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Understanding how the brain processes sensory information is
often complicated by the fact that neurons exhibit trial-to-trial
variability in their responses to stimuli. Indeed, the role of variability
in sensory coding is still highly debated. Here, we examined how
variability influences neural responses to naturalistic stimuli con-
sisting of a fast time-varying waveform (i.e., carrier or first order)
whose amplitude (i.e., envelope or second order) varies more slowly.
Recordings were made from fish electrosensory and monkey vestib-
ular sensory neurons. In both systems, we show that correlated but
not single-neuron activity can provide detailed information about
second-order stimulus features. Using a simple mathematical model,
we made the strong prediction that such correlation-based coding
of envelopes requires neural variability. Strikingly, the performance
of correlated activity at predicting the envelope was similarly opti-
mally tuned to a nonzero level of variability in both systems, thereby
confirming this prediction. Finally, we show that second-order sen-
sory information can only be decoded if one takes into account joint
statistics when combining neural activities. Our results thus show
that correlated but not single-neural activity can transmit informa-
tion about the envelope, that such transmission requires neural
variability, and that this information can be decoded. We suggest
that envelope coding by correlated activity is a general feature of
sensory processing that will be found across species and systems.
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Although correlated activity and neural variability are both
observed ubiquitously in the brain, their functional roles

have been the focus of much debate (1, 2). Indeed, the conven-
tional wisdom that both are detrimental to coding by introducing
redundancy and noise, respectively, has been recently challenged
(3, 4). Here, we investigated the effects of variability on the
coding by correlated activity of naturalistic sensory stimuli that
often have rich spatiotemporal structure characterized by first-
and second-order attributes. Specifically, we considered how
neural populations within the electrosensory system of weakly
electric fish and the vestibular system of monkeys respond to
stimuli consisting of a fast time-varying carrier waveform (i.e.,
first-order attribute) whose amplitude or envelope (i.e., second-
order attribute) varies independently on a longer timescale.
Envelopes are critical for perception (5, 6), yet their neural
encoding continues to pose a challenge to investigators because
they are nonlinearly related to the stimulus waveform (7). Pre-
vious studies have shown that single neurons can transmit en-
velope information through changes in firing rate (8, 9) when the
relationship between the stimulus input and the output firing
rate is nonlinear. In contrast, here, we focused on neuronal re-
sponses that were linearly related to the stimulus waveform.
Weakly electric fish generate an electric field around their

body through the electric organ discharge (EOD) (for review, see
ref. 10). Peripheral electroreceptor afferents scattered over the
animal’s skin respond to the low-intensity changes in EOD am-
plitude frequently encountered under natural conditions (11)
through linearly related changes in firing rate (12). Although
previous studies have shown that envelope information under

these conditions reaches higher brain regions, thus giving rise to
perception and behavior (13), the processing of low-intensity
envelopes by the afferent population is not well understood.
The vestibular system provides information about head mo-

tion relative to space that is necessary for maintaining posture,
computing spatial orientation, and perceiving self-motion (14).
This essential system is well characterized anatomically and
displays important differences with the electrosensory system.
Peripheral afferents respond to head velocity through changes in
firing rate that are linearly related to the stimulus (15, 16) but
exhibit a much wider range of resting discharge variability than
electroreceptor afferents (12). Although low-intensity envelopes
are a prominent feature of vestibular signals encountered during
natural self-motion (17), the neural mechanisms underlying their
processing by vestibular neurons are not well understood.
Here, we show that correlated but not single-neuron activity

encodes envelopes in both the electrosensory and vestibular sys-
tems. Through a combination of mathematical modeling and com-
putational analyses, we further show that such coding is found
for wide ranges of parameter values and is optimal for a nonzero
level of neural variability. We suggest that correlation coding pro-
vides a general neural strategy to encode the commonly observed
second-order features of sensory input across sensory systems.

Results
Correlations Between Spike Trains Encode Second-Order Stimulus
Attributes. We studied neural responses to stimuli consisting of
a noisy waveform (Fig. 1A, blue) whose envelope (Fig. 1A, red)
varied independently and more slowly in time. We initially fo-
cused on the electrosensory system of weakly electric fish because
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(i) its neural circuitry is well characterized (10); (ii) it is feasible
to perform pairwise recordings from electroreceptor afferents in
awake behaving animals (18); and (iii) noise stimuli closely mimic
natural sensory signals encountered by these fish (11) as they
routinely evoke behavioral responses (19). When we examined

simultaneous recordings from afferent pairs, we found that spike
trains were more similar when the envelope was high (Fig. 1B).
We quantified this similarity using the correlation coefficient (SI
Materials and Methods) and found strong covariation with the
envelope (Fig. 1C, Top). We quantified the degree to which the
envelope could be predicted from the correlation coefficient
by computing the variance-accounted-for (VAF) (SI Materials
and Methods and Materials and Methods), which ranges between
0 (no predictability) and 1 (optimal predictability). The high VAF
value (0.76) obtained indicates that the correlation coefficient is a
reliable predictor of the envelope (Fig. 1C, Bottom).
Importantly, the activity of individual single neurons did not

provide detailed information about the envelope (Fig. 1D, Top).
Indeed, the cross-correlation function between the single elec-
troreceptor’s spiking activity and the envelope was not signifi-
cantly different from that obtained from surrogate data that was,
by construction, uncorrelated with the envelope (P > 0.3, Kol-
mogorov–Smirnov test; n = 32) (Fig. 1D, Top, Inset). We further
found that standard nonlinear transformations that are typically
used to extract the envelope from a signal also did not provide
detailed information about the envelope when applied to the
single electroreceptor neurons (Fig. 1D, Bottom). Overall, the
pairwise correlation coefficient reliably predicted the envelope
as quantified by a high VAF observed across our dataset (Fig.
1E). Similar results were obtained when randomly pairing non-
simultaneous recordings (Fig. 1E), indicating that such coding is
robust. This is discussed further below. In contrast, waveforms
obtained by applying either linear or nonlinear transformations
to the single-neuron activity did not reliably predict the envelope
as quantified by negligible VAF values (Fig. 1E).
We next investigated whether the value of the time window

over which both the time-dependent correlation coefficient and
firing rate are computed influences envelope-coding perfor-
mance. This is because correlations reflecting common activity
can be measured at different timescales, ranging from a few
milliseconds (i.e., synchrony) to seconds (i.e., slow covariation of
firing rates) (20). We found that the correlation coefficient
provided detailed information about the envelope for integration
time windows >1 s (Fig. 1E, Inset). However, for all time win-
dows, single-neuron activity did not reliably predict the envelope,
as quantified by negligible VAF values (Fig. 1E, Inset). Impor-
tantly, the time windows considered are comparable with neu-
ronal integration time constants observed experimentally (21, 22).

Envelope Coding by Correlated Activity in Leaky Integrate-and-Fire
Neuron Models. Our results thus far lead to the interesting
question: how does correlated activity encode the envelope? To
answer this question, we simulated a pair of spiking neuron
models using the leaky integrate-and-fire formalism. The inputs
to both model neurons consisted of a constant bias current Ibias, a
common stimulus S(t) with zero mean and SD σstim, and normally
distributed noise sources ξ1(t), ξ2(t) with zero mean and SD σnoise
(Fig. 2A, SI Materials and Methods). The output spike trains of
our model neurons were analyzed in the same manner as the
experimental data. We assumed that the noises received by each
of the model neurons [i.e., ξ1(t), ξ2(t)] were independent and
identically distributed [<ξi(t)ξj(t′)> ∝ δ(t − t′) if i = j and
<ξi(t)ξj(t′)> = 0 otherwise]. Despite its relative simplicity and the
fact that the patterns of the simulated neuron spike trains were
different from those of electroreceptors (compare Figs. 1B and
2B), our model was able to accurately reproduce our experi-
mental results (Fig. 2B). Specifically, the degree of similarity
between both model neurons’ spiking responses increased as a
function of the envelope (Fig. 2B, compare Middle and Bottom).
This can be understood intuitively because, although the noise
intensity is independent of the envelope, the stimulus intensity
and thus the signal-to-noise ratio is larger when the envelope is
higher. Consistent with our experimental findings (Fig. 1C), the
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Fig. 1. Correlated but not single-neuron activity encodes the stimulus en-
velope in weakly electric fish electroreceptor afferents. (A) Electroreceptor
afferents were stimulated with a noisy waveform (20-Hz cutoff frequency)
(blue) whose amplitude (i.e., envelope, red) varied independently and con-
sisted of low-pass–filtered white noise (0.05-Hz cutoff frequency). (B) Time-
varying stimulus (blue) with zero mean (horizontal black line) and its en-
velope (red). (Insets) Spiking responses from an example afferent pair to
stimulus segments characterized by high and low envelopes. Note that, al-
though the total numbers of spikes were similar in both conditions (21 for
high envelope vs. 23 for low envelope), coincident spikes were more fre-
quent when the envelope was high (15 for high envelope vs. 8 for low en-
velope). (C, Top) Time-varying envelope (red), and correlation coefficient
(brown) from the same pair. (Bottom) Correlation coefficient as a function of
envelope showing a strong linear relationship as characterized by a high
variance-accounted-for (VAF). (D, Top) Time-varying envelope (red), and
corresponding firing rates of both neurons (black). (Bottom) Signals obtained
after applying nonlinear transformations to the single-neuron activity. (Inset)
Cross-correlation function between the envelope and an example single
electroreceptor neuron’s spiking activity (solid black) as well as uncorrelated
surrogate data (solid gray). The band shows the 95% confidence interval of
the surrogate dataset. (E) Population-averaged VAF values for the correlation
coefficient computed from simultaneous recordings (brown; n = 16 pairs),
nonsimultaneous recordings (red; n = 153), as well as for single-neural activity
after applying either no transformation or the same nonlinear transformations
as in D (black and colored bars; n = 32). No significant difference in coding
performance as quantified by VAF was observed (P = 0.12, rank sum test, df =
168). The asterisk (*) indicates statistical significance at the P = 0.01 level using
a Wilcoxon rank sum test. n.s., not statistically significant. (Inset) VAF com-
puted from correlated activity of pairs of afferents recorded simultaneously
and from single-neuron activity as a function of the time window used to
calculate the correlation coefficient. The filled circles indicate statistically
significant values from zero at the P = 0.05 level using a t test. The open
circles indicate that the values were not significantly different from zero.
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pairwise correlation coefficient reliably predicted the enve-
lope as quantified by a high VAF (Fig. 2C). In contrast, in-
dividual single-model neuron activity did not provide detailed
information about the envelope (Fig. 2D). Indeed, the cross-
correlation function between the single model neuron’s spiking
activity and the envelope was not significantly different from
zero (P > 0.3, Kolmogorov–Smirnov test) (Fig. 2D, Top, Inset).
The signals obtained by applying nonlinear transformations to
the single-model neuron activity also could not reliably predict
the envelope as quantified by negligible VAF values (Fig. 2E).
Furthermore, as was the case experimentally, the correlation
coefficient most reliably predicted the envelope when computed
for time windows > 1 s (compare Insets of Figs. 1E and 2E).

To test whether envelope coding by correlated but not single-
neuron activity is robust in our model, we next systematically
varied parameters such as the bias current Ibias, the stimulus
intensity σstim, and the noise intensity σnoise. We found that cor-
related population activity encoded the envelope independently
of single-neuron activity over a wide range of parameter values.
Specifically, this was the case for higher values of Ibias as well as
intermediate values of σstim and σnoise (Figs. S1A and S2A).
Furthermore, we found that the stimulus input–firing-rate output
relationship was approximately linear in this regime (Figs. S1B
and S2B). In contrast, single-neuron activity could only predict
the envelope for regions in parameter space (Figs. S1A and S2B)
that were characterized by a nonlinear stimulus input–firing-rate
output relationship (Figs. S1B and S2B) (SI Materials and
Methods, Model Simulations).
Our model also makes the unexpected prediction that en-

velope coding by correlated neural activity requires neural vari-
ability as quantified by either the noise intensity σnoise or the
coefficient of variation of the baseline (i.e., in the absence of
stimulation) activity CV0. Both quantities are strongly correlated
with trial-to-trial variability in the neural response to repeated
presentations of the stimulus (18, 23, 24). We found that the
VAF between correlation coefficient and envelope was maximal
for a nonzero value of CV0 (Fig. 2F) and σnoise (Fig. 2F, Inset).
Intuitively this makes sense because both infinitesimally small
and infinitely large values of CV0 or σnoise give rise to regimes
where the correlation coefficient is always equal to zero and
unity, respectively, and thus independent of the envelope.

Envelope Coding by Correlated Vestibular Afferent Activities. Our
modeling and associated analyses have made the important pre-
diction that envelope coding by correlated activity is optimal for a
nonzero level of neuronal variability. To test this prediction ex-
perimentally, we recorded from afferents in the primate vestibular
system (Fig. 3A; SI Materials and Methods). These afferents are
particularly well suited because they display a much wider range of
variability than that observed for electroreceptor afferents (12,
15), which is due in part to distinct ionic conductances and mor-
phological features at their peripheral terminations (25).
We first investigated whether vestibular afferents display en-

velope coding by correlated activity. The waveform and envelope
of motion stimuli (Fig. 3A; SI Materials and Methods) resembled
vestibular signals encountered in a naturalistic setting (17). We
obtained results that were qualitatively similar to those described
above for the electrosensory system: spiking responses from pairs
of single vestibular afferents were more similar when the en-
velope was high (Fig. 3B, compare Middle and Bottom) and the
correlation coefficient between pairs of vestibular afferents
strongly covaried with the envelope waveform as quantified by a
large VAF (Fig. 3C). Furthermore, as seen in Fig. 3D, neither
linear nor nonlinear transformations applied to the single-
afferent activity gave detailed information about the envelope
signal as quantified by negligible VAFs (Fig. 3E). Moreover, the
cross-correlation function between the single afferent’s spiking
activity and the envelope was not significantly different from
zero (P > 0.3, Kolmogorov–Smirnov test; n = 18) (Fig. 3D, Top,
Inset). Finally, we found that the correlation coefficient most
reliably predicted the envelope for relatively large (>1 s) time
windows (Fig. 3E, Inset). Thus, correlated but not single vestib-
ular afferent activity encodes the envelope in a manner similar to
that observed for electroreceptor afferents and our model.

Envelope Coding by Correlated Activity Is Optimal for a Nonzero Level
of Neural Variability. Next, to test our model’s prediction that
envelope coding by correlated activity is optimally tuned to a
nonzero level of neural variability, we plotted the coding efficiency
as a function of variability quantified from baseline activity (i.e.,
in the absence of stimulation) for pairs of vestibular afferents.
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Fig. 2. An integrate-and-fire type neuron model predicts that correlated-
based coding of envelopes is optimal for a nonzero level of neural vari-
ability. (A) Two leaky integrate-and-fire neurons received a common stim-
ulus S(t) (blue) as well as two independent noise sources ξ1(t), ξ2(t) (gray).
(B) Time-varying stimulus (blue) with zero mean (horizontal black line) and
its envelope (red). (Insets) Spiking responses to a stimulus segment charac-
terized by a high and low envelope. (C, Top) Time-varying envelope (red),
and correlation coefficient (brown) from our pair of model neurons. (Bot-
tom) Correlation coefficient as a function of envelope showing a strong
linear relationship as characterized by a high variance-accounted-for (VAF).
(D, Top) Time-varying envelope (red), and corresponding firing rates of the
single model neurons (Bottom; black). (Inset) Cross-correlation function be-
tween the envelope and our single model neuron’s spiking activity (solid
black) as well as uncorrelated surrogate data (solid gray). The band shows
the 95% confidence interval of the surrogate dataset. (E) VAF values for
correlation coefficient as well as for single neural activity after applying
either no transformation or the same nonlinear transformations as in D.
(Inset) VAF computed from correlated activity of pairs of model neurons and
from single-neuron activity as a function of the time window used to cal-
culate the correlation coefficient. Abbreviations are the same as in Fig. 1.
(F) VAF computed from the correlation coefficient as a function of variability
as quantified by the coefficient of variation from the baseline activity CV0.
Different values of CV0 were obtained by varying the noise intensity σnoise in
our model between 0.1 and 20 μA/cm2. (Inset) VAF as a function of noise
intensity σnoise.
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Confirming our modeling prediction, the largest VAF values were
seen for vestibular afferent pairs with intermediate levels of
variability (Fig. 4A, green circles). Even more strikingly, super-
imposing data obtained from electroreceptor afferent pairs re-
vealed that vestibular and electroreceptor afferent pairs with
similar levels of variability also display similar VAFs (Fig. 4A,
compare black and green circles). This marked overlap between
the datasets from both sensory systems given important differ-
ences (12, 15). Furthermore, we found that our model could

reproduce the experimentally observed relationship between
coding efficiency and neural variability seen in both datasets (Fig.
4A, compare stars with black and green circles). Thus, our results
suggest that the same relationship between the efficiency of en-
velope coding by correlated activity and neural variability is
shared across sensory systems and species.

Decoding Information About Second-Order Stimulus Attributes Carried
by Neural Correlations. The results above demonstrate that corre-
lated neural activity reliably encodes second-order sensory in-
formation. However, information carried by neural activity is only
useful to an organism if it is actually decoded by higher-order
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tional stimuli whose angular velocity consisted of a noisy waveform (20-Hz
cutoff frequency) (blue) whose amplitude (i.e., envelope, red) varied in-
dependently and consisted of low-pass–filtered white noise (0.05-Hz cutoff
frequency). (B) Time-varying stimulus (blue) with zero mean (horizontal
black line) and its envelope (red). (Insets) Spiking responses from an example
vestibular afferent pair to a stimulus segment characterized by a high and
low envelope. Note that, although the total numbers of spikes were similar
(∼21), coincident spikes were more frequent when the envelope was high
(16 vs. 9). (C, Top) Time-varying envelope (red), and correlation coefficient
(brown) from the same pair. (Bottom) Correlation coefficient as a function of
envelope showing a strong linear relationship as characterized by a high
variance-accounted-for (VAF). (D, Top) Time-varying envelope (red), and cor-
responding firing rates of both neurons (black). (Bottom) Single-neural ac-
tivity after applying nonlinear operations as in Fig. 1. (Inset) Cross-correlation
function between the envelope and an example single vestibular afferent’s
spiking activity (solid black) as well as uncorrelated surrogate data (solid
gray). The band shows the 95% confidence interval of the surrogate dataset.
(E) Population-averaged VAF values for correlation coefficient (red; n = 121
pairs), as well as for firing rate and for single-neural activity after applying
nonlinear operations (black and colored bars; n = 18). The asterisk (*) in-
dicates statistical significance at the P = 0.01 level using a Wilcoxon rank sum
test. (Inset) VAF computed from correlated activity of reconstituted pairs of
afferents and from single-neuron activity as a function of the time window
used to calculate the correlation coefficient. Filled circles indicate statistically
significant values from zero at the P = 0.05 level using a t test. Open circles
indicate that the values were not significantly different from zero.
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Fig. 4. Can the brain decode information carried by correlated neural ac-
tivity? (A, Top) VAF obtained from the correlation coefficient as a function
of baseline variability defined as the geometric mean of the coefficient of
variations for pairs of electroreceptor afferents (black circles), vestibular
afferents (green circles), and variability defined as CV0 from our model
(purple stars) when we covaried both noise intensity and bias current (SI
Materials and Methods). We note that there are few data points in the in-
termediate variability range: this is most likely because the probability of
finding vestibular afferents in this range is relatively low (15, 42). (B) Sche-
matic of a physiologically realistic decoder for which the individual afferent
neuron’s activities are first averaged before applying a nonlinear trans-
formation. (C) Performance of the decoder described in B quantified by
VAF as a function of population size for the electrosensory (Top) and the
vestibular (Bottom) dataset. The population-averaged value obtained from
the correlation coefficient from neuron pairs is also shown (dashed red line)
for comparison. (D) Schematic of a decoder based on applying a nonlinear
transformation on each individual neuron’s spiking before averaging.
(E) Performance of the decoder described in D quantified by VAF as a function
of the number of afferents for the electrosensory (Top) and the vestibular
(Bottom) dataset. The population-averaged value obtained from the corre-
lation coefficient obtained from neuron pairs is also shown (dashed red line)
for comparison.
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brain areas. To test whether information about the envelope can
actually be decoded, we considered a neural circuit for which the
output is a nonlinear function of the summed activities of single
neurons (Fig. 4B). Because downstream neurons nonlinearly in-
tegrate input from convergent afferent axons in both the elec-
trosensory and vestibular systems (16, 26), this circuit effectively
functions as a physiologically realistic decoding algorithm. In-
deed, we found that this circuit’s decoding performance improved
with increasing population size using several standard nonlinear
functions (Fig. 4C, Top and Bottom, colored traces). In contrast,
linear summation of the single-neuron activities alone led to poor
performance that did not improve with increasing population size
(Fig. 4C, solid black). Similar results were obtained when linearly
summing the normalized (i.e., subtracting the mean value and
dividing by the maximum value) single-neuron activities (Fig. 4C,
dashed black). Thus, nonlinear integration is necessary to observe
improved decoding performance with increasing population size.
The neural circuit considered above (Fig. 4B) explicitly in-

cludes the contributions of pairwise interactions between neu-
rons (i.e., “cross-terms”) toward decoding information about the
envelope because the nonlinear transformation is applied after
summation (SI Materials and Methods). However, the observed
improvement in performance in this circuit could have been due
to simple averaging the variability over a neural population. To
address this possibility, we considered an alternate neural circuit
in which a nonlinear operation is first performed on each in-
dividual neuron’s spiking activity followed by summing (Fig. 4D).
Unlike the neural circuit considered in Fig. 4B, this circuit does
not take into account joint statistics because the nonlinear
transformation is applied before summation (SI Materials and
Methods). Thus, if the improvement in performance observed in
Fig. 4C was due to simple averaging, then we should observe an
improvement in performance with increasing population size
similar to that seen in Fig. 4C. If, on the other hand, the im-
provement in performance was instead due to taking into ac-
count joint statistics, then we should observe poor performance
that does not improve with increasing population size. We found
that the performance of this latter decoding algorithm was poor
and did not significantly improve with increasing population size
(Fig. 4E), thereby showing that taking into account pairwise joint
statistics between neural spike trains is necessary to recover in-
formation about second-order stimulus attributes.

Discussion
We investigated the responses of both fish electrosensory and
primate vestibular afferents to naturalistic stimuli. In both sys-
tems, we found that pairwise correlated but not single-neuron
activity provided detailed information about the second-order
attributes of the stimulus (i.e., the envelope). Through a com-
bination of modeling and theoretical analyses, we predicted that
this coding is optimal for a nonzero level of neural variability.
We validated this prediction experimentally and found that both
electrosensory and vestibular neurons were described by the
same tuning function relating coding efficiency to neural vari-
ability. Finally, we found that the envelope information con-
tained in correlated neural activity can only be decoded when
joint statistics are taken into account. Taken together, our results
suggest that envelope coding by correlated activity is a general
strategy used across sensory systems and species to transmit in-
formation about behaviorally relevant stimulus attributes.
Correlated neural activities have been observed ubiquitously

in the central nervous system (2), and it is now well accepted that
their structure is dynamically regulated by several factors (27–
31). This has led to the interesting hypothesis that correlated
activity carries information not found in single-neuron activity
(31, 32). Indeed, our results provide an experimental demon-
stration of this phenomenon by showing that correlated but not
single-neuron activity transmits information about a behaviorally

relevant stimulus feature. Traditionally, neural correlations have
been separated into signal (i.e., correlations between the average
neural responses) and noise (i.e., correlations between neural
variabilities) components. Here, we showed that correlation coding
by correlated activity was similar when using either simultaneous or
nonsimultaneous recordings. Our findings thus demonstrate that
signal correlations carry envelope information. Importantly, the
structure of noise correlations can strongly depend on the stimu-
lus’ spatiotemporal frequency content (28, 33). These results suggest
that noise correlations carry information that may not be found
in single-neuron activity, but further studies in other brain areas
are needed to test this interesting hypothesis.
Across sensory systems, natural stimuli tend to display prom-

inent first- and second-order attributes that are critical for per-
ception (5, 7, 34, 35). In the electrosensory system, second-order
attributes carry important information about the relative dis-
tance between conspecifics (11). It is likely that higher brain
areas decode information about second-order attributes carried
by correlated electroreceptor activity because weakly electric fish
display strong and reliable behavioral responses to these attrib-
utes (13). Indeed, pyramidal cells within the electrosensory lat-
eral line lobe strongly respond to envelopes at the single-neuron
level (36) presumably through nonlinear integration of afferent
synaptic input (26). In the vestibular system, neurons within the
vestibular nuclei also nonlinearly integrate convergent vestibular
afferent input (16) and are thus expected to strongly respond to
the envelopes found in natural vestibular stimuli (17). However,
further studies are needed to test these important predictions.
Our results have shown that neural variability is necessary to

observe envelope coding by correlated neural activity. The role
of neural variability in sensory coding has been the focus of much
debate (1). On the one hand, the common wisdom is that vari-
ability is an unavoidable consequence of having neurons inter-
connected and should then be minimized (e.g., by pooling neural
activities) to mitigate detrimental effects on neural coding. The
vestibular system is uniquely well suited to study the role of
variability in coding because afferents display a wide range of
resting discharge variability. Interestingly, hair cells giving rise to
vestibular afferents with high resting discharge variability can
only be found in amniotes. It is, furthermore, thought that their
recent evolution was triggered by changes in vestibular stimulus
statistics resulting from transitioning from an aquatic to a ter-
restrial environment (37), which is incompatible with the above
point of view that variability is detrimental to neural coding.
Alternatively, it has been more recently postulated that neural
variability instead forms a key element of the neural code by
promoting increased information transmission (1). Indeed, the-
oretical studies posit that trial-to-trial variability in the neural
response can effectively increase information transmission (38).
Our results showing that correlated activity can optimally trans-
mit information about the envelope for a nonzero level of var-
iability provide a novel beneficial role for neural variability in
sensory coding.
We note that, when the relationship between the stimulus

waveform input and the firing-rate output is nonlinear, single-
neuron activity can provide detailed information about the en-
velope as previously observed (8, 9, 39). Response nonlinearities
(e.g., rectification, phase-locking) are more likely to be elicited by
stimuli with relatively large intensities (40–42). However, natural
stimuli are usually characterized by relatively low intensities yet
can give rise to robust behavioral responses (13, 17, 43, 44). In
these conditions, our results show that single-neuron activity in-
stead does not provide detailed information about the envelope.
Thus, we propose that the coding of low-amplitude envelopes

by correlated but not single-neuron activity is a general feature
of sensory processing. Our results show that, in this regime,
correlated but not single-neuron activity can provide detailed
information about the envelope that can be recovered by pooling
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neural activities before performing a nonlinear transformation.
We speculate that envelope coding by correlated activity will be
preferentially found in neurons that display relatively high levels
of spontaneous activity because these neurons tend to respond to
low-intensity slowly time-varying stimuli through linearly related
changes in activity around the spontaneous level. Such neurons
can be found throughout the brain including cortex (15, 45–47).
It is thus very likely that, across species, other sensory systems
use similar decoding strategies that take advantage of the fact
that correlated activity carries information about distinct stimu-
lus attributes such as the envelope to ensure accurate perception
and behavioral responses.

Materials and Methods
A detailed description of the methods is provided in SI Materials and
Methods. All procedures were approved by the McGill University’s Animal
Care Committee and were in compliance with the guidelines of the Cana-
dian Council on Animal Care. In brief, recordings from electrosensory and

vestibular afferents were obtained using standard techniques. Spike trains
were recorded in response to stimuli S(t) lasting 120 s and consisting of a 0-
to 20-Hz noise carrier whose amplitude (i.e., envelope) was modulated
independently (0–0.05 Hz). Correlations were quantified using the correla-
tion coefficient. Variability was quantified by computing the coefficient of
variation of the baseline activity (i.e., in the absence of stimulation), CV0,
which is strongly correlated with trial-to-trial variability in the neural re-
sponse to repeated stimulus presentations (18, 23, 24). VAF was used to
assess the ability of a given time-varying signal to predict the envelope.
Unless otherwise indicated, all error bars indicate SEs, and all statistical tests
were Wilcoxon rank sum tests, except where stated otherwise. Our model
consisted of two neurons receiving a common stimulus S(t) with intensity σstim
as well as independent and identically distributed Gaussian white-noise
sources with intensity σnoise. Simulations shown in Fig. 2 were obtained using
σnoise > σstim, and model spike trains were analyzed in the same way as the
experimental data.
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SI Materials and Methods
Animals and Recording.
Electrosensory system.We gathered data from five adult Apteronotus
leptorhynchus. The animals were acquired from local tropical fish
suppliers and were housed in groups (2–10) at controlled water
temperature (26–29 °C) and conductivity (300–800 μS/cm) and
a 12:12-h dark:light cycle according to published guidelines (1).
Before surgery, animals were paralyzed with an intramuscular
injection of tubocurarine chloride hydrate (1 μg/g body weight of a
0.2% solution; Sigma). Surgical methods have been previously
described in detail (2–8). In brief, animals were transferred to an
experimental tank (30 cm × 30 cm × 10 cm) containing water from
the animal’s home tank and respired by a constant flow of oxy-
genated water through their mouth. The animal’s head was then
locally anesthetized with lidocaine ointment (5%; AstraZeneca).
Subsequently, the skull was partly exposed and a small window was
opened over the recording region.
Sharp glass micropipette electrodes (20–50 MΩ) backfilled

with 3 M KCl were used to record simultaneously in vivo from
pairs of P-type electrosensory afferent axons (P-units) in the
deep-fiber layer of the electrosensory lateral line lobe (ELL). In
general, recording from P-units were done as described in pre-
vious studies (9, 10). P-units can be easily identified as their
probability of firing increases with increasing EOD amplitude
(11). The recording electrodes were advanced into the ELL with
a piezoelectric microdrive (Inchworm, IW-711; Kopf) for one
P-unit, and manually with a one-axis oil hydraulic micromanip-
ulator (type MO-10; Narishige) for the second P-unit. The re-
corded potentials were amplified (Duo 773 Electrometer; World
Precision Instruments), digitized at 10-kHz sampling rate each
using CED 1401plus hardware and Spike2 software (Cambridge
Electronic Design), and stored on a computer hard disk for off-
line analysis. The EOD was recorded between the head and tail
of the fish by using two vertical metal wires, amplified (model
1700 amplifier; A-M Systems; bandpass filter between 300 Hz
and 5 kHz) and digitized at 10 kHz using a CED Power1401 with
Spike2 software (Cambridge Electronic Design).
Vestibular system. We also gathered data from two adult male
macaque monkeys (Macaca fascicularis). Monkeys were housed
in pairs and kept on a 12:12-h dark:light cycle. They were pre-
pared for chronic extracellular recording using aseptic surgical
techniques. The surgical preparation was similar to that pre-
viously described (12). Briefly, using aseptic surgical techniques
and under isoflurane anesthesia (0.8–1.5%), a stainless-steel post
was secured to the animal’s skull with stainless-steel screws and
dental acrylic resin, allowing complete immobilization of the
head during the experiments. The implant also held in place a
recording chamber oriented stereotaxically toward the vestibular
nerve where it emerges from the internal auditory meatus. Fi-
nally, an 18- to 19-mm-diameter eye coil (three loops of Teflon-
coated stainless-steel wire) was implanted in the right eye behind
the conjunctiva. After the surgery, buprenorphine (0.01 mg/kg, i.m.)
was administered as postoperative analgesia every 12 h for
2–5 d depending on the animal’s pain level, and Anafen (2 mg/kg,
then 1 mg/kg subsequent days) was used as an antiinflammatory.
In addition, cefazolin (25 mg/kg, i.m.) was injected twice daily for
10 d. Animals were given at least 2 wk to recuperate from the
surgery before any experiments began.
During the experiment, the head-restrained monkey was seated

in a primate chair mounted on top of a vestibular turntable in a
dimly lit room. The vestibular nerve was approached through the
floccular lobe of the cerebellum, as identified by its eye move-

ment-related activity (13–15); entry to the nerve was preceded by
a silence, indicating that the electrode had left the cerebellum.
Extracellular single-unit activity of semicircular canal afferents
was recorded using glass microelectrodes (24–27 MΩ), the depth
of which was controlled using a precision hydraulic microdrive
(Narishige). Rotational head velocity was measured using an
angular velocity sensor (Watson) firmly secured to the animal’s
head post. During experimental sessions, unit activity, horizontal
and vertical eye positions, and head velocity signals were re-
corded on digital audiotape for later playback. During playback,
action potentials from extracellular recordings were discrimi-
nated using a windowing circuit (BAK Electronics). Eye position
and head velocity signals were low-pass filtered at 250 Hz (eight-
pole Bessel filter) and sampled at 1 kHz.
We confirmed that each unit discharged in a manner consistent

with previous characterizations of the afferents that innervate the
horizontal semicircular canals (16, 17). All afferents that were
included in the present study responded to rotational head
movements toward the side of the recording (i.e., ipsilateral
yaw), but not in response to static tilts. In addition, we verified
that responses were not modulated during saccadic or pursuit
eye movements.

Stimulation.
Electrosensory system. The electrosensory stimuli used in this study
consisted of amplitude modulations (AMs) of the animals own
EOD. It is important to note that the EOD waveform itself, a
quasisinusoidal signal, can be considered as a carrier signal and
that the relevant stimulus here is the AM of this carrier signal
(11). Therefore, we will henceforth refer to the AM as the
stimulus S(t). To obtain time-varying AMs of the fish’s own
EOD, the desired signal waveform was first multiplied (MT3
multiplier; Tucker- Davis Technologies) with a white-noise–
modulated sinusoidal carrier wave that was phase-locked to the
animal’s own EOD. The resulting signal was then attenuated
(Leader; LAT-45; Leader Electronics), isolated from ground
(World Precision Instruments; A395 linear stimulus isolator),
and delivered to the experimental tank via a pair of silver–silver
chloride electrodes located ∼20 cm on each side of the animal.
This stimulation configuration is referred to as “global” in pre-
vious studies, because the electric image caused by the stimulus
covers most if not all of the animal’s skin surface (6, 7, 18). The
electrosensory stimuli used in this study resembled mimics of
natural stimuli (19) and were given by the following:

SelectrosensoryðtÞ=Aelectrosensory
�
1+ σelectrosensoryψðtÞ

�
ζðtÞ; [S1]

where ζ(t) and ψ(t) are low-pass–filtered (eighth-order Butter-
worth; 20- and 0.05-Hz cutoff frequencies, respectively) Gaussian
white noise processes with zero mean and SD unity, respectively.
The depth of modulation σelectrosensory was set to 0.9, and the
stimulus duration was 120 s. The stimulus intensity Aelectrosensory
was adjusted such that the electroreceptor afferents did not show
any nonlinear responses like saturation or rectification (20) and
typically was 0.1–0.3 mV/cm. Note that, before electrosensory
stimulation, each afferent’s spontaneous activity (i.e., discharge
in the absence of stimulation) was recorded for a minimum 20 s
so that discharge variability could be quantified.
Vestibular system. The vestibular stimuli used in this study also
resembled mimics of natural stimuli and consisted of rotational
movements with angular velocities spanning a broad range of
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frequencies. These had the same profile as the electrosensory
stimuli and were also given by the following:

SvestibularðtÞ=Avestibular½1+ σvestibularψðtÞ�ζðtÞ; [S2]

where ζ(t) and ψ(t) are low-pass–filtered (eighth-order Butter-
worth; 20- and 0.05-Hz cutoff frequencies, respectively) Gaussian
white noise processes with zero mean and SD unity, respectively.
The depth of modulation σvestibular was set to 0.6, and the stimulus
duration was 120 s. The stimulus intensity Avestibular during record-
ings was adjusted such as to avoid nonlinear responses like satura-
tion or rectification (21) and was typically set to 40 deg/s. Note that,
before vestibular stimulation, each afferent’s spontaneous activity
(i.e., discharge in the absence of head movement) was recorded for
a minimum 20 s so that discharge variability could be quantified.

Data Analysis.All off-line analysis routines were custom written in
Matlab (MathWork). Importantly, both vestibular and electro-
sensory data were analyzed in the same fashion. A sequence R(t)
was constructed from the spike times by setting the value of bin i to
the number of spikes occurring within it. We varied the binwidth
between 0.1 and 100 ms in our model and found that this did not
significantly alter our estimates of the correlation coefficient (data
not shown; see below). We thus used a binwidth of 1 ms for all
presented results. We excluded neurons that were not robustly
driven by the stimulus, which typically occurred because of poor
isolation as determined by standard criteria (e.g., the presence of
an absolute refractory period).
Extracting the stimulus envelope. The envelope can be regarded as
the instantaneous amplitude of the stimulus S(t), or its time-
varying contrast. It can be obtained from the stimulus S(t) by the
following nonlinear transformation:

EðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðtÞ2 + ŜðtÞ2

q
; [S3]

where Ŝ(t) is the Hilbert transform of S(t) given by the following
(22–24):

ŜðtÞ= 1
π
C

2
4 Z+∞

−∞

SðτÞ
t− τ

dτ

3
5; [S4]

where C is the Cauchy principal value.
Computing correlation between the spiking activities of neurons. We
computed the cross-correlation coefficient between the responses
Ri and Rj of neurons i and j, which is defined by the following (25):

ρ=

R +∞
−∞ dτ

�
ΔRiðtÞΔRjðt+ τÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR +∞

−∞ dτhΔRiðtÞΔRiðt+ τÞiR +∞−∞ dτ
�
ΔRjðtÞΔRjðt+ τÞ�q ; [S5]

where <. . .> denotes an average over realizations or over time
and ΔRj(t) = Rj(t) − <Rj(t)>. We note that this definition is
slightly different from the one used in previous studies (26).
These studies instead considered correlations between the spike
counts computed over a given binwidth at zero lag. The relation-
ship between both approaches has been described in detail else-
where (27). In practice, we used a time window of 5 ms ≤ T ≤ 15 s
that was slid along the two binary sequences [Ri(t) and Rj(t)] of
the two neurons in time steps of dT ≤ 1 s. In each time window
Tk, the coherence between the two binary sequences [Ri(t) and
Rj(t)] was computed by the following:

CRiRjðf Þ=
jPRiRjðf Þj2

PRiRiðf ÞPRjRjðf Þ
; [S6]

where PRiRjðf Þ is the cross-spectrum between Ri(t) and Rj(t), and
PRiRiðf Þ and PRjRjðf Þ are the power spectra of Ri(t) and Rj(t),
respectively, and j. . .j denotes the absolute value. Then, the cor-
relation coefficient between the two spike trains was determined
as the square root of the coherence value at frequency zero as
done previously (27). All spectral quantities (i.e., power spectra,
cross-spectra) were estimated using multitaper techniques with
six Slepian functions (28).
Similar results were obtained when instead computing the

correlation coefficient between spike counts using a binwidth of
40 ms as done in other studies (26).
Nonlinear transformations of single-neuron activity. We computed
nonlinear transformations of the single-neuron activity as quanti-
fied by the response R(t). These consisted of half-wave rectifica-
tion, full-wave rectification, taking the Hilbert transform, and
computing the variance of the neural response minus its mean
value. We used the same range of sliding time windows as for
computing the correlation coefficient as described above to allow
for direct comparison. We considered two alternate decoders: the
first linearly sums the activities of a neural population before
applying a nonlinear transformation, whereas the second instead
applies a nonlinear transformation to each individual neuron’s
response before linear summation. It is important to note that
only the former decoder actually takes into account joint statistics.
For example, consider N neurons with responses [Ri]. The first
decoder’s output, assuming that the nonlinear transformation is
taking the variance, is then the following:

VAR

 XN
i=1

Ri

!
=
XN
i=1

XN
j=1

COV
�
Ri;Rj

�

=
XN
i=1

VAR ðRiÞ+ 2
XN
i=2

Xi−1
j=1

COV
�
Ri;Rj

�
;

[S7]

where COV(. . .) is the covariance [note that COV(X,X) = VAR(X)
by definition]. In contrast, the output of the second decoder is
as follows:

XN
i=1

VARðRiÞ: [S8]

Comparing Eqs. S7 and S8 reveals that the only difference be-
tween the outputs of both decoders is that the first one explicitly
takes into account any covariation between the neural activities
(i.e., “cross-terms”), whereas the second one does not.
We also computed the cross-correlation function between the

response R(t) and the envelope E(t). This cross-correlation was
normalized to have a value of 1 when cross-correlating a given
signal with itself. To assess whether the cross-correlation ob-
tained from the spiking activity of a given neuron was signifi-
cantly different from zero, we generated 1,000 surrogate spike
trains with the same statistics as that obtained from the neuron in
question that were, by construction, uncorrelated with the en-
velope signal. These were obtained by obtaining the sequence of
interspike intervals from the spike times, randomly permuting
these, and then generating a sequence of surrogate spike times as
done previously (10). The 95% confidence interval was obtained
from the Gaussian probability distribution of the cross-correla-
tion functions obtained from the surrogate spike trains. We
found that, for all neurons in our dataset, the cross-correlation
function was within the confidence interval. Significance was
assessed using a Kolmogorov–Smirnov test.
Variance-accounted-for.We used the variance-accounted-for (VAF)
to quantify whether there was a significant relationship between
the envelope E(t) and either of the correlation coefficient CC
(VAFCC), the firing rate FR (VAFFR), or nonlinear transformations
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of the single-neuron activity or time-dependent firing rate (VAFNL).
For electrosensory afferents, the VAF was averaged over pairs of
afferents that were simultaneously recorded from as well as over all
possible combinations of paired nonsimultaneous recordings (Fig.
1), and over pairs for which the CVs as well as the baseline firing
rates of both neurons did not differ more than 0.2 (CV), and 143 Hz
(baseline firing rate) from one another (Fig. 4). Because we did
not record simultaneously from pairs of vestibular afferents, we
averaged the VAF over all possible combinations of paired non-
simultaneous recordings in Fig. 3 of the main text. To test the
effects of variability on envelope coding, we averaged the VAF
over pairs for which the CV values of each afferent differed by
less than 0.1 in Fig. 4 of the main text. We note that considering
only these pairs did not give rise to significant differences in the
performance of correlated activity at coding the envelope for
both electrosensory (P = 0.28, rank sum test, df = 161) and
vestibular afferents (P = 0.75, rank sum test, df = 164).
Specifically, the VAF was computed as follows:

VAF = 1−
	
varðyi − ŷiÞ
varðyiÞ



; [S9]

where var is the variance, [yi] is the data, and [̂yi] is the predicted
data. To get the predicted data [̂yi], we did a linear fit of either
the correlated activity jρ(Tk)j of the two neurons to the mean
stimulus envelope [Emean(Tk)] for VAFCC, or of the firing rate
[FR(T)] to the mean stimulus envelope [Emean(Tk)] for VAFFR.
The firing rate was computed using the same sliding window
procedure as for the correlation coefficient. We systematically
varied the sliding time window between 5 ms and 15 s, and
computed the VAF between the correlation coefficient and the
stimulus S(t) as well as that between the firing rate and the
stimulus S(t).
To test whether VAF values obtained for driven activity (i.e.,

neuronal activity in response to the stimulus) were significant, we
compared them to VAF values obtained for resting neuronal
activity (i.e., neuronal activity when no stimulus is present).
Specifically, because VAF values cannot be negative when esti-
mated from the best linear model, a small positive bias was
obtained for resting neuronal activity. This bias was then sub-
tracted from VAF values obtained using driven activity.
Resting discharge variability.We computed spike train variability by
using the coefficient of variation (CV) during baseline activity
(i.e., with no stimulus present) of the neurons as follows:

CV =
stdðISIiÞ

meanðISIiÞ; [S10]

where std is the SD, and ISIi the interspike interval during base-
line activity before the stimulus onset. Because neurons in a
given pair displayed different coefficients of variation, we esti-
mated the variability of each pair as follows:

CV =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CVN1 ×CVN2

p
; [S11]

where CVN1 and CVN2 are the CVs of the baseline activity from
each neuron of a pair.
Resting discharge rate. The resting discharge rate was assessed for
each afferent. We found no significant correlations between
resting discharge rate and CV for both electrosensory (R = −0.25,
P > 0.01, n = 32) or vestibular (R = −0.09, P > 0.01, n = 18)
afferents.
For statistical purposes, the data were collected from more

than one animal for each species (two monkeys and five weakly
electric fish). The neuronal sample sizes were 16 pairs for elec-
trosensory and 44 pairs for vestibular afferents, if not stated
otherwise. Unless otherwise stated, the statistical significance

(P < 0.05) was determined using nonparametric analysis with two-
tailed Wilcoxon test. Before statistical analysis, the normality of
the distributions was evaluated by using a Kolmogorov–Smirnov
test. Data are expressed as mean ± SEM.

Modeling. We built a model consisting of two linear leaky inte-
grate-and-fire neurons (29) receiving a common stimulus and
independent noise sources. We used spiking neuron models
rather than models of the time-dependent firing rate [e.g., lin-
ear–nonlinear cascade models (30)] as our experimental results
show that the spiking activities are more similar when the en-
velope is high than when it is low. Both model neurons were
described by the following equations:

C1
dV1

dt
=−g1V1 + Ibias;1 + SðtÞ+ ξ1ðtÞ

C2
dV2

dt
=−g2V2 + Ibias;2 + SðtÞ+ ξ1ðtÞ

V1ðtÞ≥ θ1 →V1ðt+Þ= 0

V2ðtÞ≥ θ2 →V2ðt+Þ= 0;

[S12]

where V1 and V2 are the membrane voltages of neurons 1 and 2,
respectively. g1 and g2 are the membrane conductances, C1 and
C2 are the membrane conductances. Ibias,1 and Ibias,2 are bias
currents, S(t) is the stimulus, and ξ1(t) and ξ2(t) are Gaussian
white-noise processes with zero mean and SDs σ1 and σ2, re-
spectively, that are uncorrelated with each other and with the
stimulus S(t). When Vj(t) is greater or equal than the threshold θj
(j = 1, 2), Vj is immediately reset to 0 mV, maintained there for
the duration of the absolute refractory period TR,j, and a spike is
said to have occurred at time t. As in the experimental data, the
stimulus S(t) consisted of 0–20 Hz low-pass–filtered (eighth-
order Butterworth) Gaussian white noise with zero mean and SD
σstim that was modulated by a second low-pass–filtered (0.05 Hz
cutoff frequency) white noise with mean 1 and SD 0.9. The model
was simulated using an Euler–Maruyama integration algorithm
(31) with time step dt = 0.025 ms. Parameter values used, unless
otherwise specified, were as follows: g1 = g2 = 0.5 mS/cm2; C1 =C2 =
1 μF/cm2; Ibias,1 = Ibias,2 = 10 μA/cm2; θ1 = θ2 = 11 mV; TR,1 = TR,2 =
2 ms; σ1 = σ2 = σnoise = 2.4 μA/cm2, σstim = 1.5 μA/cm2. The noises
ξ1(t) and ξ2(t) were independent and thus uncorrelated. The spiking
responses from the model neurons were analyzed in the same way as
the experimental data.
For the simulations described in Fig. 4 of the main text, we

covaried the bias currents Ibias,1 = Ibias,2 and the noise intensi-
ties σ1 = σ2 to make the baseline firing rate approximately
independent of resting discharge variability, as was observed
empirically in both electrosensory and vestibular datasets. Spe-
cifically, Ibias,1 = Ibias,2 and σ1 = σ2 = σnoise were set to (in mi-
croamperes per square centimeter) [1 1.24 1.55 1.92 2.39 2.97
3.70 4.60 5.71 7.10 8.83 10.98 13.66 16.98 21.11 26.25 32.64 40.59
50.47 62.75 78.02 97.02 120.64 150] and [1.67 1.61 1.54 1.48 1.41
1.34 1.28 1.21 1.15 1.08 1.02 0.95 0.88 0.82 0.75 0.68 0.62 0.55
0.49 0.42 0.36 0.29 0.22 0.16], respectively.

Model Simulations. We have systematically varied model param-
eters to compute VAF values from the correlation coefficient and
firing rate (VAFCC and VAFFR, respectively). Figs. S1 and S2
show the results from these simulations. We first covaried both
the bias currents Ibias,1 = Ibias,2 = Ibias as well as the noise in-
tensities σ1 = σ2 = σnoise. Fig. S1A shows the values of VAFCC
(Left), VAFFR (Center), as well as the difference between the two
(Right). It was seen that low values of the bias current and noise
intensity gave rise to low and high values of VAFCC and VAFFR,
respectively (“a” in Fig. S1A). To investigate the underly-
ing reasons, we computed the firing-rate probability density as a
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function of the stimulus S(t) for the same parameter ranges (Fig.
S1B, Left). Our results revealed that our model neurons dis-
played large amounts of rectification or cutoff (i.e., the proba-
bility of obtaining a firing rate equal to zero was nonzero for a
large range of stimulus values; Fig. S1B, Left, white arrow),
which resulted in a nonlinear relationship between the stimulus
and the mean firing rate (Fig. S1B, white curve in Left). In
contrast, intermediate values of the bias current and noise in-
tensity gave rise to large values for VAFCC and low values of
VAFFR, respectively (“b” in Fig. S1A). Plotting the firing-rate
density (Fig. S1B, Center) showed no cutoff and the mean firing
rate was a linear function of the stimulus (Fig. S1B, white curve
in Center). Finally, we found that intermediate values of noise
intensity and low values of the bias current gave rise to high
values of VAFCC and VAFFR (“c” in Fig. S1A). Plotting the firing-
rate probability density for these parameter values (Fig. S1B,
Right) revealed a significant amount of cutoff (Fig. S1B, Right,
white arrow), which led to a nonlinear relationship between the
stimulus and the mean firing rate (Fig. S1B, Right, white curve).
We next covaried both the stimulus intensity σstim as well as the

noise intensity σnoise. Fig. S2A shows the values of VAFCC (Left)
and VAFFR (Center), as well as the difference between the two

(Right). We found that high values of the stimulus intensity and
low values of the noise intensity led to high values for both VAFCC
and VAFFR (“a” in Fig. S2A). This was because such parameter
regimes tended to elicit significant rectification as seen by plotting
the firing-rate density (Fig. S2B, Left, white arrow), which led to a
nonlinear relationship between the stimulus and mean firing rate
(Fig. S2B, Left, white curve). In contrast, intermediate values of
stimulus and noise intensity gave rise to high values of VAFCC and
low values of VAFFR (“b” in Fig. S2A); this was again because the
stimulus–firing-rate relationship was approximately linear (Fig.
S2B, Center, white curve). Finally, high values of noise intensity
and low values of stimulus intensity gave rise to low values of
VAFCC and VAFFR (“c” in Fig. S2A). This is because the firing rate
is then approximately independent of the stimulus in such regimes
(Fig. S2B, Right, white curve).
In summary, we were able to find regions of parameter space

for which VAFCC was much larger than VAFFR. In general, these
corresponded to parameter regimes for which the stimulus–firing-
rate relationship was approximately linear with a positive slope,
which tended to occur for large values of the bias current,
intermediate values of the noise intensity, and for small-to-
intermediate values of the stimulus intensity σstim (Figs. S1 and S2).
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Fig. S1. Effects of bias current and noise intensity on envelope coding by correlated and single-neuron activity. (A) VAF values from the correlation coefficient
VAFCC (Left), from the single-neuron activity VAFFR (Center), and the difference between the two (Right) as a function of the bias current and noise intensity.
We focused on parameter regimes for which VAFCC was low but VAFFR was high (a), VAFCC was high but VAFFR was low (b), and for which both VAFCC and
VAFFR were high (c). (B) Firing-rate probability densities (color plots) and mean firing-rate curves (white) as a function of the stimulus for the parameter regimes
a, b, and c. Parameter regimes a and c both gave rise to rectification (pink arrows) and thus a nonlinear stimulus input–firing-rate output relationship. In
contrast, parameter regime b gave rise to an approximately linear stimulus input–firing-rate output relationship.
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Fig. S2. Effects of stimulus and noise intensity on envelope coding by correlated and single-neuron activity. (A) VAF values from the correlation coefficient
VAFCC (Left) and from the single-neuron activity VAFFR (Center), and the difference between the two (Right), as a function of stimulus intensity and noise
intensity. We focused on parameter regimes for which both VAFCC and VAFFR were high (a), VAFCC was high but VAFFR was low (b), and for which both VAFCC
and VAFFR were low (c). (B) Firing-rate probability densities (color plots) and mean firing-rate curves (white) as a function of the stimulus for the parameter
regimes a, b, and c. Parameter regime a gave rise to rectification (pink arrow) and thus a nonlinear stimulus–firing-rate relationship. In contrast, parameter
regime b gave rise to an approximately linear stimulus input–firing-rate output relationship. Finally, the firing rate was approximately independent of the
stimulus for parameter regime c.
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