave rectifies the input (i.e. F(x) = x for x.0 and F(x) = 0

otherwise).

The current DAPi(t) is given by [32,33,81]:

DAPi tð Þ~

0 if t{tn,ivrs,i

a s t{tn,i ,bb tzn,i

� �� �
{s t{tn,i ,cð Þ

n o
if t{tn,iwrs,i and tn,i{tn{1,iwrd,i tzn,i

� �
0 if t{tn,iwrs,i and tn,i{tn{1,ivrd,i tzn,i

� �

8>>>><
>>>>:

9>>>>=
>>>>;

,
ð7Þ

where, for neuron i, rs,i is the absolute somatic refractory period,

rd,i(t) is the absolute dendritic refractory period, tn.i is the last spike

time, tn-1,i is the next to last spike time, tzn,i is the time immediately

after tn.i, and s(t,a) is an alpha function given by:

s(t,a)~
t e{t=a

a
: ð8Þ

The dendritic refractory period obeys the following system of

equations:

rd,i(t)~DzE bi(t)

dbi

dt
~

{bi

t
z(AzB b2

i )
X

n

d(t{tn,i):
ð9Þ

Each SP cell is modeled using integrate-and-fire formalism [82].

Thus, for cell i, when the voltage Vi(t) reaches a threshold value

Vthreshold,i, an action potential is said to have occurred and Vi(t) is

then immediately reset to the resting potential Vrest,i and is

maintained there for the duration of the absolute somatic

refractory period rs,i. There are 100 AMPA synapses on each SP

cell each emanating from one granule cell via a parallel fiber.

Anatomical findings suggest that a single parallel fiber does indeed

make synaptic contact with multiple pyramidal cells, but that the

synaptic boutons are located far away from one another in the

ELL [28]. It is thus likely that neighboring pyramidal cells receive

synaptic input from largely disjoint sets of granule cells (Maler,

Pers. Comm.). Thus, we assumed that each SP cell receives input

from different sets of granule cells. The time varying post-synaptic

conductance of AMPA synapse s, gAMPA,i,s(t), obeys the following

equation:

gAMPA,i,s(t)~gmaxwi,s(t)
XNs

k~1

H(t{tk,s) e{tk,s=tAMPA , ð10Þ

where gmax is the maximum conductance, wi,s(t) is the synaptic

weight, tk,s is the kth spike of presynaptic granule cell s, Ns is the

total number of spikes fired by granule cell s, and H(x) is the

Heaviside function (H(x) = 1 if x.0 and H(x) = 0 otherwise).

Each granule cell is modeled using an integrate-and-fire formalism

similar to that used for the SP cell with the same threshold, reset, and

absolute refractory period (note that we assume that separate sets of

granule cells project to each pyramidal cell). For granule cell i, the

transmembrane voltage obeys the following equation:

Ci

dVi

dt
~

{gleak,i(Vi{Eleak)zF IizrijPF ,i(t)zk sin(2pf (t{di))
� �

, ð11Þ
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where ri is the noise standard deviation, jPF,i is low-pass filtered

(fourth order Butterworth with 500 Hz cutoff frequency), and di, the

delay for granule cell i, is given by:

di~
i{1

100 f
: ð12Þ

We note that DPs are assumed to faithfully relay the sinusoidal

stimulus to the granule cells, which is consistent with available

experimental data [21,31,37,58]. Each synaptic weight wi,s follows

anti-Hebbian plasticity as described previously [32,33]. Specifically, a

previously described burst-dependent plasticity [35] learning rule

reduces the value of a specific synaptic weight when pre and post-

synaptic bursts of activity are coincident within a given time window.

The learning rule is dependent on the length of the SP burst, we

considered 2-spike bursts (2 spikes within 15 ms) as well as 4-spike

bursts (4 spikes within 45 ms) separately. Note that a given spike can

only be part of one burst, and the 4-spike burst takes priority. As such,

spike trains were analyzed for bursts every time the SP cell produces a

new spike. The new spike and the three preceding spikes are analyzed

and (a) if none of them are part of bursts already and (b) the first and

last spike are within 45 ms apart of each other, then the group of

spikes is considered a 4-spike burst. If they do not constitute a 4-spike

burst, then the fourth most recent spike and the fifth most recent spike

are analyzed and (a) if neither spike is part of a burst already and (b)

the spikes are within 15 ms of each other, then they are considered a

2-spike burst. In this way, no spike that may become part of a 4-spike

burst is mistakenly placed in a 2-spike burst, and every spike that

cannot be part of a 4-spike burst is checked to see if it can be placed in

a 2-spike burst.

When a burst in SP cell i is recorded, all the synaptic weights

wi,s are updated according to:

wi,s?wi,s{wi,sgg 1{
tburst,pre{tburst,post

LWg

� �2
" #

H 1{
tburst,pre{tburst,post

LWg

� �2
" #

, ð13Þ

where g = 2,4 depends on whether the SP cell burst consists of 2 or

4 spikes, tburst,pre is the onset time of the pre-synaptic burst, tburst,post

is the onset time of the SP cell burst, gg is a constant gain term, and

LWg is the length of the time windows for g-spike SP cell burst.

Thus, parameters g2 and LW2 are used for 2-spike bursts while

parameters g4 and LW4 are used for 4-spike bursts. The pre-

synaptic onset burst times, tburst,pre, were taken to be the times at

which the sinusoidal input to each granule cell reaches a local

maximum. A non-associative potentiation rule is also included in

order to ensure that not all synaptic weights reach zero due to the

aforementioned depression rule. Thus, all the synaptic weights

evolve according to:

tw
dwi,s

dt
~1{wi,s, ð14Þ

where tw&1.

Previous studies have shown that neighboring pyramidal cells

within the centrolateral and lateral segments tend to display

significant correlations between their baseline (i.e. in the absence

of stimulation) activities [26], which correlates well with anatom-

ical findings showing significant shared input from peripheral

receptor afferents [23]. We mimicked this shared input by

decomposing the sources of noise onto both the SP cells as well

as the granule cells. Specifically, we have:

jSP,i(t)~
ffiffiffi
c
p

jshared (t)z
ffiffiffiffiffiffiffiffiffiffi
1{c
p

junshared,i(t), ð15Þ

where the noise jshared(t) and junshared,i(t) have the same statistics

as jSP,i(t) except that the former is common between both SP cells

while the junshared,i(t) are independent and identically distributed.

Thus, the correlation coefficient between the noise sources to both

SP cells is c. Similarly, the noise to each granule cell, jPF,i(t),
consists of a component that is inherited from the deep pyramidal

cells from which it receives input, jDP(t), and a component that is

independent to each granule cell ji(t):

jPF ,i(t)~
ffiffiffi
e
p

jDP(t)z
ffiffiffiffiffiffiffiffiffiffi
1{e
p

ji(t), ð16Þ

where ji(t) are independent and identically distributed and e is the

fraction of shared noise with the pyramidal cell. Since anatomical

studies have shown that there is almost complete overlap between

the feedforward inputs to DPs and SPs within the same column

[23], we took jDP(t) = jSP,i(t). Thus, using eq. (15), we have:

jPF ,i(t)~
ffiffiffi
e
p ffiffiffi

c
p

jshared (t)z
ffiffiffi
e
p ffiffiffiffiffiffiffiffiffiffi

1{c
p

junshared,j(t)z
ffiffiffiffiffiffiffiffiffiffi
1{e
p

ji(t): ð17Þ

Where jshared(t) is common to all granule cells, junshared,j(t) is

common to all granule cells projecting to pyramidal cell j, and ji(t)
is independent across granule cells. Thus, granule cells will tend to

display more correlations in their trial-to-trial variabilities when

both c and e are close to 1.

We assumed a homogeneous network for SPs and granule cells

and, unless otherwise specified, parameter values used were:

Vthreshold = 265 mV, Vrest = 268.8 mV, rs = 0.7 ms, I = 0.313

mA/cm2, s = 0.412 mA/cm2, r = 0.412 mA/cm2, k= 0.21 mA/

cm2, tw = 4900 s, Eleak = 268.8 mV, EAMPA = 0 mV, EGABA =

268.8 mV, gleak = 0.14 mS/cm2, gGABA = 0.14 mS/cm2, gmax =

0.024 mS/cm2, C = 1 mF/cm2, tAMPA = 5.26 ms, A = 0.6, B = 2,

D = 0.7 ms, E = 24.5 ms, c = 0.2, a = 10.9 mA/cm2, t = 7 ms,

LW2 = 10 ms, LW4 = 100 ms, g2 = 0.0018, g4 = 0.0036, c = 0.25,

e = 1.

The model was simulated numerically using an Euler-

Maruyama algorithm with dt = 0.05 ms. As previous studies have

shown that local stimuli did not elicit significant feedback input

onto pyramidal cells [22,24–26,30], we mimicked this stimulation

in our model by setting both gmax and gGABA to zero. For global

stimulation, we initially set all synaptic weights to 1 and allowed

them to settle to equilibrium over a simulation time of 1000 s (i.e.

‘‘training’’). These weights were then kept fixed at these values for

simulations that were run over 100 trials of 100 sec each that are

presented in the results except for Fig. 3. We note that similar

results were obtained when the weights were allowed to evolve.

For the results presented in Figs. 3A,B, the weights were allowed

to vary according to the plasticity rule (eq. 13). For Figs. 3C, 3D,

the weights were kept fixed at their values for the corresponding

time during training in order to avoid non-stationarities and thus

be able to compute the shown quantities.
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69. Angelucci A, Levitt JB, Walton EJ, Hupé JM, Bullier J, et al. (2002) Circuits for

local and global signal interaction in primary visual cortex. Journal of
Neuroscience 22: 8633–8646.
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