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Massot C, Chacron MJ, Cullen KE. Information transmission
and detection thresholds in the vestibular nuclei: single neurons vs.
population encoding. J Neurophysiol 105: 1798–1814, 2011. First
published February 9, 2011; doi:10.1152/jn.00910.2010.—Under-
standing how sensory neurons transmit information about relevant
stimuli remains a major goal in neuroscience. Of particular relevance
are the roles of neural variability and spike timing in neural coding.
Peripheral vestibular afferents display differential variability that is
correlated with the importance of spike timing; regular afferents
display little variability and use a timing code to transmit information
about sensory input. Irregular afferents, conversely, display greater
variability and instead use a rate code. We studied how central
neurons within the vestibular nuclei integrate information from both
afferent classes by recording from a group of neurons termed vestib-
ular only (VO) that are known to make contributions to vestibulospi-
nal reflexes and project to higher-order centers. We found that,
although individual central neurons had sensitivities that were greater
than or equal to those of individual afferents, they transmitted less
information. In addition, their velocity detection thresholds were
significantly greater than those of individual afferents. This is because
VO neurons display greater variability, which is detrimental to infor-
mation transmission and signal detection. Combining activities from
multiple VO neurons increased information transmission. However,
the information rates were still much lower than those of equivalent
afferent populations. Furthermore, combining responses from multi-
ple VO neurons led to lower velocity detection threshold values
approaching those measured from behavior (�2.5 vs. 0.5–1°/s). Our
results suggest that the detailed time course of vestibular stimuli
encoded by afferents is not transmitted by VO neurons. Instead, they
suggest that higher vestibular pathways must integrate information
from central vestibular neuron populations to give rise to behaviorally
observed detection thresholds.

vestibular neurons; neural variability; information processing; neural
coding; population coding

UNDERSTANDING SENSORY PROCESSING remains an important goal
in neuroscience that is complicated by the fact that neurons
display variability in their responses to repeated presentations
of a given stimulus (Dean 1981; Mainen and Sejnowski 1995;
Tolhurst et al. 1983). This variability generally increases when
going from peripheral to central brain areas (Gabbiani et al.
1996; Shadlen and Newsome 1998; Softky and Koch 1993),
and its functional role has been a topic of intense debate and
investigation in recent years (Stein et al. 2005): is it merely an
unavoidable consequence of noise, or does it carry important
information? Studies exploiting systems with well-character-
ized anatomy and physiology, such as the vestibular system,

are required to yield significant insight into the function of
variability in neural coding.

The vestibular system provides information about head mo-
tion relative to space that is necessary for maintaining posture,
computing spatial orientation, and perceiving self-motion. Pe-
ripheral vestibular afferents respond to either angular or linear
accelerations and are categorized as either regular or irregular
based on their resting discharge variabilities (Baird et al. 1988;
Fernandez et al. 1988; Goldberg 2000). Recent results have
shown differential information coding for these two classes:
regular afferents transmit detailed information about head ro-
tations in part through precise spike timing, whereas irregular
afferents tend to respond selectively to high-frequency features
exclusively through changes in firing rate (fr) (Sadeghi et al.
2007a). Whereas anatomic studies report almost complete
overlap in the terminal fields of regular and irregular afferents
in each of the major subdivisions of the vestibular nuclei (Sato
et al. 1989), the results of electrophysiological experiments
suggest that individual central neurons in the vestibular nuclei
can differ regarding the proportion of inputs they receive from
regular vs. irregular afferents (Boyle et al. 1992; Goldberg et
al. 1987). To date, however, the effects of neural variability
and the putative contributions of each afferent class in deter-
mining information coding within vestibular nuclei are not
known. Here, we addressed this question for the first time by
studying the responses of vestibular-only (VO) neurons, which
contribute to vestibulospinal reflexes as well as higher-order
vestibular processing (reviewed in Angelaki and Cullen 2008),
using signal detection and information theory, both of which
take variability into account (Chacron et al. 2005b; Sadeghi et
al. 2007a).

Our results show that VO neurons possess resting discharge
variabilities that are even greater than those of afferents. This
variability played a detrimental role in that individual VO
neurons transmitted less information than individual afferents.
Moreover, the detection thresholds from single VO neurons
were an order of magnitude greater than those observed from
behavior (Grabherr et al. 2008). Previous studies have shown
that combining multiple neurons can average away variability
and therefore improve information transmission and signal
detection (reviewed in Stein et al. 2005).

We found that combining the activities of VO neurons led to
large improvements (�300%) in information transmission.
Surprisingly, however, the information rates obtained were still
lower than those obtained by pooling afferents (�50 bits/s vs.
�110 bits/s). Moreover, pooling VO neurons led to lower
detection thresholds values that approached but did not reach
those seen from behavior (�2.5 vs. 0.5–1°/s). Together, these
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findings suggest that higher vestibular pathways must integrate
inputs from a large (�40) pool of central vestibular neurons to
fully recover the information that is transmitted by afferents
and potentially explain the organism’s behavioral performance.

MATERIALS AND METHODS

Three macaque monkeys (2 Macaca mulatta and 1 M. fascicularis)
were prepared for chronic extracellular recording using aseptic surgi-
cal techniques. All procedures were approved by the McGill Univer-
sity Animal Care Committee and were in compliance with the guide-
lines of the Canadian Council on Animal Care.

Surgical preparation. Animals were initially given glycopyrrolate
(0.005 mg/kg im) to stabilize heart rate and reduce salivation and were
then preanesthetized using ketamine hydrochloride (12–15 mg/kg im),
diazepam (1 mg/kg im), and buprenorphine (0.01 mg/kg im). Surgical
levels of anesthesia were induced using 2–3% isoflurane gas, inhaled
through an endotracheal tube, and were then maintained at 0.8–1.5%.
During the surgery, a dental acrylic implant was fastened to each
animal’s skull using stainless steel screws. A stainless steel post was
embedded within the implant to restrain the animal’s head during the
experiment, and two stainless steel recording chambers were posi-
tioned stereotaxically on the skull to allow recording from 1) the
vestibular nerve where it emerges from the internal auditory meatus,
and 2) the vestibular nuclei. Immediately following the surgery, the
animals were administered buprenorphine (0.01 mg/kg im) for post-
operative analgesia and the antibiotic cefazolin (Ancef; 25 mg/kg im
for 5 days). Animals were given �2 wk to recover from the surgery
before experiments began. Additional details regarding the surgical
preparation can be found in Sadeghi et al. (2006) and Sylvestre and
Cullen (1999).

Data acquisition. The experimental setup and methods of data
acquisition have been previously described for both vestibular affer-
ents (Cullen and Minor 2002; Sadeghi et al. 2007a,b) and vestibular
nuclei neurons (Roy and Cullen 2004). During experimental sessions,
the monkey was comfortably seated in a primate chair mounted on a
vestibular turntable (Fig. 1A). The animal’s head was completely
restrained using a custom head holder (Roy and Cullen 2001). Eye
movements were recorded using the magnetic search coil technique
(CNC Engineering), and turntable velocity was measured using an
angular velocity sensor (Watson) positioned on the monkey’s head
post. Gaze position and table velocity were collected using the
QNX-based real-time data acquisition system REX, sampled at 1 kHz,
low-pass-filtered at 250 Hz (analog 8-pole Bessel filter), and stored to
digital audiotape for subsequent playback.

In this study, we made recordings from two classes of cells:
1) vestibular afferents that innervate the horizontal semicircular
canals, and 2) a group of neurons in the medial vestibular nuclei,
termed VO neurons. The extracellular single-unit activity of ves-
tibular afferents was measured using glass microelectrodes (24 –27
M�), and recording depth was controlled using a precision hy-
draulic microdrive (Narishige, Tokyo, Japan). The vestibular nerve
was approached through the floccular lobe of the cerebellum, as
identified by its eye-movement-related activity (Cullen and Minor
2002; Lisberger and Pavelko 1986). Entry to the nerve was pre-
ceded by a silence, indicating that the electrode had left the
cerebellum. The extracellular single-unit activity of neurons in the
vestibular nuclei was recorded with enamel-insulated tungsten
microelectrodes (3–7 M�), the depths of which were controlled as
during afferent recording. The location of the vestibular nuclei was
determined relative to the abducens nuclei (Sylvestre and Cullen
1999). Central vestibular neurons were carefully characterized
based on their stereotypical discharge patterns during head rota-
tions and eye movements (Roy and Cullen 2004).

Action potentials from extracellular recordings were discrimi-
nated using a windowing circuit (BAK Electronics); Schmitt trig-

ger levels and window size were manually set and monitored
throughout playback sessions to check carefully the isolation of
each unit. Spike trains were digitized at 1 kHz and imported into
MATLAB (MathWorks, Natick, MA) along with the recorded gaze
position and table velocity signals (see above) to be analyzed with
custom-written algorithms.

Experimental design. Horizontal semicircular canal afferents and
VO neurons of the medial vestibular nuclei are modulated in response
to horizontal vestibular stimulation but are insensitive to eye move-
ments (Cullen and McCrea 1993; Goldberg 2000; McCrea et al. 1999;
Roy and Cullen 2001, 2004; Sadeghi et al. 2007b; Scudder and Fuchs
1992). To confirm that each neuron in our sample discharged in a
manner consistent with previous analyses, responses were character-
ized during voluntary eye movements and passive whole body rota-
tions. Monkeys were trained to track a small visual target (HeNe
Laser) projected onto a white cylindrical screen located 60 cm away
from the head for a juice reward. Both afferents and VO cells were
unresponsive to saccadic eye movements, smooth pursuit, and ocular
fixation made to track the target. Rotation about an earth vertical axis
(1 Hz, 50°/s peak velocity) either in the dark [vestibuloocular reflex
(VOR)] or when fixating a target that moved with the vestibular
turntable (VOR cancellation) led to comparable responses in afferents
as well as VO neurons.

We then used 2 types of head-velocity stimuli to further charac-
terize the responses of vestibular afferents and central neurons. The
1st type consisted of single-frequency sinusoidal rotations at frequen-
cies of 0.6–16 Hz (0.6, 1, 2, 4, 8, and 16 Hz, 50°/s peak velocity). At
least 10 cycles of stimulation were applied for each frequency.
Second, we applied broadband noise stimuli characterized by a Gauss-
ian distribution of rotational velocities with 0 mean and 20°/s SD that
was low-pass-filtered at 20 Hz. The acceleration profile of this
stimulus had a Gaussian distribution with 0 mean and 2,000°/s2 SD.
We note that vestibular afferents and VO neurons have relatively high
resting rates (�60–100 spikes/s). As done previously (Sadeghi et al.
2007a), all stimuli were designed to give rises to modulations in fr
around the resting value that did not elicit static nonlinearities such as
saturation and rectification. These noise stimuli lasted for 80 s and
were presented only once to each neuron. This stimulus was repeated
up to 3 times for n � 14 VO neurons, n � 9 regular afferents, and n �
13 irregular afferents. The power spectrum of the resultant stimulus
was constant up to 20 Hz (Fig. 1D).

Analysis of background activity. Regularity of resting discharge of
vestibular neurons was measured by their coefficient of variation
(CV). The distribution of interspike intervals (ISIs) was recorded
during spontaneous background activity, and CV was calculated from
the mean (�) and standard deviation (�) of this distribution (CV �
�/�). Since CV varies with the mean ISI, we used the normalized
measure CV* (Goldberg et al. 1984) to classify vestibular neurons,
which is defined by:

CV� � � CV

0.7116log��� � 0.8248��0.00002�3 � 0.0024�2 � 0.0731� � 0.37��1

(1)

where it is assumed that � is in seconds. Although this measure was
initially developed to remove the dependence of CV on the resting
rate for otolith afferents, it can also be applied to canal afferents
(Goldberg et al. 1984). Furthermore, as shown in Fig. 2, the applica-
tion of this measure to VO neurons resulted in a CV* that was not
correlated with the resting rate, and thus this measure allowed us to
study the influence of variability on sensory coding, independently of
the expected (“trivial”) increase that follows increases in fr. Vestibular
afferents with a CV* � 0.15 were classified as regular, whereas those
with a CV* � 0.15 were classified as irregular as done previously
(Haque et al. 2004; Sadeghi et al. 2007a,b).

Traditional linear system analysis. For sinusoidal stimuli s(t), the
spike train was convolved with a Kaiser window with cutoff fre-
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quency 0.1 Hz above the stimulus frequency to obtain a measure of
the time-dependent fr [fmeasured(t)] (Cherif et al. 2008; Oppenheim and
Schafer 1989). The response gain was then computed by fitting a first
order model to the data. The model assumes that the time-dependent
fr is given by festimated(t) � b � g·s(t � td), where the parameter b
stands for the bias, g, the gain, and td, the latency, respectively. We
used a least-squares regression to find the parameter values that
provide the maximum variance accounted for (VAF) (Sadeghi et al.
2007b). A minimum of 10 cycles were included in the fit, and the
VAF was computed as:

VAF � 1 �
var� festimated�t� � fmeasured�t��

var� fmeasured�t��
(2)

where var is the variance, and fmeasured(t) represents the actual fr (Roy
and Cullen 2001; Sylvestre and Cullen 1999).

For noise stimuli, the spike train from neuron i was converted into
a binary sequence ri(t) with binwidth 1 ms. The value of bin j was set

to 1 if it contained an action potential and 0 otherwise as previously
described (Sadeghi et al. 2007a). The stimulus s(t) was also sampled
with time step 1 ms. The response gain was computed from G(f) �
Psr(f)/Pss(f) where |Psr(f)| is the cross-spectrum between the stimulus

s(t) and binary sequence r(t), and Pss(f) is the power spectrum of the
stimulus s(t).

Stimulus reconstruction and mutual information estimates. We used the
stimulus reconstruction technique to estimate the time-varying stimulus
from a population of n neurons using their spike trains ri(t) (the index i
refers to the ith neuron) recorded during broadband noise vestibular
stimulation. This approach assumes that the time-dependent stimulus can
be estimated by convolving each spike train ri(t) with a separate kernel
Ki(t) and then summing the respective contributions (Dan et al. 1998;
Krahe et al. 2002; Warland et al. 1997):

Sest�t� � �
i�1

n

� d�Ki���ri�t � �� (3)

Fig. 1. Experimental setup and stimuli used.
A: general description of the vestibular sys-
tem. Vestibular information is transmitted
from the sensory end-organs through 2 types
of afferents (regular and irregular) and con-
verges on 1st order central cells in the ves-
tibular nuclei (VN), which then project to
other centers. B: during the experiment, the
monkey was comfortably seated in a chair
placed on a turntable. C: examples of hori-
zontal sinusoidal stimuli for different fre-
quencies (1, 2, and 4 Hz reaching 50°/s peak
velocity). D1: an example time series of the
broadband (0–20 Hz) noise stimulus used to
further characterize neuronal responses.
D2: velocities were distributed normally with
0 mean and 20°/s SD (Std.). D3: the power
spectrum of the noise stimulus had relative
constant power for frequencies up to 20 Hz.
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The optimal set of kernels Ki(�) {i.e., that which minimizes the
mean-square error �2 � �[s(t) � sest(t)]

2�} is a solution to the
following system of equations (Dayan and Abbott 2001):

	
Pr1r1

� f� Pr1r2
� f� · · · Pr1rn

� f�
Pr2r1

� f� Pr2r2
� f� · · · Pr2rn

� f�
É É Ì É

Prnr1
� f� Prnr2

� f� · · · Prnrn
� f�

	

K̃1� f�
K̃2� f�

É

K̃n� f�

 �	

Psr1
�� f�

Psr2
�� f�
É

Psrn
�� f�



(4)

where K̃i�f� is the Fourier transform of Ki(t), and Prirj
�f� is the

cross-spectrum between binary sequences ri(t) and rj(t). We note that
the optimal filter can be non-0 for both negative and positive times.
We assessed the quality of linear stimulus reconstruction by comput-
ing the coding fraction as follows (Gabbiani 1996; Rieke et al. 1996):

CF � 1 �
�

�
, where � is the standard deviation of the stimulus s(t).

The CF ranges between 0 and 1 and represents the fraction of the
stimulus that is correctly estimated.

It is often assumed that the fact that the optimal filter is nonzero for
positive times implies that it is noncausal because the occurrence of a
spike can be then used to predict the future temporal dynamics of the
stimulus (Bialek and Rieke 1991; Rieke et al. 1996; Theunissen et al.
1996). A standard procedure to correct for this is to set all values of
the filter for positive time to zero. However, nonzero values for the
filter at positive times do not necessarily imply that it violates
temporal causality and may simply reflect the fact that the neural
responses lead the input. This is the case here as both peripheral and
central vestibular neuronal responses have been previously shown to
lead the head velocity input during steady state (Goldberg 2000;
Goldberg and Fernandez 1971b; Hullar et al. 2005; Sadeghi et al.

2007a,b). We corrected for this by taking population-averaged time
delay between each group’s response and the head velocity stimulus
and setting the filter values at times greater than this delay to zero. As
such, not all values of the filter for positive times were set to zero,
merely those greater than the delay. Recomputing the CF as defined
above using this filter did not qualitatively affect the nature of our
results as it led to only small decreases in the CF estimates (�5%;
data not shown).

We then used the indirect method to compute a lower bound on the
mutual information (MI) transmitted by neurons (n) about a time-
varying stimulus [s(t)] (Borst and Theunissen 1999). The noise in the
reconstruction was defined as n(t) � s(t) � sest(t), and a signal-to-
noise ratio was defined as SNRlower(f) � Pss(f)/Pnn(f). Here, Pss(f) is
the power spectrum of the stimulus s(t), and Pnn(f) is the power
spectrum of the noise n(t). We note that this methodology assumes
that the noise n(t) obeys a Gaussian probability distribution with zero
mean. We have verified that this was the case for all the neurons in our
dataset, and an example is shown in Supplemental Fig. S1A (available
in the data supplement online at the Journal of Neurophysiology web
site). Specifically, we quantified the goodness of fit by computing the
mean square error between the probability distribution of n(t) and the
Gaussian fit normalized by the maximum probability for each indi-
vidual neuron. We obtained 3.3 � 0.1% for VO neurons, 4.3 � 0.3%
for regular afferents, and 3.3 � 0.2% for irregular afferents. The
lower-bound MI rate density is then given by MIlower(f) � log2[1 �
SNRlower(f)] and is expressed in bits (Borst and Theunissen 1999).
The MI rate is obtained by integrating the MI density up to 20 Hz and
is expressed in bits per second. We note that we can simply integrate
the MI density across frequency because the noise stimuli used in this
study have a Gaussian probability distribution and are stationary and
that the indirect method assumes a linear decoder for which there can
be no interactions among different frequencies (Rieke et al. 1996). For
n � 1, the expression for the MI rate density used here is equal to the
one used in previous studies (Chacron et al. 2003; Rieke et al. 1996;
Sadeghi et al. 2007a). For n � 1, we divided the MIlower(f) density by
the mean fr of the neuron during stimulation to account for the fact that
the MI rate density increases with fr (Borst and Haag 2001). This
normalized MI rate density is then expressed in bits per spike per
Hertz, and the corresponding normalized MI rate is expressed in bits
per spike. Intuitively, X bits of information means that the system can
discriminate between 2X stimuli (Shannon 1948). As such, informa-
tion theory is related to signal detection theory (Green and Swets
1966), which has been used previously to characterize the responses
of vestibular neurons to sensory input (Gu et al. 2007, 2008; Liu et al.
2010). We note that the calculation of the lower bound on the
information rate density can be obtained from the response to a
segment of unrepeated Gaussian noise as was done previously (Bialek
and Rieke 1991; Chacron et al. 2004; Clague et al. 1997; Gabbiani
1996; Metzner et al. 1998; Roddey and Jacobs 1996; Sadeghi et al.
2007a; Theunissen et al. 1996; Wessel et al. 1996).

To compute the MI, we actually convolved each spike train with a
separate optimal filter and then summed the contributions of each
neuron to obtain a lower bound on the MI rate as was done previously
(Dan et al. 1998; Krahe et al. 2002; Warland et al. 1997). We thus
considered a “labeled-line” code in our calculations (i.e., we took into
account which neurons fired which spikes) as described previously
(Panzeri et al. 2003; Reich et al. 2001). Note that if we had instead
first summed the activities of multiple neurons and then convolved
with the optimal filter to obtain an estimate of MI, then this estimate
would be lower than the one that was obtained here and would be
considered a “summed-population” code (Panzeri et al. 2003; Reich et
al. 2001). We considered a labeled-line code here as our goal is to get
an estimate of the largest amount of information that could be decoded
by higher centers.

We note that the indirect method used here provides a lower bound
on the MI rate and is exact when the neurons are in the linear regime
(Borst and Theunissen 1999). Although we expect that this method

Fig. 2. The coefficient of variation (CV) decreases as a function of the resting
discharge rate for vestibular only (VO) neurons. A: CV as a function of the
resting discharge rate. Both VO neurons and irregular afferents showed a
negative correlation of their CV with the resting firing rate. B: the normalized
coefficient of variation (CV*) does not show any significant correlation with
resting discharge rate.
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will yield a reliable estimate of the MI as all our neurons displayed
large spontaneous activity and our stimuli led to smooth modulations
of these fr, we specifically tested this by computing an upper bound on
the MI rate in the following way for single neurons. We first quanti-
fied the variability in the neural response r(t) to repeated presentations
of the same stimulus s(t) using the response-response coherence
CRR(f). Specifically, let R1, R2, and R3 be the responses obtained from
three presentations of the stimulus s(t). We assume that Ri(t) �
�R(t)� � ni(t) and can now define the signal-to-noise ratio as
SNRupper(f) � P�R��R�(f)/Pnn(f), where P�R��R�(f) is the power
spectrum of the average response �R(t)�. The upper bound on the
MI rate is then given by MIupper(f) � log2[1 � SNRupper(f)] (Borst and
Theunissen 1999; Haag and Borst 1998; Passaglia and Troy 2004).
Equivalently, one can compute the coherence between the responses
(Ri) obtained when presenting the same stimulus s(t) and obtain the
upper bound on the MI rate density as (Chacron 2006; Krahe et al.
2008; Marsat and Pollack 2004, 2005; Middleton et al. 2009):

MIupper� f� � �log2�1 � �CRR� f��1⁄2� (5)

with CRR(f) defined as (Roddey et al. 2000):

CRR� f� �
	PRiRj

� f��i,j	2

PRiRi
� f��iPRiRj

� f��j
(6)

where PRiRj
�f� is the cross-spectrum between responses Ri and Rj.

Moreover, the average � . . . �x is over index x, and the average
� . . . �i,j is over all possible combinations of i and j such that j � i.
Previous studies have shown that the response-response coherence is
a number between zero and one that measures the strength to which
the responses obtained to repeated presentations of the same stimulus
are correlated at frequency (f) (Roddey et al. 2000). In practice, we
computed the response-response coherence using:

CRR� f� �

�1

6�
i�2

3

�
j�1

i�1

PRiRj
� f��

PRR� f�2

(7)

Intuitively, any trial-to-trial variability in the neural response to
repeated presentations of the same stimulus will decrease CRR(f).
Previous studies have shown that CRR(f)1/2 measures the maximum
possible fraction of the response at f that can be accurately reproduced
using an optimal encoding model, which is in general nonlinear
(Roddey et al. 2000). It is thus not surprising that the CRR(f)1/2 is
related to an upper bound on the MI rate density as it is only limited
by trial-to-trial variability in the response. We note that the upper-
bound calculation assumes that the noise ni(t) are normally distributed
(Borst and Theunissen 1999). We have verified that this is the case for
our dataset by fitting a Gaussian distribution with zero mean (Sup-
plemental Fig. S1B). Specifically, we quantified the goodness of fit by
computing the mean square error between the probability distribution
of ni(t) and the Gaussian fit normalized by the maximum probability
for each individual neuron. We obtained 3.7 � 0.4% for VO neurons,
4.0 � 0.2% for regular afferents, and 4.5 � 0.4% for irregular
afferents. Additionally, we found that the mean fr and its variance
showed little correlation for VO neurons (r � 0.2 � 0.06) as well as
regular (r � 0.03 � 0.05) and irregular (r � 0.06 � 0.05) afferents.
We also divided the upper-bound estimate on the MI rate by the mean
fr during stimulation and compared the two estimates of the MI
density for single neurons in our dataset. We note that studies in other
systems have used more direct methods to estimate the MI without
making assumptions on the nature of the decoder (Belitski et al. 2008;
Chacron 2006; Passaglia and Troy 2004; Reinagel and Reid 2000).
However, these calculations require quantities of data that exceed
those that can currently be obtained from isolated single vestibular
neurons during the physical movement that was produced by the
broadband noise stimuli used in the present study. This is because our
noise stimuli produced high-frequency shaking head movements,

which in turn resulted in small displacements of the brainstem relative
to the microelectrode tip. Thus it was considerably more difficult to
maintain neuronal isolation during broadband noise stimulation than
during stimulation with the lower frequency sinusoidal stimuli (�5
Hz) that are typically employed. Finally, other methods assume that
information is contained in the time-dependent fr (Brenner et al.
2000). The time-dependent fr is computed using the peristimulus time
histogram in response to a time-varying stimulus, which is obtained
by averaging over multiple stimulus presentations. As such, this
estimate of information is based on the strength of modulation of the
fr caused by the stimulus and is not appropriate here as we are trying
to determine the effects of variability on information transmission. In
contrast, the lower- and upper-bound measures are based on the
signal-to-noise ratio, and both take variability into account.

All spectral quantities (i.e., power-spectra, cross-spectra) were
estimated using a multitaper technique with eight Slepian functions
(Jarvis and Mitra 2001). These are merely used to lower the variance
in our estimates of the spectral quantities used in the calculation of MI
and will not introduce a bias in our estimates as used here (data not
shown). Note that the long stimulus duration (80 s) gives rise to
negligible bias in the estimates of all spectral quantities used to
compute the lower and upper bounds on the MI density as in previous
studies (Chacron 2006; Sadeghi et al. 2007a; Wessel et al. 1996).

We also computed the CF and MI by using the head acceleration
signal rather than the head velocity signal as an input. The head
acceleration signal was obtained by differentiating the head velocity
signal and was used in the algorithms described above. Because
differentiation is a linear transformation, we did not expect that the
estimates obtained using acceleration would differ significantly from
those obtained with velocity (Machens et al. 2001). Indeed, this was
the case for our dataset (data not shown).

Jitter analysis. To assess the presence of a temporal code in the
neural response, we added random spike-timing jitter to the spike
trains (Jones et al. 2004; Kreiman et al. 2000; Sadeghi et al. 2007a).
Jitter that was drawn from a Gaussian distribution with zero mean and
2-ms SD was added to each spike time. Note that the jitter time scale
of 2 ms is much smaller than the stimulus time scale of 50 ms and is
thus not expected to affect the coding of information at time scales
over which the stimulus varies significantly (i.e., at frequencies
contained within the stimulus) (Dayan and Abbott 2001; Jones et al.
2004; Sadeghi et al. 2007b). We note, however, that addition of
spike-timing jitter can affect coding at time scales significantly greater
than those contained in the jitter (Jones et al. 2004; Sadeghi et al.
2007b). In fact, addition of jitter with a time scale of 5 ms led to a
significant decrease in gain for both afferents and VO neurons (data
not shown).

Detection thresholds. fr Estimates were plotted as a function of the
shifted stimulus s(t) to obtain instantaneous fr-head velocity curves.
We then computed the mean and variance of the fr distribution for
each head velocity using a binwidth of 1°/s. The degree of overlap
between the fr distribution obtained for a given head velocity and that
obtained for 0 velocity was quantified using ROC analysis (Green and
Swets 1966). The velocity detection threshold was defined as the
minimum value of head velocity that gave rise to a probability of
correct detection equal to 76%. This calculation was performed for
responses to sinusoidal stimulation at different frequencies (Sadeghi
et al. 2007a). We also computed the velocity threshold for discrimi-
nating between 8- and 16-Hz sinusoidal rotations in the same manner
as described above except that the fr distribution for a given value of
head velocity for 8-Hz stimulation was compared with that obtained
for the same value of head velocity for 16-Hz stimulation. As we
developed our experimental paradigms to quantify steady-state ves-
tibular neuron responses to time-varying stimuli, our approach was
not designed to quantify differences between the steady-state and
transient responses.

Population detection thresholds. We computed the velocity detec-
tion threshold from n neurons responding to the same sinusoidal
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stimuli with a given f in the following way. First, we corrected for
phases differences between the responses of individual neurons and
aligned all spike trains such that they were in phase with the stimulus.
Second, the population activity was computed as the sum of all
individual spike trains. This population activity was convolved with a
Kaiser window with cutoff frequency 0.1 Hz above the stimulus
frequency to obtain an estimate of the population fr (Cherif et al.
2008). This estimate was used to compute the velocity detection
threshold as described above. Our final estimate of the population
detection threshold was averaged over 
500 combinations of neurons
from our dataset.

To quantify the effects of aligning the spike trains such that they
were all in phase with the stimulus, we also computed the population
detection thresholds by shifting all the responses of a given neuron
group (i.e., of VO, regular afferent, or irregular afferent) by the
population-averaged mean time delay between that neuron group
response and the head velocity stimulus. We note that, unlike the first
method, this preserves the temporal relationship between the spike
trains of a given neuron group (i.e., of VO, regular afferent, or
irregular afferent) as they are shifted by the same time value. The
detection thresholds computed from this method did not differ signif-
icantly from those computed with the previous method for a given
dataset (data not shown).

RESULTS

We recorded from 23 horizontal canal afferents and 21 VO
neurons from 3 macaque monkeys. Ten afferents were classi-
fied as regular and the remaining 13 as irregular using previ-
ously established criteria (Sadeghi et al. 2007a).

Analysis of spontaneous activity. VO neurons displayed
spontaneous activity that was quite variable (mean fr � 56.2 �
5.5 spikes/s; CV* � 0.53 � 0.05). The ISI distribution from a
representative example cell is shown in Fig. 3A and displayed
greater variance than the ISI distributions from example regu-
lar (Fig. 3B) and irregular (Fig. 3C) afferents. We also quan-
tified the spontaneous activity of VO neurons by computing the
spike train power spectrum, which was relatively independent
of frequency: this is indicative of the firing statistics being
close to Poisson (Holden 1976; Cox and Lewis 1966) (Fig.
3D). For comparison, representative power spectra of regular
and irregular afferents are also shown (Fig. 3D). Whereas the
regular afferent displayed peaks in the power spectrum at its
firing frequency (�100 Hz) as well as at integer multiples of
this frequency (i.e., higher harmonics), the irregular afferent
displayed considerably less structure consisting of a broad and
shallow peak at its firing frequency (�110 Hz). On average,
VO neurons displayed significantly lower fr than both regular
and irregular afferents (Fig. 3E; VO vs. regular, P � 10�3; VO
vs. irregular, P � 10�5; t-tests) and significantly larger spike
train variability as quantified by CV* (Fig. 3F; VO vs. regular,
P � 10�5; VO vs. irregular, P � 10�3; Wilcoxon rank sum
tests).

Most importantly, VO neurons displayed higher power in
their baseline activities than both irregular and regular afferents
in the temporal frequency range corresponding to natural head
rotations of 0–20 Hz (Huterer and Cullen 2002) (Fig. 3D,
shaded area). This is primarily due to their higher resting
discharge variability as quantified by CV* (Cox and Lewis
1966) and has important consequences for information trans-
mission. Notably, sensory stimuli must perturb the resting
discharge activity to be perceived by the organism, and a more
variable resting discharge will make such a distinction more

difficult (Chacron et al. 2001, 2005b; Sadeghi et al. 2007a).
The theoretical implications of this finding are that the spike
train power spectrum of the spontaneous activity can be seen as
a “noise spectrum” that influences the amount of noise at each
frequency during stimulation. Lower noise over specific fre-
quency ranges will give rise to higher signal-to-noise ratios and
thus better information transmission (Chacron et al. 2005a,b).
We thus next investigated the responses of VO neurons to
sensory stimulation with frequencies up to 20 Hz.

Responses of VO neurons to sinusoidal head rotations. We
first used traditional linear system identification measures of
gain and phase to quantify VO neuron responses to sinusoidal
head rotations ranging in frequency from 0.6 to 16 Hz. Overall,
the population-averaged gains or sensitivities of VO neurons
increased with frequency (Fig. 4A). The phase lead between the
neuronal firing and head velocity stimulation also increased as
a function of frequency (Fig. 4B). For comparison, population-
averaged gain and phase curves are shown for both regular and
irregular afferents. The frequency-dependent change in sensi-
tivity of VO neurons was significantly greater than that of
regular afferents [VO vs. regular, P � 0.007, t-test, degrees of
freedom (df) � 18] but was similar to that of irregular afferents
(P � 0.2, t-test, df � 18; Fig. 4A). VO neurons also displayed
increasing phase leads that were greater than those of regular
afferents but similar to those of irregular afferents (Fig. 4B; VO
vs. regular, P � 0.04; VO vs. irregular, P � 0.18, t-tests; df �
18 in both cases).

Reconstructing time-varying stimuli from VO neural activity. Cen-
tral neuron responses to vestibular input have been traditionally
characterized by estimating the gain and phase over several
cycles of sinusoidal head rotation using the linear system
identification approach described above. However, a limitation
of this approach is that it averages response variability to
obtain robust estimates (Chacron et al. 2005b; Sadeghi et al.
2007a). To ascertain whether the variability displayed by VO
neurons influences their capacity to transmit information, we
used information theoretic analysis (Borst and Theunissen
1999; Rieke et al. 1996; Sadeghi et al. 2007a). Specifically, we
used the stimulus reconstruction technique to reconstruct the
time-varying profiles of random head rotations from the spike
train of a given VO neuron using an optimal linear filter
(Dayan and Abbott 2001; Gabbiani and Koch 1998; Rieke et
al. 1996).

A representative example is shown in Fig. 5A. The stimulus
reconstruction from this VO neuron was poor as quantified by
a low CF of 0.25 (the CF is simply the fraction of the stimulus
that is correctly reconstructed; Fig. 5A). The optimal recon-
struction filter, which was convolved with the spike train to
obtain the reconstructed stimulus, is also shown (Fig. 5A, inset)
and is qualitatively similar to that obtained for irregular affer-
ents (compare with Fig. 2B of Sadeghi et al. 2007b). This filter
was biphasic and has a strong oscillatory component. On
average, VO neurons displayed lower CF than both regular
(VO vs. regular, P � 10�4, Wilcoxon rank sum test; df � 30)
and irregular afferents (P � 10�4, Wilcoxon rank sum test;
df � 33; Fig. 5B, inset).

We found a negative correlation between CV* computed
from the resting discharge and the CF over our sample of VO
neurons and afferents (Fig. 5B; r � 0.67, P � 10�4; n � 43).
Furthermore, we found a positive correlation between the CF
and the spontaneous fr (Fig. 5C; r � 0.57, P � 10�4; n � 43)
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indicating that the lower fr and higher resting discharge vari-
ability as quantified by CV* of VO neurons were detrimental
to their ability to encode time-varying head rotations. Finally,
we computed the correlation between CF and CV. As expected,
this correlation was stronger (r � 0.71 vs. 0.67 with probability
of no correlation P � 0.01) in magnitude than the correlation
between CF and CV*. This is because of the strong correlation
between CF and fr. By plotting CF as a function of CV* (Fig.
5B), we effectively removed the effects of differences between
the fr of afferents and VO neurons such that we can conclude
that between-population differences in CF are not due to
differences in fr. We note that the correlation between CF and
CV* for each neuron group were not significant (VO: r �

�0.08, P � 0.75; regular: r � 0.40, P � 0.25; irregular: r �
0.20, P � 0.52). Therefore, the differences in CF seen across
all three neuron groups may be due to between-population
parameters other than the resting discharge variability as quan-
tified by CV*.

Information transmission by individual VO neurons is lower
than that of afferents. The stimulus reconstruction technique
takes into account all frequency components of the stimulus
and thus does not necessarily quantify the ability of a neuron to
selectively encode individual frequency components. There-
fore, we next computed the MI density between the neuronal
spike train and the applied head rotation stimulus as a function
of temporal frequency (Borst and Theunissen 1999). We com-

Fig. 3. Spontaneous activity of a typical VO neuron
compared with that of vestibular afferents. A: inter-
spike interval (ISI) histogram from a typical VO neu-
ron (CV*VO � 0.43). B and C: ISI histograms from
typical regular and irregular afferents, respectively
(CV*reg � 0.04 and CV*irreg � 0.3). D: spike train
power spectra for the same example VO neuron and
afferents. E: resting discharge rates for VO neurons
and afferents. F: box plots of the CV* of the population
of VO neurons and afferents. VO neurons were signif-
icantly more irregular than either group of afferents.
**Statistical significance using a t-test at the P � 0.01
level. spk, Spikes.
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puted both lower and upper bounds on the MI density and
found that these had similar shapes as a function of frequency
for VO neurons (Fig. 6A). Moreover, both the lower and upper
bounds had a frequency dependence similar to that of response
gain: this indicates that the higher values of sensitivity ob-
served at higher frequencies give rise to higher values of
information density. Overall, both VO neurons and irregular
afferents displayed similar MI density curves (compare with
Fig. 4B of Sadeghi et al. 2007b).

We note that the information density curve is related to the
Fourier transform of the reconstruction filter shown in Fig. 5A
(Rieke et al. 1996; Theunissen et al. 1996). In particular, the
biphasic nature of the filter in the time domain gives rise to a
low information density for low frequencies, and the strong
oscillatory component in the time domain gives rise to a high
information density at high frequencies. Overall, VO neurons
displayed lower-bound estimates of the MI that were lower
than that of regular (P � 10�5, t-test, df � 21) or irregular
afferents (P � 10�6, t-test, df � 25; Fig. 6B). As the MI has
been shown to increase with fr (Borst and Haag 2001), we
normalized the lower-bound estimates of the MI of VO neu-
rons and afferents by their fr during stimulation to remove any
effects due to differences in firing frequency. We found that
VO neurons still had lower normalized lower-bound estimates
of the MI than those of regular (P � 10�6, t-test, df � 21) and
irregular afferents (P � 10�3, t-test, df � 25; Fig. 6C).
Moreover, VO neurons displayed upper-bound estimates of the

MI that were lower than that of regular (P � 10�4, t-test, df �
21) or irregular afferents (P � 10�3, t-test, df � 25; Fig. 6D).
Normalizing the upper-bound estimates of the MI by the fr
during stimulation preserved this difference as the normalized
upper bound of the MI of VO neurons was still significantly
lower than the normalized upper bound of either regular (P �
10�4, t-test, df � 21) or irregular (P � 0.03, t-test, df � 25)
afferents (Fig. 6E). We conclude that the lower information
rates displayed by VO neurons are not simply a consequence of
their lower fr or of the methodology that we used to compute
information rates. Rather, these are at least partly caused by the
higher variability displayed by VO neurons compared with
irregular and regular afferents.

Contributions of spike timing to information processing by
central vestibular neurons. It was recently shown that the
precise spike timing of regular afferents carries information
about head velocity (Sadeghi et al. 2007b). We therefore
investigated whether central VO neurons also transmit infor-
mation through precise spike timing by applying spike-timing
jitter (Jones et al. 2004; Kreiman et al. 2000). Jitter drawn from
a Gaussian distribution with zero mean and 2-ms SD (Fig. 7A)
was added to each spike time (Fig. 7B). The time scale of the
jitter introduced was much smaller than that of the stimulus (50
ms) and thus theoretically should not perturb the encoding of
information by the time-dependent fr (Theunissen and Miller
1995). This was confirmed by plotting the population-averaged
gain curves as a function of frequency with and without jitter
(Fig. 7C): jitter had minimal effect on the gain even at the
highest frequencies. Similarly, our results show that addition of
jitter had minimal effect on the information density (Fig. 7D).
Addition of jitter also had minimal effects on stimulus recon-
struction (Fig. 7B).

We quantified these results by computing the fractional
information loss caused by adding jitter to the spike trains of
VO neurons. Furthermore, we also computed this loss for
regular and irregular afferents that were recorded during iden-
tical stimulation for comparison. Although all three groups
showed minimal losses in gain contingent on addition of jitter
(Fig. 7E), VO neurons displayed percentage losses in CF (Fig.
7F) and lower-bound estimates of the MI (Fig. 7G) that were
smaller (�6%) than those displayed by regular (�50%) and
irregular afferents (�20%) using this approach. This was also
seen when we normalized the lower-bound estimate of the MI
by fr (Fig. 7H), hence this effect was not due to the larger fr
displayed by afferents. Although these changes were statisti-
cally significant (P � 10�3, paired t-test, df � 24), we note that
their magnitude was minimal for VO neurons (�10% in all
cases) and furthermore significantly less than those observed
for afferents. We also computed the loss in the upper-bound
estimate of the MI brought about by jittering the spike times.
We found that the loss in information was not significantly
different than that obtained for the lower-bound estimate for
regular (P � 0.9, t-test, df � 14), irregular (P � 0.9, t-test,
df � 20), or VO neurons (P � 0.3, t-test, df � 24). We
therefore conclude that minimal information is contained in the
spike timing of VO neurons.

Detection thresholds of VO neurons. The lower information
rates obtained under broadband noise stimulation for VO
neurons compared with either regular or irregular afferents
suggest that they would be less able to discriminate between
head rotations of different amplitudes. On the other hand, their

Fig. 4. Population-averaged gains and phases as a function of frequency for
VO neurons in response to sinusoidal stimulation. A: comparison of popula-
tion-averaged gains of VO neurons and afferents obtained during sinusoidal
horizontal rotations. Note that VO neuronal gains increased as a function of
frequency in a manner that mirrored the frequency dependence of irregular
afferents. As a result, the gains of both groups of cells were comparable at 16
Hz. B: population-averaged phases of VO neurons and afferents to sinusoidal
horizontal rotations. The error bars show 1 SE. ** And * indicate statistically
significant differences between cell groups at 16 Hz using a t-test at the P �
0.01 and 0.05 levels, respectively.
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higher gains would suggest that they could better discriminate
between these same stimuli. We thus used signal detection
theory to quantify the degree of overlap between the fr distri-
bution obtained for a given head velocity and that obtained for
zero velocity (Green and Swets 1966). VO neurons were
stimulated using sinusoidal head rotations of different frequen-
cies (Fig. 8A). The fr distribution obtained for a given velocity
value (Vi) was compared with the fr distribution obtained for
zero velocity (Fig. 8B). This was done for velocities ranging
between 0 and 50°/s with higher velocities resulting in better
discrimination. The detection threshold VT was chosen as the
velocity value that gave rise to a 76% probability of correct
detection (Fig. 8C). Detection thresholds for VO neurons were
significantly greater than those displayed by regular afferents
for frequencies 
4 Hz (P � 0.04, t-tests, df � 21) but not for
higher frequencies (P � 0.2, t-tests, df � 18). In contrast,
irregular afferents had detection thresholds that were compa-
rable with those of VO neurons for all frequencies (P � 0.46,
t-tests, df � 21; Fig. 8D). In addition, we confirmed (Sadeghi
et al. 2007) that irregular afferents had higher detection thresh-
olds than regular afferents across this same frequency range
(P � 0.02, t-tests, df � 9).

We next tested whether the lower information rates obtained
for VO neurons would lead to worse discrimination between
different stimuli. Specifically, we computed the velocity thre-

shold for discriminating 8- and 16-Hz sinusoidal head rota-
tions. Our results show that these thresholds were similar for
VO neurons, regular afferents, and irregular afferents (Fig. 8E;
VO vs. regular, P � 0.83, Wilcoxon rank sum test; df � 6, VO
vs. irregular, P � 0.76, Wilcoxon rank sum test; df � 6,
regular vs. irregular, P � 0.94, Wilcoxon rank sum test; df �
6). This can be explained in part by the fact that the gains of
VO neurons were larger than those of afferents, which partially
compensates for their larger resting discharge variability.

Population coding. Our results so far show that whereas VO
neurons displayed higher gains than either regular or irregular
afferents, they conversely displayed lower information rates
and higher detection thresholds due to their larger variability.
This latter finding is surprising given that VO neurons are
thought to receive input from multiple afferents and could thus
be expected to display higher information rates as a result of
averaging this input (Zohary et al. 1994). One possible expla-
nation is that VO neurons give a distributed representation of
sensory input: all the information about relevant stimuli could
thus be found within the population rather than within any
individual neuron. We tested this hypothesis in two ways. First,
we pooled spiking activity from multiple VO neurons in
response to the same noise stimulus and computed the MI
available from this population (Machens et al. 2001; Warland
et al. 1997). Second, we pooled recordings from multiple VO

Fig. 5. VO neurons display poor stimulus
reconstruction. A: table velocity (gray) and
reconstructed table velocity (dashed black)
for a typical VO neuron. The spike train and
the time-dependent firing rate in response to
this stimulus are also shown at the bottom.
This example neuron displayed a poor coding
fraction (CF) of 0.25 indicating that, on av-
erage, only 25% of the stimulus could be
reconstructed. The inset shows the optimal
filter waveform that was convolved with the
spike train to maximally reconstruct the table
velocity. B: CF of VO neurons and afferents
as a function of CV*. We found a significant
negative correlation (r � �0.67, P � 10�4;
n � 43), which implies that increasing rest-
ing discharge variability is detrimental to
stimulus reconstruction. The inset shows the
population-averaged CF of the VO neurons
and the afferents. The vertical bars shows 1
SE. Comparison with average afferent re-
sponses revealed that VO neurons displayed
lower CF than both regular (Reg) and irreg-
ular (Irreg) afferents (**statistical signifi-
cance at the P � 0.01 level using a Wilcoxon
rank sum test). C: CF of VO neurons and
afferents plotted as a function of mean rest-
ing discharge. We found a significant posi-
tive correlation (r � 0.57, P � 10�4; n � 43)
indicating that higher resting discharge is
beneficial to stimulus reconstruction.
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neurons to the same sinusoidal stimulus and computed the
velocity detection threshold.

For noise stimuli, our results show that combining VO
neural spike trains can lead to large increases in the MI density
(Fig. 9A). This increase was relatively uniform across all
frequencies contained in the stimulus (Fig. 9B). We therefore
quantified these changes by computing the MI (i.e., integrating
the MI density over frequency) as a function of population size

for regular afferents, irregular afferents, and VO neurons. Our
results show that, although the MI increased as a function of
increasing population size for all 3 neuron groups, VO neuron
populations of a given size transmitted less information than
either regular or irregular afferent populations of the same size
(Fig. 9C). Similar results were obtained for the analysis of CF
(Fig. 9D). However, we found that the relative increase in the
MI was higher for VO neurons (�300%) than for afferents

Fig. 6. VO neurons display lower information rates than
afferents. A: population-averaged gains (dashed) as well
as lower (blue) and upper (red) mutual information (MI)
density curves as a function of frequency for VO neu-
rons. The gray bands show 1 SE. Note that, since the
upper bound is by definition always higher than or equal
to the lower bound for each individual neuron, the fact
that the population-averaged curves were close to one
another implies that they must also be close for most
individual VO neurons. B: population-averaged lower-
bound estimates of the MI rate (bits per second) for VO
neurons and afferents. C: population-averaged lower-
bound estimates of the MI rate normalized by the mean
firing rate (bits per spike) for VO neurons and afferents.
This normalization accounts for the dependence of MI
on the firing rate (see text for explanation). D: popula-
tion-averaged upper-bound estimates of the MI rate (bits
per second) for VO neurons and afferents. E: population-
averaged upper-bound estimates of the MI rate normal-
ized by the mean firing rate (bits per spike) for VO
neurons and afferents. ** And * indicate statistical
significance using a t-test at the P � 0.01 and 0.05
levels, respectively.
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(�150%; Fig. 9E). The CF obtained from a population of 10 VO
neurons also was significantly larger (�200%) than that obtained
from an individual VO neuron. In contrast, the CF obtained from
a population of 10 regular or irregular afferents was only 80%
larger than that of an individual afferent (Fig. 9F). These results
suggest that information about the detailed time course of vestib-
ular stimuli is not transmitted by VO neurons. It is possible that
instead these neurons might detect specific stimulus features. For
example, VO neurons might preferentially respond to/detect high-
frequency transients, consistent with our recent proposal that
irregular afferents likely play a more important role in encoding
high-frequency head rotations compared with regular afferents
(Sadeghi et al. 2007a).

We thus next combined the activities of VO neurons in re-
sponse to sinusoidal stimuli and recomputed the velocity detection
thresholds. This led to a significant decrease in the velocity
detection threshold that was uniform across frequencies (Fig. 10A).
The percentage decrease in threshold was also relatively uni-
form across frequency (Fig. 10B). We thus quantified the
improvement in detection threshold obtained by combining the

activities of VO, regular, or irregular afferent spike trains for
1-Hz sinusoidal rotations. Increases in population size led to
significant (�50%) decreases in the velocity detection thresh-
olds for all 3 neuron groups. However, the velocity detection
threshold obtained from combining regular afferent spike trains
plateaued at �2°/s, whereas those obtained from irregular
afferents and VO neurons continued to decrease (Fig. 10C). To
better quantify this observation, we performed a linear least-
squares fit to the last 4 data points for each neuron class and
computed the slope of the fitted line. This quantity was signif-
icantly larger in magnitude for VO and irregular afferents
compared with regular afferents (Fig. 10D). Extrapolation of
these results suggest that the behaviorally observed velocity
detection threshold values (�1°/s) could be achieved by com-
bining the activities of large numbers of VO neurons (�40).

DISCUSSION

Summary of results. We studied the responses of VO neu-
rons in the vestibular nuclei and compared them with those of

Fig. 7. Effects of spike-timing jitter on the
gain and MI density of VO neurons. A: a
random number drawn from a normal distri-
bution centered at 0 ms with a SD of 2 ms
was added to the time of each spike.
B: example reconstruction of the velocity
input (gray) from the original spike train
before (black) and after (red) addition of 2-ms
jitter. Addition of jitter had minimal effect on
the CF. C and D: gain and MI curves with
(dashed) and without (solid) addition of 2-ms
jitter. Light and dark gray bands indicate 1 SE
for the curves with and without jitter, respec-
tively. E: population-averaged gain loss (per-
centage) of VO neurons and afferents after
the addition of jitter was negligible in all
cases. F–H: population-averaged percentage
loss of CF, MI (bits per second), and MI per
spike (bits per spike) values of VO neurons
and afferents resulting from the addition of
jitter, respectively. For all 3 measures, VO
neurons showed significantly less percentage
loss than both regular and irregular afferents.
**Statistical significance at the P � 0.01
level using a t-test.
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vestibular afferents. VO neurons and irregular afferents dis-
played greater gains compared with regular afferents over the
range of behaviorally relevant frequencies (0–20 Hz). In con-
trast, VO neurons had lower information rates and higher
detection thresholds compared with either irregular or regular
afferents. Notably, the lower information rates displayed by
VO neurons were not simply a consequence of their lower fr
but instead partly due to their higher variability. By adding
spike-timing jitter, we further found that minimal information
is contained in the spike timing of VO neurons suggesting that
they use a rate code to transmit information rather than a
temporal code. Overall, our results showed that the capacity of
individual VO neurons for information transmission and stim-
ulus discrimination was worse than that of individual periph-
eral afferents. This suggests that individual VO neurons do not
transmit information about the detailed time course of head
rotations. Thus we tested the possibility that this information is
instead contained in the activities of multiple VO neurons.
Specifically, we computed the MI and velocity detection
threshold available when pooling our single-unit recordings
from VO neurons and afferents in response to the same stimuli.
Although the information transmitted by VO neuron popula-
tions of a given size were lower than the information transmit-
ted by afferent populations of the same size, extrapolation of
our results (Fig. 10C) suggest that the behaviorally observed

velocity detection threshold values (0.5–1°/s) might be
achieved by combining the activities of large numbers (�40)
of VO neurons.

The role of variability in neural coding. Our finding that VO
neurons display greater resting discharge variability as quan-
tified by CV* and lower information rates compared with
afferents appears to be a general feature of sensory processing.
Indeed, in the electrosensory system, which shares many sim-
ilarities with the vestibular system as both have evolved from
the lateral line (Romer and Parsons 1977), central neurons also
sometimes display larger variability and lower information
rates than peripheral neurons (Gabbiani et al. 1996). In the
visual system, LGN relay cells transmit detailed information in
their spike trains as they are highly reproducible (Reinagel and
Reid 2000) and preserve information transmitted from the
retina (Rathbun et al. 2010; Sincich et al. 2009; Wang et al.
2010). However, this information is apparently lost at the level
of the cortex where neurons also display larger variability in
their responses (London et al. 2010; Shadlen and Newsome
1998). The higher variability displayed by cortical neurons
might be a consequence of their using a temporal code to
transmit information or might serve to prevent entrainment
(phase locking), which could be important for the encoding of
high-frequency velocity and acceleration signals (Stein et al.
2005). However, the former proposal does not appear to be

Fig. 8. Individual VO neurons display velocity
detection thresholds that are greater than or
equal to those of afferents. A: table velocity
(upper) and time-dependent firing rate (lower)
during sinusoidal stimulation. A comparison
was made between the distribution of the in-
stantaneous firing rate when the table velocity
is equal to a given value (Vi) and that obtained
when the table velocity is equal to 0. B: plot of
the instantaneous firing rate as a function of
table velocity for an example VO neuron. Also
shown are schematic representations of the
instantaneous firing rate distributions for Vi �
20 and 40°/s. C: neurometric function obtained
using receiver operating characteristic (ROC)
analysis of the firing-rate distributions for dif-
ferent values of Vi. The detection threshold
corresponds to 76% probability of correct de-
tection (dashed lines). D: population-averaged
detection threshold values for VO neurons and
afferents as a function of the sinusoidal stim-
ulus frequency. Error bars indicate 1 SE.
E: velocity thresholds of VO neurons and af-
ferents for discriminating between 8- and
16-Hz sinusoidal head rotations.
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applicable here as negligible information was contained in the
spike times of VO neurons. As such, our results suggest that
the spike timing code observed for regular afferents (Sadeghi et
al. 2007a) is converted to a rate code in the vestibular nuclei.
Similar principles appear to apply to other sensory systems
(Ahissar et al. 2000; Salinas et al. 2000).

Alternatively, the large variability of VO neurons might be
needed to make central neurons more selective in their re-
sponses to the sparsely distributed features of natural stimuli
(i.e., the sparse coding hypothesis) (Rolls and Tovee 1995;
Vinje and Gallant 2000). Such a strategy is also thought to be
used by the electrosensory system (Gabbiani et al. 1996).
Indeed, our results are consistent with this hypothesis as they
show that VO central neurons do not encode information about
the detailed time course of head rotations and suggest that these
might instead respond to specific features. Notably, we hypoth-
esize that both VO neurons and irregular afferents preferen-
tially respond to/detect high-frequency transients. This idea is
supported not only by the analysis of the MI density of
irregular vs. regular afferents (Sadeghi et al. 2007a) and VO

neurons (present study), but also by characterizations of re-
sponse gain and phase (afferents: Goldberg and Fernández
1971a,b; Hullar et al. 2005; Ramachandran and Lisberger
2006; Sadeghi et al. 2007a,b; and VO neurons: present study).
Moreover, although there is no evidence that different afferent
classes preferentially contribute to different vestibular path-
ways (e.g., oculomotor vs. vestibulospinal) (Boyle et al. 1992;
Highstein et al. 1987), it has been suggested that pathways
dominated by irregular afferent input might mediate behavior-
ally appropriate changes in vestibular processing such as those
necessitated in VOR pathways for changes in viewing distance
(Chen-Huang et al. 1997; Migliaccio et al. 2004). Additional
studies will be needed to address this proposal as well as to
establish the central mechanisms by which vestibular nuclei
neurons integrate inputs from both afferent classes to achieve
this behaviorally dependent modulation of pathway efficacy.

We note that our analysis assumes that the variabilities of
VO neurons to repeated presentations of the same stimulus are
uncorrelated. Although it is clear that correlations between
these variabilities (i.e., noise correlations) can theoretically

Fig. 9. Combining the activities of multiple VO
neurons causes significant increases in MI rate
and thus better stimulus estimation. A: popula-
tion-averaged MI density curves as a function of
frequency for broadband stimuli increase as a
function of the population size (n). The gray line
shows the MI rate for a single neuron (i.e., n � 1)
for comparison. B: population-averaged MI den-
sity curves as a function of population size. Indi-
vidual curves show this relationship for different
frequencies between 4 and 20 Hz. C and D: MI
rate and CF for VO neurons and afferents as a
function of n, respectively. E and F: percentage
increase of the MI rate and CF for VO neurons
and afferents as a function of n, respectively.
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affect the nature of the neural code (Abbott and Dayan 1999;
Averbeck and Lee 2006), recent results suggest that these may
be weaker than previously assumed in other systems (Averbeck
and Lee 2006; Cohen and Maunsell 2009; Ecker et al. 2010;
Schneidman et al. 2006). The effects of noise correlations on
population coding by VO neurons cannot be assessed using
single-unit recordings. Future studies using multiunit record-
ings will be required to address this interesting issue. In
addition, we note that our estimates of the MI transmitted by
populations of central and peripheral vestibular neurons rely on
a lower bound and might thus underestimate the true amount of
information transmitted. Because the upper-bound estimate of
the MI that we used is only valid for single neurons, it cannot
be used when combining the activities of multiple neurons
without making explicit assumptions about the nature of such
combinations. Although it is possible to directly estimate the
MI (Belitski et al. 2008; Chacron 2006; Passaglia and Troy
2004; Reinagel and Reid 2000; Strong et al. 1998), such
calculations require datasets that exceed those that are cur-
rently obtainable from vestibular neurons due to technical
limitations and thus cannot be used here.

Implications for vestibular processing. During everyday life,
the vestibular system encodes head movement relative to space
and in turn plays a vital role in estimating our spatial orienta-
tion and self-motion relative to the world. However, to date,
surprisingly little quantification has been done of our ability to
perceive vestibular stimuli. Several pioneering studies at-
tempted to quantify thresholds for the detection of angular
motion (Clark 1967; Guedry 1974). Most recently, Grabherr et
al. (2008) measured detection thresholds as a function of
frequency (0.05–5 Hz) and found that velocity thresholds

reached a value of 0.5–1°/s for frequencies �0.5 Hz. Although
behavioral studies have shown that our ability to detect head
movement is very impressive, the detection thresholds of
individual vestibular afferent fibers are an order of magnitude
larger (Sadeghi et al. 2007a).

To understand how such remarkable behavioral abilities
emerge, we recorded from vestibular nuclei neurons that re-
ceive direct monosynaptic projections from the vestibular
nerve (McCrea et al. 1987; Scudder and Fuchs 1992). These
neurons make contributions to vestibulospinal reflexes as well
as higher-order vestibular processing including the computa-
tion of spatial orientation (reviewed in Angelaki and Cullen
2008). VO neurons project to the flocculus (Cheron et al. 1996;
Zhang et al. 1993) and are reciprocally interconnected to the
nodulus/uvula (Reisine and Raphan 1992) of the cerebellum.
Importantly, the latter connection underlies the prolongation
(as compared with that of the vestibular VIIIth nerve) of the
time constant for which self-motion is perceived. In addition,
recent studies have shown that the vestibular thalamus (i.e., the
ventroposterior thalamus) receives direct input from VO neu-
rons (Marlinski and McCrea 2009). This thalamic area in turn
relays vestibular information to cortical areas (such as area
parietoinsular vestibular cortex) in which neurons are sensitive
to vestibular stimulation (Büttner and Lang 1979; Grusser et al.
1990; Magnin and Fuchs 1977).

It is important to note that, in addition to the VO neurons,
there are two other physiological classes of neuron in the
vestibular nuclei that encode head motion, namely 1) position-
vestibular-pause neurons that mediate the VOR, and 2) eye-
head (or alternatively, floccular target neurons), which are
involved in VOR adaptation (reviewed in Cullen and Roy

Fig. 10. Combining the activities of multiple
VO neurons causes a significant decrease in the
velocity detection threshold. A: population-av-
eraged detection threshold values for VO neu-
rons decrease as a function of the population
size. Error bars indicate 1 SE. The gray line
shows the velocity detection threshold for n �
1 for comparison. B: thresholds normalized rel-
ative to the values at n � 1 as a function of
frequency. A similar amount of decrease can be
observed over all the frequencies for each pop-
ulation size. C: population-averaged detection
threshold values for VO neurons and afferents
for 1-Hz sinusoidal stimulation as a function of
the population size n. The last 4 data points
were used to compute the rate at which the
detection threshold decreases as a function of n
(black and gray lines). D: rate of decrease of the
velocity detection threshold for VO neurons
and afferents. *Statistical significance at the
P � 0.05 level using a t-test.
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2004). It is, however, unlikely that these groups of neurons
project to higher vestibular centers (i.e., cortex via thalamus)
for several reasons. First, studies using intracellular staining
(e.g., McCrea et al. 1987) and spike-triggered averaging of
electromyograms (Scudder and Fuchs 1992) have shown that
these neurons preferentially project to the extraocular mo-
toneurons. Second, recent electrophysiological studies have
explicitly shown that neurons in the vestibular thalamus are not
sensitive to eye movements (i.e., they respond only to vestib-
ular signals like VO neurons in the medial vestibular nucleus).
Notably, neurons in the vestibular nuclei that target the ves-
tibular thalamus as well as their targets within the thalamus are
insensitive to eye movements [thalamus projecting vestibular
nuclei neurons (Marlinski and McCrea 2009) and ventropos-
terior thalamus (Marlinski and McCrea 2008; Meng and An-
gelaki 2010)].

Our results show that the detection thresholds of individual
VO cells are higher than those observed behaviorally (�1°/s)
(Becker et al. 2000; Mergner et al. 1993). In contrast, previous
studies have reported similar discrimination performances for
single central neurons and the organism (Britten et al. 1992).
The behavioral vestibular detection threshold might thus
emerge by combining the activities of multiple VO neurons in
higher-order brain areas. This could be achieved by pooling the
activities of a large population or, alternatively, by selectively
pooling the activities from a specific subset of neurons as has
been shown in area MT (Purushothaman and Bradley 2005).
Our results are consistent with the former hypothesis because:
1) contrary to MT neurons, VO neurons do not show specific
tuning [i.e., neurons respond linearly to velocity (Roy and
Cullen 2004)]; and 2) pooling across our entire VO neuron
dataset significantly improved the detection threshold, which is
contrary to what is observed in MT (Purushothaman and
Bradley 2005). Indeed, our results show that combining the
activities of multiple neurons significantly decreased velocity
detection thresholds to values that approached those measured
from behavior. Although our methodology for computing the
population detection threshold assumes that all neuronal re-
sponses were temporally aligned, similar results were obtained
without such alignment. This is most likely because groups of
regular and irregular afferents and VO neurons each show little
intragroup variability in the phase of their responses to sinu-
soidal stimuli (Sadeghi et al. 2007b, 2009).

Conclusions. Taken together, our results show for the first
time that neural variability has important consequences on the
coding of information by neurons within the vestibular nuclei.
Our results suggest that these neurons do not transmit infor-
mation about the detailed time course of vestibular stimuli but
instead detect specific features. Our results further show that
combining the activities of large VO neuron populations is
necessary to explain the velocity detection thresholds measured
in psychophysical experiments.

ACKNOWLEDGMENTS

We thank S. G. Sadeghi for providing assistance with the afferents record-
ings and S. Nuara and W. Kucharski for excellent technical assistance.

GRANTS

This research was supported by the Canadian Institutes of Health Research
and the “Fonds Québécois de la Recherche sur la Nature et les Technologies”.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

REFERENCES

Abbott LF, Dayan P. The effect of correlated variability on the accuracy of
a population code. Neural Comput 11: 91–101, 1999.

Ahissar E, Sosnik R, Haidarliu S. Transformation from temporal to rate
coding in a somatosensory thalamocortical pathway. Nature 406: 302–306,
2000.

Angelaki DE, Cullen KE. Vestibular system: the many facets of a multimodal
sense. Annu Rev Neurosci 31: 125–150, 2008.

Averbeck BB, Lee D. Effects of noise correlations on information encoding
and decoding. J Neurophysiol 95: 3633–3644, 2006.

Baird RA, Desmadryl G, Fernandez C, Goldberg JM. The vestibular nerve
of the chinchilla. II. Relation between afferent response properties and
peripheral innervation patterns in the semicircular canals. J Neurophysiol
60: 182–203, 1988.

Becker W, Jurgens R, Boss T. Vestibular perception of self-rotation in
different postures: a comparison between sitting and standing subjects. Exp
Brain Res 131: 468–476, 2000.

Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logo-
thetis NK, Panzeri S. Low-frequency local field potentials and spikes in
primary visual cortex convey independent visual information. J Neurosci 28:
5696–5709, 2008.

Bialek W, Rieke F. Reading a neural code. Science 252: 1854–1857, 1991.
Borst A, Haag J. Effects of mean firing on neural information rate. J Comput

Neurosci 10: 213–221, 2001.
Borst A, Theunissen F. Information theory and neural coding. Nat Neurosci

2: 947–957, 1999.
Boyle R, Goldberg JM, Highstein SM. Inputs from regularly and irregularly

discharging vestibular nerve afferents to secondary neurons in squirrel
monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibu-
loocular output pathways. J Neurophysiol 68: 471–484, 1992.

Brenner N, Strong SP, Koberle R, Bialek W, de Ruyter van Steveninck
RR. Synergy in a neural code. Neural Comput 12: 1531–1552, 2000.

Britten KH, Shadlen MN, Newsome WT, Movshon JA. The analysis of
visual motion: a comparison of neuronal and psychophysical performance.
J Neurosci 12: 4745–4765, 1992.

Büttner U, Lang W. The vestibulocortical pathway: neurophysiological and
anatomical studies in the monkey. Prog Brain Res 50: 581–588, 1979.

Chacron MJ. Nonlinear information processing in a model sensory system. J
Neurophysiol 95: 2933–2946, 2006.

Chacron MJ, Longtin A, Maler L. Delayed excitatory and inhibitory feed-
back shape neural information transmission. Phys Rev E Stat Nonlin Soft
Matter Phys 72: 051917, 2005a.

Chacron MJ, Longtin A, Maler L. Negative interspike interval correlations
increase the neuronal capacity for encoding time-varying stimuli. J Neurosci
21: 5328–5343, 2001.

Chacron MJ, Longtin A, Maler L. The effects of spontaneous activity,
background noise, and the stimulus ensemble on information transfer in
neurons. Network 14: 803–824, 2003.

Chacron MJ, Longtin A, Maler L. To burst or not to burst? J Comput
Neurosci 17: 127–136, 2004.

Chacron MJ, Maler L, Bastian J. Electroreceptor neuron dynamics shape
information transmission. Nat Neurosci 8: 673–678, 2005b.

Chen-Huang C, McCrea RA, Goldberg JM. Contributions of regularly and
irregularly discharging vestibular-nerve inputs to the discharge of central
vestibular neurons in the alert squirrel monkey. Exp Brain Res 114: 405–
422, 1997.

Cherif S, Cullen KE, Galiana HL. An improved method for the estimation of
firing rate dynamics using an optimal digital filter. J Neurosci Methods 173:
165–181, 2008.

Cheron G, Escudero M, Godaux E. Discharge properties of brain stem
neurons projecting to the flocculus in the alert cat. I. Medical vestibular
nucleus. J Neurophysiol 76: 1759–1774, 1996.

Clague H, Theunissen F, Miller JP. Effects of adaptation on neural coding by
primary sensory interneurons in the cricket cercal system. J Neurophysiol
77: 207–220, 1997.

Clark B. Thresholds for the perception of angular acceleration in man.
Aerospace Med 38: 443–450, 1967.

Cohen MR, Maunsell JH. Attention improves performance primarily by
reducing interneuronal correlations. Nat Neurosci 12: 1594–1600, 2009.

1812 INFORMATION TRANSMISSION IN THE VESTIBULAR NUCLEI

J Neurophysiol • VOL 105 • APRIL 2011 • www.jn.org

 on A
pril 16, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/


Cox DR, Lewis PA. The Statistical Analysis of Series of Events. London:
Methuen, 1966.

Cullen KE, McCrea RA. Firing behavior of brain stem neurons during
voluntary cancellation of the horizontal vestibuloocular reflex. I. Secondary
vestibular neurons. J Neurophysiol 70: 828–843, 1993.

Cullen KE, Minor LB. Semicircular canal afferents similarly encode active
and passive head-on-body rotations: implications for the role of vestibular
efference. J Neurosci 22: RC226, 2002.

Cullen KE, Roy JE. Signal processing in the vestibular system during active
versus passive head movements. J Neurophysiol 91: 1919–1933, 2004.

Dan Y, Alonso JM, Usrey WM, Reid RC. Coding of visual information by
precisely correlated spikes in the lateral geniculate nucleus. Nat Neurosci 1:
501–507, 1998.

Dayan P, Abbott LF. Theoretical Neuroscience: Computational and Mathe-
matical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2001.

Dean AF. The variability of discharge of simple cells in the cat striate cortex.
Exp Brain Res 44: 437–440, 1981.

Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS.
Decorrelated neuronal firing in cortical microcircuits. Science 327: 584–
587, 2010.

Fernandez C, Baird RA, Goldberg JM. The vestibular nerve of the chin-
chilla. I. Peripheral innervation patterns in the horizontal and superior
semicircular canals. J Neurophysiol 60: 167–181, 1988.

Gabbiani F. Coding of time varying signals in spike trains of linear and
half-wave rectifying neurons. Network: Computation in Neural Systems 7:
61–85, 1996.

Gabbiani F, Koch C. Principles of spike train analysis. In: Methods in
Neuronal Modeling: From Ions to Networks, edited by Koch C and Segev
I. Cambridge, MA: MIT Press, 1998, p. 313–360.

Gabbiani F, Metzner W, Wessel R, Koch C. From stimulus encoding to
feature extraction in weakly electric fish. Nature 384: 564–567, 1996.

Goldberg JM. Afferent diversity and the organisation of central vestibular
pathways. Exp Brain Res 130: 277–297, 2000.

Goldberg JM, Fernández C. Physiology of peripheral neurons innervating
semicircular canals of the squirrel monkey. I. Resting discharge and re-
sponse to constant angular acceleration. J Neurophysiol 34: 635–660,
1971a.

Goldberg JM, Fernandez C. Physiology of peripheral neurons innervating
semicircular canals of the squirrel monkey. II. Response to sinusoidal
stimulation and dynamics of peripheral vestibular system. J Neurophysiol
34: 661–675, 1971b.

Goldberg JM, Highstein SM, Moschovakis AK, Fernandez C. Inputs from
regularly and irregularly discharging vestibular nerve afferents to secondary
neurons in the vestibular nuclei of the squirrel monkey. I. An electrophys-
iological analysis. J Neurophysiol 58: 700–718, 1987.

Goldberg JM, Smith CE, Fernandez C. Relation between discharge regu-
larity and responses to externally applied galvanic currents in vestibular
nerve afferents of the squirrel monkey. J Neurophysiol 51: 1236–1256,
1984.

Grabherr L, Nicoucar K, Mast FW, Merfeld DM. Vestibular thresholds for
yaw rotation about an earth-vertical axis as a function of frequency. Exp
Brain Res 186: 677–681, 2008.

Green D, Swets J. Signal Detection Theory and Psychophysics. New York:
John Wiley & Sons, 1966.

Grusser OJ, Pause M, Schreiter U. Vestibular neurones in the parieto-insular
cortex of monkeys (Macaca fascicularis): visual and neck receptor re-
sponses. J Physiol 430: 559–583, 1990.

Gu Y, Angelaki DE, Deangelis GC. Neural correlates of multisensory cue
integration in macaque MSTd. Nat Neurosci 11: 1201–1210, 2008.

Gu Y, DeAngelis GC, Angelaki DE. A functional link between area MSTd
and heading perception based on vestibular signals. Nat Neurosci 10:
1038–1047, 2007.

Guedry F. Psychophysics of vestibular sensation. In: Handbook of Sensory
Physiology, edited by Kornhuber HH. New York: Springer, 1974, p. 1–154.

Haag J, Borst A. Active membrane properties and signal encoding in graded
potential neurons. J Neurosci 18: 7972–7986, 1998.

Haque A, Angelaki DE, Dickman JD. Spatial tuning and dynamics of
vestibular semicircular canal afferents in rhesus monkeys. Exp Brain Res
155: 81–90, 2004.

Highstein SM, Goldberg JM, Moschovakis AK, Fernandez C. Inputs from
regularly and irregularly discharging vestibular nerve afferents to secondary
neurons in the vestibular nuclei of the squirrel monkey. II. Correlation with
output pathways of secondary neurons. J Neurophysiol 58: 719–738, 1987.

Holden AV. Models of the Stochastic Activity of Neurons. Berlin: Springer,
1976.

Hullar TE, Della Santina CC, Hirvonen T, Lasker DM, Carey JP, Minor
LB. Responses of irregularly discharging chinchilla semicircular canal
vestibular-nerve afferents during high-frequency head rotations. J Neuro-
physiol 93: 2777–2786, 2005.

Huterer M, Cullen KE. Vestibuloocular reflex dynamics during high-fre-
quency and high-acceleration rotations of the head on body in rhesus
monkey. J Neurophysiol 88: 13–28, 2002.

Jarvis MR, Mitra PP. Sampling properties of the spectrum and coherency of
sequences of action potentials. Neural Comput 13: 717–749, 2001.

Jones LM, Depireux DA, Simons DJ, Keller A. Robust temporal coding in
the trigeminal system. Science 304: 1986–1989, 2004.

Krahe R, Bastian J, Chacron MJ. Temporal processing across multiple
topographic maps in the electrosensory system. J Neurophysiol 100: 852–
867, 2008.

Krahe R, Kreiman G, Gabbiani F, Koch C, Metzner W. Stimulus encoding
and feature extraction by multiple sensory neurons. J Neurosci 22: 2374–
2382, 2002.

Kreiman G, Krahe R, Metzner W, Koch C, Gabbiani F. Robustness and
variability of neuronal coding by amplitude sensitive afferents in the weakly
electric fish eigenmania. J Neurophysiol 84: 189–224, 2000.

Lisberger SG, Pavelko TA. Vestibular signals carried by pathways subserv-
ing plasticity of the vestibulo-ocular reflex in monkeys. J Neurosci 6:
346–354, 1986.

Liu S, Yakusheva T, Deangelis GC, Angelaki DE. Direction discrimination
thresholds of vestibular and cerebellar nuclei neurons. J Neurosci 30:
439–448, 2010.

London M, Roth A, Beeren L, Hausser M, Latham PE. Sensitivity to
perturbations in vivo implies high noise and suggests rate coding in cortex.
Nature 466: 123–127, 2010.

Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AV.
Representation of acoustic communication signals by insect auditory neu-
rons. J Neurosci 21: 3215–3227, 2001.

Magnin M, Fuchs AF. Discharge properties of neurons in the monkey
thalamus tested with angular acceleration, eye movement and visual stimuli.
Exp Brain Res 28: 293–299, 1977.

Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons.
Science 268: 1503–1506, 1995.

Marlinski V, McCrea RA. Activity of ventroposterior thalamus neurons
during rotation and translation in the horizontal plane in the alert squirrel
monkey. J Neurophysiol 99: 2533–2545, 2008.

Marlinski V, McCrea RA. Self-motion signals in vestibular nuclei neurons
projecting to the thalamus in the alert squirrel monkey. J Neurophysiol 101:
1730–1741, 2009.

Marsat G, Pollack GS. Differential temporal coding of rhythmically diverse
acoustic signals by a single interneuron. J Neurophysiol 92: 939–948, 2004.

Marsat G, Pollack GS. Effect of the temporal pattern of contralateral
inhibition on sound localization cues. J Neurosci 25: 6137–6144, 2005.

McCrea RA, Gdowski GT, Boyle R, Belton T. Firing behavior of vestibular
neurons during active and passive head movements: vestibulo-spinal and
other non-eye-movement related neurons. J Neurophysiol 82: 416–428,
1999.

McCrea RA, Strassman A, May E, Highstein SM. Anatomical and physi-
ological characteristics of vestibular neurons mediating the horizontal ves-
tibulo-ocular reflex of the squirrel monkey. J Comp Neurol 264: 547–570,
1987.

Meng H, Angelaki DE. Responses of ventral posterior thalamus neurons to
three-dimensional vestibular and optic flow stimulation. J Neurophysiol
103: 817–826, 2010.

Mergner T, Hlavacka F, Schweigart G. Interaction of vestibular and pro-
prioceptive inputs. J Vestib Res 3: 41–57, 1993.

Metzner W, Koch C, Wessel R, Gabbiani F. Feature extraction by burst-like
spike patterns in multiple sensory maps. J Neurosci 18: 2283–2300, 1998.

Middleton JW, Longtin A, Benda J, Maler L. Postsynaptic receptive field
size and spike threshold determine encoding of high-frequency information
via sensitivity to synchronous presynaptic activity. J Neurophysiol 101:
1160–1170, 2009.

Migliaccio AA, Minor LB, Carey JP. Vergence-mediated modulation of the
human horizontal vestibulo-ocular reflex is eliminated by a partial peripheral
gentamicin lesion. Exp Brain Res 159: 92–98, 2004.

Oppenheim AV, Schafer RW. Discrete-Time Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

1813INFORMATION TRANSMISSION IN THE VESTIBULAR NUCLEI

J Neurophysiol • VOL 105 • APRIL 2011 • www.jn.org

 on A
pril 16, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/


Panzeri S, Petroni F, Petersen RS, Diamond ME. Decoding neuronal
population activity in rat somatosensory cortex: role of columnar organiza-
tion. Cerebral Cortex 13: 45–52, 2003.

Passaglia CL, Troy JB. Information transmission rates of cat retinal ganglion
cells. J Neurophysiol 91: 1217–1229, 2004.

Purushothaman G, Bradley DC. Neural population code for fine perceptual
decisions in area MT. Nat Neurosci 8: 99–106, 2005.

Ramachandran R, Lisberger SG. Transformation of vestibular signals into
motor commands in the vestibuloocular reflex pathways of monkeys. J
Neurophysiol 96: 1061–1074, 2006.

Rathbun DL, Warland DK, Usrey WM. Spike timing and information
transmission at retinogeniculate synapses. J Neurosci 30: 13558–13566,
2010.

Reich DS, Mechler F, Victor JD. Independent and redundant information in
nearby cortical neurons. Science 294: 2566–2568, 2001.

Reinagel P, Reid RC. Temporal coding of visual information in the thalamus.
J Neurosci 20: 5392–5400, 2000.

Reisine H, Raphan T. Neural basis for eye velocity generation in the
vestibular nuclei of alert monkeys during off-vertical axis rotation. Exp
Brain Res 92: 209–226, 1992.

Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W. Spikes:
Exploring the Neural Code. Cambridge, MA: MIT Press, 1996.

Roddey JC, Girish B, Miller JP. Assessing the performance of neural
encoding models in the presence of noise. J Comput Neurosci 8: 95–112,
2000.

Roddey JC, Jacobs GA. Information theoretic analysis of dynamical encod-
ing by filiform mechanoreceptors in the cricket cercal system. J Neuro-
physiol 75: 1365–1376, 1996.

Rolls ET, Tovee MJ. Sparseness of the neuronal representation of stimuli in
the primate temporal visual cortex. J Neurophysiol 73: 713–726, 1995.

Romer A, Parsons TS. The Vertebrate Body. Philadelphia, PA: Saunders,
1977.

Roy JE, Cullen KE. Dissociating self-generated from passively applied head
motion: neural mechanisms in the vestibular nuclei. J Neurosci 24: 2102–
2111, 2004.

Roy JE, Cullen KE. Selective processing of vestibular reafference during
self-generated head motion. J Neurosci 21: 2131–2142, 2001.

Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE. Neural variability,
detection thresholds, and information transmission in the vestibular system.
J Neurosci 27: 771–781, 2007a.

Sadeghi SG, Minor LB, Cullen KE. Dynamics of the horizontal vestibulo-
ocular reflex after unilateral labyrinthectomy: response to high frequency,
high acceleration, and high velocity rotations. Exp Brain Res 175: 471–484,
2006.

Sadeghi SG, Minor LB, Cullen KE. Response of vestibular-nerve afferents to
active and passive rotations under normal conditions and after unilateral
labyrinthectomy. J Neurophysiol 97: 1503–1514, 2007b.

Sadeghi SG, Mitchell DE, Cullen KE. Different neural strategies for multi-
modal integration: comparison of two macaque monkey species. Exp Brain
Res 195: 45–57, 2009.

Salinas E, Hernandez A, Zainos A, Romo R. Periodicity and firing rate as
candidate neural codes for the frequency of vibrotactile stimuli. J Neurosci
20: 5503–5515, 2000.

Sato F, Sasaki H, Ishizuka N, Sasaki S, Mannen H. Morphology of single
primary vestibular afferents originating from the horizontal semicircular
canal in the cat. J Comp Neurol 290: 423–439, 1989.

Schneidman E, Berry MJ 2nd, Segev R, Bialek W. Weak pairwise corre-
lations imply strongly correlated network states in a neural population.
Nature 440: 1007–1012, 2006.

Scudder CA, Fuchs AF. Physiological and behavioral identification of ves-
tibular nucleus neurons mediating the horizontal vestibuloocular reflex in
trained rhesus monkeys. J Neurophysiol 68: 244–264, 1992.

Shadlen MN, Newsome WT. The variable discharge of cortical neurons:
implications for connectivity, computation, and information coding. J Neu-
rosci 18: 3870–3896, 1998.

Shannon CE. The mathematical theory of communication. Bell Systems
Technical Journal 27: 379–423; 623–656, 1948.

Sincich LC, Horton JC, Sharpee TO. Preserving information in neural
transmission. J Neurosci 29: 6207–6216, 2009.

Softky WR, Koch C. The highly irregular firing of cortical cells is inconsistent
with temporal integration of random EPSPs. J Neurosci 13: 334–350, 1993.

Stein RB, Gossen ER, Jones KE. Neuronal variability: noise or part of the
signal? Nat Rev Neurosci 6: 389–397, 2005.

Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W. Entropy
and information in neural spike trains. Phys Rev Lett 80: 197–200, 1998.

Sylvestre PA, Cullen KE. Quantitative analysis of abducens neuron discharge
dynamics during saccadic and slow eye movements. J Neurophysiol 82:
2612–2632, 1999.

Theunissen F, Miller JP. Temporal encoding in the nervous system: a
rigorous definition. J Comput Neurosci 2: 149–162, 1995.

Theunissen F, Roddey JC, Stufflebeam S, Clague H, Miller JP. Information
theoretic analysis of dynamical encoding by four identified interneurons in
the cricket cercal system. J Neurophysiol 75: 1345–1364, 1996.

Tolhurst DJ, Movshon JA, Dean AF. The statistical reliability of signals in
single neurons in cat and monkey visual cortex. Vision Res 23: 775–785,
1983.

Vinje WE, Gallant JL. Sparse coding and decorrelation in primary visual
cortex during natural vision. Science 287: 1273–1276, 2000.

Wang X, Hirsch JA, Sommer FT. Recoding of sensory information across
the retinothalamic synapse. J Neurosci 30: 13567–13577, 2010.

Warland DK, Reinagel P, Meister M. Decoding visual information from a
population of retinal ganglion cells. J Neurophysiol 78: 2336–2350, 1997.

Wessel R, Koch C, Gabbiani F. Coding of time-varying electric field
amplitude modulations in a wave-type electric fish. J Neurophysiol 75:
2280–2293, 1996.

Zhang Y, Partsalis AM, Highstein SM. Properties of superior vestibular
nucleus neurons projecting to the cerebellar flocculus in the squirrel mon-
key. J Neurophysiol 69: 642–645, 1993.

Zohary E, Shadlen MN, Newsome WT. Correlated neuronal discharge rate
and its implications for psychophysical performance. Nature 370: 140–143,
1994.

1814 INFORMATION TRANSMISSION IN THE VESTIBULAR NUCLEI

J Neurophysiol • VOL 105 • APRIL 2011 • www.jn.org

 on A
pril 16, 2011

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org/



