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Abstract

Neural heterogeneities are seen ubiquitously within the brain and greatly complicate classifi-

cation efforts. Here we tested whether the responses of an anatomically well-characterized

sensory neuron population to natural stimuli could be used for functional classification. To

do so, we recorded from pyramidal cells within the electrosensory lateral line lobe (ELL) of

the weakly electric fish Apteronotus leptorhynchus in response to natural electro-communi-

cation stimuli as these cells can be anatomically classified into six different types. We then

used two independent methodologies to functionally classify responses: one relies of reduc-

ing the dimensionality of a feature space while the other directly compares the responses

themselves. Both methodologies gave rise to qualitatively similar results: while ON and

OFF-type cells could easily be distinguished from one another, ELL pyramidal neuron

responses are actually distributed along a continuum rather than forming distinct clusters

due to heterogeneities. We discuss the implications of our results for neural coding and high-

light some potential advantages.

Introduction

Understanding the neural code remains a central problem in neuroscience and is, in part,

complicated by the fact that neurons, even within the same type, display strong heterogeneities

[1–4]. Such heterogeneities can arise because of anatomical [5–7], molecular [8–11], or

electrophysiological [12] differences. However, mappings between neural classifications made

using each category have proven difficult to obtain [13], which is in part due to differences that

are not taken into account (e.g., morphological, intrinsic firing, or synaptic connections) and

the fact that neurons with vastly different molecular attributes can display similar electrophysi-

ological properties [9, 14, 15]. It has been proposed that classifications based on neuronal func-

tion [16, 17] could help explain neural heterogeneities and provide critical insight into the

neural code [18]. Here we tested whether the responses of electrosensory pyramidal neurons

to natural electrosensory stimuli could be functionally classified based on their responses to

stimuli alone.
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Gymnotiform wave-type weakly electric fish offer an attractive system to investigate func-

tional classifications of neural responses because of well-characterized neural circuits at the

anatomical, molecular, and electrophysiological levels [19–24]. These fish generate a quasi-

sinusoidal electric field around their body through the electric organ discharge (EOD). They

sense amplitude modulations of this field through an array of electroreceptors scattered on

their skin surface that make synaptic contact onto pyramidal cells within the electrosensory

lateral line lobe (ELL) [25]. Pyramidal cells display strong heterogeneities and their anatomical,

morphological, molecular, and electrophysiological attributes have been well characterized

[19, 24]. Pyramidal cells can be anatomically classified into two categories based on the pres-

ence or absence of basilar dendrites. This anatomical classification can be directly mapped into

a functional classification, as basilar pyramidal cells respond to increases in EOD amplitude

(i.e., are On-type) whereas non-basilar pyramidal cells instead respond to decreases in EOD

amplitude (i.e., are Off-type) [26–28]. Studies have furthermore shown that the ELL is orga-

nized into columns each consisting of six pyramidal cell anatomical classes (basilar and non-

basilar deep, intermediate, and superficial), with each column receiving identical electrorecep-

tor input [19]. Superficial pyramidal cell somata can be found most superficially within the

pyramidal cell layer. These cells exhibit the largest apical dendritic trees, receive large amounts

of feedback, and respond most selectively to electrosensory stimuli. In contrast, deep pyrami-

dal cell somata are found deep within the pyramidal cell layer. These cells instead possess the

smallest apical dendritic trees, receive the least amount of feedback, and display responses to

electrosensory stimuli that are reminiscent of those of electroreceptors [19, 22, 24]. As the

name implies, intermediate pyramidal cells have attributes that lie in between the deep and

superficial extremes. There exists a mapping between morphological and electrophysiological

properties. Indeed, previous studies have found a strong negative correlation (-0.8) between

apical dendritic length and the baseline (i.e., in the absence of stimulation but in the presence

of the animal’s unmodulated EOD) firing rate (S1 Fig) [29, 30]. All six pyramidal cell anatomi-

cal classes project to higher brain structures [28, 29].

When two conspecifics come into close proximity (<1 m), interference between their

EODs gives rise to a beat that consists, in part, of a sinusoidal amplitude modulation. Subse-

quently, fish can then emit communication calls that consist of transient (<100 ms) increases

in EOD frequency [31]. Such “chirps” always occur on top of the beat and give rise to appro-

priate behavioral responses [32, 33]. ELL pyramidal cell responses to chirps have been well

documented [21, 32, 34–36]. Here we tested whether these responses could be used to func-

tionally classify ELL pyramidal cells.

Methods

Animal husbandry

Adult specimens of either sex of the weakly electric fish Apteronotus leptorhynchus were

obtained from local tropical fish suppliers and acclimated to housing tanks for a period of 2

weeks prior to experimentation according to published guidelines [37]. Fish were housed in

60-gallon tanks with ample number of shelters for up to 10 individuals, were fed once daily a

diet comprising of brine shrimp, bloodworms, or daphnia, and were housed under conditions

of near constant darkness. Tank water was made up by adding stock solution containing 20 g/

L MgSO4.7H2O, 8 g/L KCl, 2.2 g NaSO4, and 126 g/L CaSO4.2H2O to distilled water to

achieve a final conductivity of ~ 800 μS/cm. All chemicals were obtained from Sigma-Aldrich.

pH was maintained between 7.1 and 7.3 while the temperature was held between 27 and 30˚C.

All animal procedures were approved by McGill University’s animal care committee.
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Surgery

Surgeries were performed on animals within the experimental tank which was first filled with

water familiar to the animal and heated to ~27˚C as done previously [4, 38–43]. Upon trans-

feral from their housing tank to the experimental tank animals were paralyzed through an

intramuscular injection of tubocurarine chloride hydrate (150 μL at a concentration of 2.5

mM). Fish were then respirated with aerated tank water flowing across the animals’ gills at a

constant rate of 10mL/min. The skin covering the skull surface to be exposed and the immedi-

ately surrounding area was anesthetized with a topical application of 2% lidocaine. Using a

scalpel, skin was subsequently removed from the skull above the hindbrain contralateral to the

side of the fish to be stimulated during recordings. The animal was then glued to a metal post

via a portion of exposed skull anterior to the recording site in order to stabilize its position in

space. Using a surgical drill a small window ~5mm2 was made over the hindbrain.

Stimulation

The electric organ (EO) of A. leptorhynchus is neurogenic. As such, the animal’s electric field

is unaffected by curare-like drugs. Amplitude modulations of the animals own EOD were

obtained in the following way. A function generator was triggered to output one cycle of a

sinewave on each EOD cycle. The frequency of the sinewave was set slightly (~20–30 Hz)

higher than the EOD frequency, thereby generating a quasi-sinusoidal waveform that is phase-

locked to the animal’s own EOD. This waveform signal was then multiplied (MT3 multiplier,

Tucker Davis Technologies) by an amplitude modulation waveform (i.e. the stimulus). The

resulting signal was then isolated from ground (A395 linear stimulus isolator, World Precision

Instruments) before being applied to the experimental tank via two chloridized silver wire elec-

trodes (~ 30cm separation) located on either side of the animal. The contrast was ~20%. The

naturalistic stimuli employed in the current study consisted of amplitude modulations result-

ing from four agonistic communication signals with duration 14 ms and consisting of a 60 Hz

increase in frequency that occurred at different phases of a sinusoidal background signal with

frequency 5 Hz. Two On-type chirps occurring at beat phases π and 3π/2 as well as 2 Off-type

chirps occurring at 0 and π/2 were utilized in this study. Each stimulus was ~23 sec in duration

and was composed of the 5 Hz beat with the first chirp trial occurring at 0.9 sec and each of the

subsequent 19 trials occurring every 1.1 sec afterward.

Recordings

Extracellular recordings (n = 90) were made from pyramidal cells within the ELL lateral seg-

ment (LS) using metal-filled micropipettes [44]. Recordings were targeted exclusively to the LS

because pyramidal cells within this segment display the strongest response to chirp stimuli

[35]. Recordings were amplified using an A-M systems 1700 amplifier before being digitized,

by a Power1401 operating Spike2 software (Cambridge Electronic Design, Cambridge, UK), at

a sampling rate of 10 kHz.

Preprocessing

Action potential times were defined using a spike sorting application available in the Spike2

software package. Spike waveform templates were created using an appropriate threshold.

Separate templates judged to belong to the same neuron were merged and templates indicative

of noise were discarded though in the majority of cases this was not necessary as a single tem-

plate was often constructed by the software (i.e. the variance in spike waveform was minimal

whereas the signal to noise ratio was maximal) (Fig 1C). For each of the 4 chirp stimuli,
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Fig 1. Establishing a functional classification using naturalistic communication stimuli. A: There are two types of pyramidal neurons, On-

(blue) and Off- (red) type, which can be distinguished anatomically by the presence and absence of basilar dendrites, respectively (top). On- and

Off-type pyramidal cells can furthermore be subdivided into six classes: On and Off-type superficial (S) intermediate (I) and deep (D) types which

each exhibits different sized apical dendritic trees. There is a strong negative correlation between the size of the apical dendritic tree and the

baseline (i.e., in the absence of stimulation) firing rate (S1 Fig). The baseline firing rate is indicated by colour saturation as per the colour bar above

the circuit diagram. At the circuit level (bottom) within the pyramidal cell layer (orange boarder) all neurons receive input from sensory afferents

encoding the animal’s self-generated electric field. On-type cells receive direct inputs from these afferents whereas Off-type cells receive indirect

input via local inhibitory interneurons. All neuron classes project to the midbrain torus Semicircularis (not pictured here) while only deep neurons
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handled separately, stimulation and response channels were segmented into 20 equally sized

sections slightly off center of each chirp event, -0.4 seconds to 0.5 seconds from chirp onset

(Fig 1B). Each of these 20 segments was further segmented in the following manner: “beat

cycle 1” (0–0.2 sec) “beat cycle 2” (0.2–0.4 sec) occurring pre chirp onset and “Chirp window”

(0.4–0.5), “beat cycle 3” (0.5–0.7 sec) and “beat cycle 4” (0.7–0.9 sec) occurring post chirp

onset. Beat cycles (1–4) were then time coded such that each beat cycle would commence at 0

mV and initially be positive going in sign. Additional segmentations include a general “chirp

centered” segment (0.3–0.5 sec) and more specific segmentations catered to the 4 stimuli sepa-

rately with the goal of concatenating these segments across stimuli. Specifically catered seg-

mentations included; (chirp 0) “0 phase” commencing at onset and ending at the second

instance of phase π/2, (chirp π/2) “90 phase” commencing at onset and ending at the second

instance of phase π, (chirp π) “180 phase” commencing at onset and ending at the second

instance of phase 3π/2 and lastly (chirp 3π/2) “270 phase” commencing at onset and ending at

the second instance of phase 2π. These segments were concatenated in order of increasing

phase value to generate an abbreviated representation of responses to all chirps used in the cur-

rent study that we will refer to as “All chirp phases”. Some of these initial segments were fur-

ther combined at later stages of processing for various purposes of analysis. Peristimulus time

histograms (PSTHs) of stimulus segments were generated by building a histogram from spike

times, dividing the histogram values by its bin size (0.1 ms) to impose a time domain, multiply-

ing this result by the number of trials under consideration and then smoothing with a 6 ms

long box car filter. Smoothing artefacts due to filtering onset and offset were eliminated by

triplicating the histogram and taking the central portion as the final PSTH.

Pyramidal cell classification

On-type neurons possess basal dendrites that receive direct input from sensory afferents and

respond to increases in EOD amplitude, whereas Off-type neurons lack basal dendrites and

instead receive sensory afferent input indirectly through an inhibitory disynaptic relay and

thus respond instead with increased firing rates during EOD amplitude decrease [26, 27]. In

order to classify recordings into On- and Off-type we considered the phase of response to the

5 Hz beat component of our 4 small chirp stimuli. For this purpose we looked at the two beat

cycles preceding chirp events (beat cycle 1 and 2 as defined above). We combined these two

beat cycles from all 4 stimuli to evaluate responses based on a total of 32 seconds of a 5 Hz

beat or a total of 160 trials. Phase preference was taken to be the phase of a synchrony vector

known as vector strength, a measure commonly used to quantify the degree of phase locking

project to praeminentialis dorsalis (Pd) which provides different degrees of inhibitory feedback to superficial and intermediate pyramidal neurons

via the eminentia granularis pars posterior (EGP). B: The four chirp stimuli featured in this study are shown in dark grey. A 25 ms response window

following chirp onset is also indicated by a light grey window for two On-type chirps (3π/2,π) and the two Off-type chirps (π/2, 0). The 5 Hz beat

stimulus is shown in black. C: A stimulus waveform is played to an awake and behaving animal while recordings are obtained from pyramidal cells

within the lateral segment (LS) of the ELL. Example recordings from one On-type and one Off-type neuron are shown in response to a 5 Hz beat.

Spike waveforms identified using spike sorting software are indicated for each cell (blue and red). The spike times were used to generate raster

plots and peristimulus time histograms (as seen below the experimental setup). Example cells have peak stimulus driven firing rates of 136 Hz

(On-type) and 123 Hz (Off-type) and their responses to the beat are in anti-phase. The color gradient in the color bar (bottom) is indicative of the

response magnitude of recorded units (i.e. On- or Off-type). The transition from blue to red reflects an increase in response magnitude as the

logarithm in base 10 of the stimulus driven peak-firing rate. D: A priori it is unclear whether ELL pyramidal cells can be functionally classified based

on their responses to natural communication signals alone. There are two hypotheses: 1. Responses form distinct clusters This is schematized by

a heatmap of response magnitude showing distinct response profiles. Directly beneath a hierarchical agglomerative clustering algorithm applied to

a pairwise distance matrix representing the above heatmap results in a dendrogram (green) which is clearly divisible into distinct groups (dashed

red line). 2. Responses do not form distinct clusters and instead form a continuum. The response heat map as in 1 thus gives rise to one clear

transition between On- and Off-type cells. In this case a hierarchical agglomerative clustering algorithm applied to a pairwise distance matrix

representing the above heatmap results in a dendrogram (green) that is only divisible into two groups (dashed red line), each of which constitutes

a continuum.

https://doi.org/10.1371/journal.pone.0175322.g001
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exhibited by neurons when driven by a periodic stimulus [45]. This phase value was used to

classify neurons as On-type (0< phase� π) or Off-type (π< phase�2 π).

VS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1
cos yi

� �2

þ
1

n

Xn

i¼1

sin yi

 !2

v
u
u
u
t

Phase ¼
arctan

Pn
i¼1

sin yiPn
i¼1

cos yi

� �

if
1

n

Xn

i¼1

sin yi � 0

2pþ arctan
Pn

i¼1
sin yiPn

i¼1
cos yi

� �

otherwise

8
>>><

>>>:

We assessed response significance by computing a Z-statistic associated with vector

strength [45] defined as n VS2, where n is the number of action potentials in the recording.

Only neurons with a Z-statistic >4 were used for subsequent analyses as we could not other-

wise confidently assign all neurons their On- or Off-type labels. Under these criteria we were

able to confidently ascribe a phase preference to 82% of our recordings.

On- and Off-type neurons were then further subdivided into superficial, intermediate and

deep cell types based on their baseline (i.e. in the absence of stimulation) firing rates. This is

because there is a strong negative correlation between baseline firing rate and dendritic mor-

phology (S1 Fig) [29, 30]. Cells whose baseline firing rates were less than 15 Hz were labeled

superficial, cells whose baseline firing rates were greater than 15 Hz and less than 30 Hz were

labeled intermediate, and cells whose baseline firing rates were greater than 30 Hz were labeled

deep. Such a classification scheme has been used previously in the literature in order to reveal

important functional differences between the different anatomical classes [34, 35, 39, 46–50].

For a subset of cells, the depth of the recording electrode was recorded and plotted against

each cell’s baseline firing rate (S2 Fig). There was no significant correlation between both

quantities (r = -0.05, p = 0.8, n = 33). This is most likely due to the fact that the depth at which

recordings are obtained will strongly depend on the recording electrode’s orientation relative

to the animal’s dorso-ventral axis as well as it’s rostro-caudal and medio-lateral position [51]

and that it is possible to record extracellularly from both soma and dendritic trees of ELL pyra-

midal cells [52]. Thus, although there is a clear negative correlation between the baseline firing

rate and the location of the soma within the pyramidal cell layer [28], our results suggest that it

is unlikely that the recording depth will provide additional useful evidence for anatomical cell

class assignment.

Finally, it is important to note that our recordings were stationary. Indeed, baseline firing

rate estimates obtained at several intervals throughout the recording in between stimulation

were not different from one another for each cell (t-test, p>0.1, n = 90).

Isolating responses to natural communication signals

To distinguish responses to chirps from responses to the underlying beat alone, we aligned the

PSTH response of beat cycles 1 and 2 with the PSTH of our chirp centered stimuli (see pre-

processing section) such that the pre-chip beat and the post-chirp beat of the chirp centered

section will align with 2 separate copies of beat cycles 1 and 2 enabling a subtraction of the beat

response from the response to the beat and the chirp. The maximum non-zero value that

remains in a 25 ms time window following chirp onset is then taken as the response to the

chirp. To compare anatomical classes we simply computed the average response values of indi-

vidual cells within a given grouping.

Continuous responses to natural stimuli
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Multidimensional scaling

Multidimensional Scaling was used here simply for visualization purposes and achieved using

the MATLAB function “cmdscale” (MathWorks, Natick, MA)

Common factor analysis

Common Factor Analysis (CFA) was used in the present study to reduce dimensionality before

applying standard agglomerative hierarchical clustering routines [53]. CFA differs from Prin-

cipal Component Analysis (PCA), which is strictly a data transformation technique where the

reduced dimensions are a linear sum of the observed variables and are arrived at through a

decomposition of the total variance [54]. CFA is in fact a statistical model where the observed

variables are instead a linear sum hidden factors that are obtained through a decomposition of

the common variance shared among variables [55]. Furthermore, in CFA, these factors may be

permitted to be either orthogonal or oblique relative to one another (i.e. non-correlated or cor-

related) [56], unlike the principal components from PCA. CFA thus provides a more accurate

reflection of the true relations among variables and thus observations within the factor model.

Response features were first chosen in an attempt to fully capture the wide range of varia-

tion in response properties observed in the raw dataset. Table 1 lists a set of 18 response feature

types that capture the variability in responses observed in recordings, identifies what stimulus

segment (beat cycle or chirp window) the response feature is related to and what data type the

feature is representative of (i.e, PSTH, cycle histogram or spike times). Seventeen of the fea-

tures types used to generate our high dimensional representation space were repeated across

all four stimuli whereas only one of the feature types was a composite measure that already

took into account responses to all 4 stimuli. This totalled 69 features.

The “On Off index” was computed by building a PSTH from all four Beat Cycles. Phase of

the peak firing rate (θpfr) was used to center a window “A” ± π/2 with the remainder of the

PSTH making up a second window “B”. If 0< θpfr� π window “A” was defined as the “On”

and window “B” defined as the “Off” window, if this was not the case then the opposite assign-

ment applied.

ON OFF index ¼
On � Off
OnþOff

Phase from Vector strength was computed using beat cycles both prior to and following

chirp onset. A number of measures were computed by combining the spike times from all four

of these beat cycles, a total of 80 trials: mean and standard deviation were computed for first

and last spike latency as well as for a per trial spike count. Response spikes were defined in two

separate ways. Either a phase index corresponding to peak firing rate of the PSTH or a phase

index obtained from vector strength was used to identify synchronous cross trial spiking

events. The mean and standard deviation of these events where then computed. The last fea-

tures considered of the beat response were the mean and standard deviation of all four beat

cycle PSTHs (i.e. four PSTH being computed separately). Finally mean and standard deviation

was computed for both first spike latency and the timing of response spikes within the chirp

window commencing at chirp onset. In this case the response spike was relative to the peak fir-

ing rate of the PSTH. This tallied to a potential 69 features or dimensions to be reduced by our

factor model. However, our criteria for inclusion in an effort to arrive at factor models that

could successfully estimate the original correlation matrix was that features have a normal dis-

tribution and that no 2 variables possess glaring collinearities. The 48 features found to be nor-

mally distributed were thus further scrutinized as a group for collinearities. Collinearities were

found between the “mean per trial spike count” taken from the four beat cycles (feature type 7)
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and the “mean PSTH values” also relating to the four beat cycles (feature type 13). The collin-

earities between these feature types were present for each of the four chirp stimuli so feature

type 13 was not considered for inclusion in the factor model. Thus, an 8-factor model based on

the remaining 44 features that permitted covariance among factors was generated. We found

Table 1. Identifying response features suitable for building a factor model. 18 measures were chosen to capture the variation observed across the

entire population of ELL pyramidal cell neurons in response to a communication signal (i.e. “small chirp”) occurring at different phases (0 90 180 and 270

degrees) of a continuous beat cycle. Measures are described and their origin within the complete stimulus waveform are indicated. Beat cycles (1–2) precede

chirp onset while beat cycles (2–4) proceed the 100ms chirp window following chirp onset. The “data type” refers to the distinct stages of preprocessing from

which the 18 measures originate (spike times, cycle histogram or PSTH). The total number of measures considered “Number per neuron”, and of those, the

ones that are normally distributed are tallied. The identities of the stimuli (i.e. chirp phase or beat) from which the normally distributed measures belong are

indicated. Collinear relationships among this subset of measures are identified. From the collinear pairs of measures identified one was randomly chosen for

removal to yield the final features used in CFA classification which are similarly tallied.

’Measure #’ ’Feature

Descriptor’

’Stimulus

Segment’

’Data type’ ’Numberper

Neuron’

’Normally

Distributed’

’Stimulus

Id’

’Collinearities’ ’Final

Features’

1 ’ON OFF Index’ ’Beat Cycle

1–4’

’Single PSTH’ 1 1 ’Across All

Stimuli’

0 1

2 ’Phase from Vector

Strength’

’Beat Cycle

1–4’

’Cyclohistogram’ 4 0 ’none’ 0 0

3 ’Mean 1st Spike

Latency’

’Beat Cycle

1–4’

’Spike Time’ 4 4 ’0 90 180

270’

0 4

4 ’Std 1st Spike

Latency’

’Beat Cycle

1–4’

’Spike Time’ 4 4 ’0 90 180

270’

0 4

5 ’Mean last Spike

Latency’

’Beat Cycle

1–4’

’Spike Time’ 4 4 ’0 90 180

270’

0 4

6 ’Std last Spike

Latency’

’Beat Cycle

1–4’

’Spike Time’ 4 4 ’0 90 180

270’

0 4

7 ’Mean Spike Per

Trial Count’

’Beat Cycle

1–4’

’Spike Time’ 4 4 ’0 90 180

270’

13 4

8 ’STD Spike Per Trial

Count’

’Beat Cycle

1–4’

’Spike Time’ 4 2 ’0 90’ 0 2

9 ’Mean Response

Spike Time PSTH’

’Beat Cycle

1–4’

’Spike Time’ 4 4 ’0 90 180

270’

0 4

10 ’Std Response

Spike Time PSTH’

’Beat Cycle

1–4’

’Spike Time’ 4 4 ’0 90 180

270’

0 4

11 ’Mean Response

Spike Time Vector

Strength’

’Beat Cycle

1–4’

’Spike Time’ 4 0 ’none’ 0 0

12 ’Std Response

Spike Time Vector

Strength’

’Beat Cycle

1–4’

’Spike Time’ 4 0 ’none’ 0 0

13 ’Mean PSTH value’ ’Beat Cycle

1–4’

’Separate

PSTHs’

4 4 ’0 90 180

270’

7 0

14 ’Std PSTH value’ ’Beat Cycle

1–4’

’Separate

PSTHs’

4 1 ’0’ 0 1

15 ’Mean Response

Spike Time’

’Chirp

window’

’Spike Time’ 4 3 ’0 90 270’ 0 3

16 ’Std Response

Spike Time’

’Chirp

window’

’Spike Time’ 4 1 ’0’ 0 1

17 ’Mean 1st Spike

Latency’

’Chirp

window’

’Spike Time’ 4 4 ’0 90 180

270’

0 4

18 ’Std 1st Spike

Latency’

’Chirp

window’

’Spike Time’ 4 4 ’0 90 180

270’

0 4

Number Of

Response

Features

69 48 44

https://doi.org/10.1371/journal.pone.0175322.t001
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that the model was able to successfully estimate the reduced correlation matrix of the original

variables (i.e. common variance) (χ2 = 1266, d.f. = 622, p = 3.47x10-46). Data was subsequently

projected into the 8 dimensional coordinate space of the factor model where relative proximity

between observations then reflects their similarity/difference. While the 8-factor model could

already account for 78% of the total variance among the 44 variables, a 9-factor model added

just 1% to the amount of total variance accounted for.

A one-sample Kolmogorov-Smirnov test (MathWorks, Natick, MA) was used as a test for

standard normal distribution at a 5% significance level. Collinearities were identified by con-

sidering all pairwise comparisons between features and removing one variable from any pair

whose distribution from unity was less than 0.02 standard deviations. After assessing features

for inclusion an 8 Factor model was constructed (MathWorks, Natick, MA) utilizing the obli-

que “promax” rotation parameter.

Dynamic time warping

The dynamic programming algorithm known as dynamic time warping (DTW) offers a very

different approach from CFA in generating a representational space upon which to apply

standard agglomerative hierarchical clustering routines. Widely known of in the speech recog-

nition community DTW has additionally been applied to problems such as signature verifica-

tion [57, 58]. This is possible since handwriting images can themselves be transformed into a

time series. Due to its applicability to the more general problem of time series classification,

the ability to represent neural responses here as time series (i.e. PSTHs), that there are fewer

number of free parameters, no statistical assumptions to consider and more importantly the

opportunity confirm results by applying two distinct algorithms, we here applied DTW to our

data set. Unlike CFA which is a linear model where Euclidian among other distance measures

are used as a proxy of similarity/dissimilarity between observations, DTW is a non-linear

warping path across the time domain and a direct comparison between observations [59]. The

distance between two observations within a factor model, or comparably the component space

in PCA, is dependent on the composition of the population under consideration. An attractive

feature of DTW is that warping distances between two observations are independent of all

other observations but more importantly that non-linear relations among observations are

preserved. The only restriction for DTW is that time series being compared be of equal length

and the only one free parameter to consider is the degree of time warping permitted [60]. We

used a script available through the MathWorks file exchange (mathworks.com/matlabcentral/

fileexchange/43156-dynamic-time-warping—dtw-) which implements dynamic programing

routines to compute the minimum warping path between two time series of equal length.

We used a 25 ms warping window that corresponds to the integration time of ELL pyramidal

neurons [47]. This window permitted the comparison of each index of one PSTH with those

occurring at and up to 25 ms ahead in time of a second PSTH. It is important to note that

this relationship is symmetrical so the direction of this comparison is irrelevant here. The

cumulative distance computed as time series are compared culminates with the last computed

value as the total length of the shortest warping path (a.k.a. the warping distance) between the

two time series. PSTHs were generated from the “All chirp phases” summary/concatenation of

responses to chirps. Sampling rate was decreased by 5-fold to reduce the computational time.

Agglomerative hierarchical clustering

We applied an agglomerative hierarchical clustering algorithm to our data by first computing

all pairwise comparison distance matrices from either the Euclidian distance within an 8

dimensional factor space or from the warping distance between PSTHs. Each of these matrices
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was then hierarchically linked based on the shortest distance between all observations con-

tained within any two clusters. This was done using a single linkage agglomerative clustering

algorithm (MathWorks, Natick, MA). For the purposes of visualizing dendrograms, structures

were organized using the optimal leaf order function (MathWorks, Natick, MA). This function

preserves the monotonic structure of the tree and finds the leaf arrangement that has the maxi-

mal amount of similarity among adjacent leaves. As such potential clusters are arranged adja-

cent to one another.

Surrogate data

To test whether our data analysis techniques can actually detect the presence of clusters should

they be present in our experimental data, we generated a surrogate dataset in the following

way. First, the concatenated PSTH responses of six representative example cells from each type

were chosen (i.e., one superficial, one intermediate, and one deep On-type, as well as one

superficial, one intermediate, and one deep Off-type). Second, we reproduced the variability

seen in our experimental data by computing the time varying standard deviation around the

population-averaged PSTH response to all four chirps for each cell type. Independent and

identically distributed low-pass filtered (Butterworth filter, 50 Hz cutoff) white noise processes

with zero mean and the same time varying standard deviation were generated and each process

was added to the template PSTH for each cell type with negative values of the firing rate set to

zero. The 50 Hz cutoff frequency was chosen to mimic filtering by synapses [61]. The number

of “cells” for each type was equal to that in our experimental dataset (i.e., we generated 18

superficial, 15 intermediate and 4 deep On-type surrogate responses, as well as 17 superficial,

14 intermediate, and 6 deep Off-type responses). This surrogate dataset thus consists of six

response profiles to which variability mimicking that seen in the experimental data was added.

Importantly, the surrogate dataset assumes that all heterogeneities in the response profiles

within each cell type are due to addition of white noise. The surrogate dataset was analyzed

using DTW followed by hierarchical clustering in the same way as our experimental data.

Network projections

The first step to generating a network projection was to construct the network. For single link

projections, adjacency matrices were constructed using a custom built code that operates on

the output argument of the linkage function in MATLAB and determines which observations

were linked at each node of the dendrogram. The n/2-NN network projection was constructed

by connecting each observation with half of the data set for which that observation was closest

based on Euclidian (CFA) or warping (DTW) distances. The values of adjacency matrices

corresponded to the distance between observations (i.e. Euclidian or warping distance). All

network projections were based on undirected graphs, created using the graph function

(MathWorks, Natick, MA), and implemented the ‘force’ layout method, which applies attrac-

tive forces between adjacent nodes of the network and repulsive forces between distant nodes

to achieve a particular projection in two dimensional space.

Results

Assessing responses of ELL pyramidal neuron within the lateral

segment to natural communication stimuli

The aim of this study was to determine whether ELL pyramidal neurons could be functionally

classified based solely on their responses to natural electro-communication stimuli and, if so,

whether there was any correspondence between this functional classification and established

Continuous responses to natural stimuli
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anatomical classifications (Fig 1A and 1B). To do so, we recorded from ELL pyramidal cells in

awake and behaving animals in response to natural stimuli (Fig 1C). One possibility (hypothe-

sis A) is that pyramidal cell responses will form discrete clusters and can thus be functionally

classified (Fig 1D, top). If this is the case, then there could be a correspondence between func-

tionally and anatomically defined pyramidal cell classes. Alternatively (hypothesis B), pyrami-

dal cell responses could instead form a continuum (Fig 1D, bottom). Should this be the case, it

is possible that the responses of the different anatomical classes will occupy distinct regions

within the continuum, which would indicate that there exists a relationship between anatomy

and function. Alternatively, these could instead be scattered randomly throughout the contin-

uum, indicating that there is no such relationship.

We could easily distinguish between On- and Off-type neurons. Indeed, while On-type

cells responded preferentially near the maximum (i.e., phase π/2) of the beat (Fig 2A), Off-type

cells instead responded preferentially near the minimum (i.e., phase 3π/2) of the beat (Fig 2B).

Plotting the distribution of the preferred phase across our dataset revealed a bimodal distribu-

tion (Hartigan’s dip test, Dip = 0.105, p = 0.001) with two well-separated modes (Fig 2C).

On-type cells were assigned as belonging to the left mode (blue). This mode was centered at

1.08 radians had a kurtosis value near normality (k = 2.78) but was fairly positively skewed

(s = 0.39). Off-type cells were assigned as belonging to the right mode (red). This mode was

centered at 4.60 radians however had a lower value of kurtosis (k = 1.91) but was less skewed

from normality (0.09). We also found a significant positive correlation between phase locking

as measured by the vector strength and the baseline firing rate for On-type cells (PCC = 0.445,

R2 = 0.1985, p = 0.0057, Fig 2D). In contrast, for Off-type cells, there was no significant corre-

lation between vector strength and baseline firing rate (PCC = 0.124, R2 = 0.01534, p = 0.47,

Fig 2D). We further found no significant correlation between the preferred phase and the

baseline firing rate for either On- (PCC = -0.179, R2 = 0.03199, p = 0.29, Fig 2E) or Off-

(PCC = 0.0467, R2 = 0.002178, p = 0.78, Fig 2E) type pyramidal cells. Overall, these results

agree with previous ones [30, 41].

Unsupervised classification of neural responses to naturalistic

communication signals

We next applied 2 separate unsupervised classification algorithms to our dataset to test

whether the responses of ELL pyramidal cells to chirp stimuli formed distinct clusters (i.e.,

Hypothesis A) or whether they form a continuum (i.e., Hypothesis B). These algorithms aim

to uncover class structure by grouping similar objects together while keeping dissimilar objects

separate (see Methods).

The first algorithm quantified responses of each cell in our dataset by computing a large

number of features (44, see Table 1) representing various aspects of the observed responses.

The dimensionality of this set was then reduced by using a Common factor analysis (CFA)

model (see Methods). It is important to note that CFA, like all dimensionality reduction

algorithms, can only account for a portion of the variance displayed by the original dataset.

In this case, we found that an 8-factor solution accounted for 78% of the variance. We then

applied a single linkage agglomerative hierarchical clustering algorithm to the pairwise dis-

tance matrix constructed using the Euclidian distances between observations in the factor

space (see Methods and Fig 3, left column).

In order to test that our results were not an artefact of choosing a large but finite feature

space and of the limitations of the CFA dimensionality reduction algorithm, we also used a

second unsupervised classification algorithm to functionally classify ELL pyramidal cells. Spe-

cifically, we used a dynamic time warping (DTW) algorithm, which is an elastic similarity
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method that allows for a non-linear comparison between a pair of time series (see Methods

and Fig 3, right column). It is important to note that, as this methodology was applied on the

PSTH responses of ELL pyramidal cells to natural communication stimuli themselves, DTW

does not rely on dimensionality reduction of a finite feature space. A single-linkage agglomera-

tive clustering algorithm was then applied to the pairwise distance matrix computed using

DTW. The different steps used in both unsupervised classification algorithms are summarized

in Fig 3.

Fig 2. Responses of LS pyramidal cells to the beat. A: Peri-stimulus histograms (left) and cycle histograms (right) from six example On-type

cells labeled according to phase of response to a 5Hz beat and baseline activity. Cells with higher baseline firing rates respond strongly to beats

while those with lower baseline firing rates respond more weakly. Black arrows in the cycle histograms indicate the preferred phase and the length

of the arrow gives the vector strength. Bin volume is indicated by values located at π/4 radians of each cycle histogram. Peak response magnitude

values of example neurons are indicated by upward and downward pointing triangles on the colorbar (top) reflecting the logged stimulus driven

firing rate. B: Same as in A but for six example Off-type neurons. C: Population distribution of response phase for all recordings in this study having

a Z-stat� 4. The histogram (bin size = π/6) reveals a bimodal distribution. Fitting the distribution with a Gaussian mixture model (black line)

indicates an average on response at 1.08 radians and an average off response at 4.60 radians. The population (n = 74) is evenly divided into On-

and Off-type neurons having mean vector strengths of 0.4175 ± SE 0.038 and 0.4226 ± SE 0.8664 respectively (panel inset). D: Linear regression

models indicate a slight positive correlation of 0.445 exists between vector strength and baseline firing rate (p = 0.006) for On-type however no

significant correlation exists for Off-type. E: No correlation exists between phase of response and baseline firing rate for either On-type or Off-type

neurons as indicated by linear regression models. The rest is as in D.

https://doi.org/10.1371/journal.pone.0175322.g002
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Fig 3. Summary of steps taken in order to classify neuronal responses to naturalistic communication

stimuli. The Common factor analysis technique (orange) aims to reduce dimensionality by developing a

linear statistical model summarising in a low dimensional space the high dimensional response space of the

data. Proximities within this space can then be used determine how responses are represented in the brain

(green) (i.e. discrete clustered representations or a continuous representation). In contrast, the Dynamic time

warping technique (blue) permits one to directly quantify the proximity between observations via a non-linear

relation among responses abstracted as time series. Raster plots are transformed into time series (PSTHs).

After defining a window of comparison to be permitted between PSTHs all pairwise comparisons between
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ELL pyramidal cell responses to chirps form a continuum

Results obtained using the first and second unsupervised classification algorithms are shown

in Figs 4 and 5, respectively, and were qualitatively similar. Figs 4A and 5A show the dendro-

grams with optimally sorted leaves such that the overall distance between observations on

adjacent leaves is minimized. The baseline firing rate of each cell is furthermore color coded

observations belonging to a population are made, yielding a pairwise distance matrix, which can then be used

in the same way as for the Common Factor Analysis technique (green).

https://doi.org/10.1371/journal.pone.0175322.g003

Fig 4. Pyramidal cell responses to chirp stimuli form a continuum based on an unsupervised classification algorithm

including common factor analysis. A: Optimally sorted dendrogram (green) tracing the path of a single linkage agglomerative

clustering algorithm from the leaves (right) to the root (left) as it was applied to the pairwise distance matrix representing Euclidian

distance for all pairwise comparisons between observations projected into eight dimensions using a factor analytic model. The baseline

firing rate is also indicated using the same color code as previously (see Fig 1A). B: Concatenated PSTH responses to the four chirp

stimuli used in the study are presented for each neuron in the same order as the adjacent dendrogram. Responses are not normalized so

that differences in response magnitude are readily apparent with the color gradient representing the logged stimulus driven firing rate

allowing for a detailed visualization of each neuron’s stimulus preference. The baseline firing rate is also indicated using the same color

code as previously.

https://doi.org/10.1371/journal.pone.0175322.g004

Continuous responses to natural stimuli

PLOS ONE | https://doi.org/10.1371/journal.pone.0175322 April 6, 2017 14 / 27

https://doi.org/10.1371/journal.pone.0175322.g003
https://doi.org/10.1371/journal.pone.0175322.g004
https://doi.org/10.1371/journal.pone.0175322


(blue for On-type and red for Off-type, darker hues indicate larger baseline firing rate values).

For comparison, the PSTH responses of each cell are aligned with each dendrogram (Figs 4B

and 5B). In both cases, it is seen that cells are sorted into blocks of adjacent On- or Off-type

having similar baseline firing rates. Further inspection of PSTH responses reveals high similar-

ity between adjacent responses and a grade change in response magnitude within blocks. Our

results thus suggest that ELL pyramidal cell responses to chirp stimuli form a continuum (i.e.,

Hypothesis B).

Relationship between function and anatomy in ELL pyramidal cells

So far, we have shown that ELL pyramidal cells cannot be functionally classified based on their

responses to chirp stimuli alone. This is because applying unsupervised classification algo-

rithms to the data showed that responses lie along a continuum rather than forming distinct

clusters. In order to gain further understanding as to why this is the case, we now explore

Fig 5. Pyramidal cell responses to chirp stimuli form a continuum based on an unsupervised classification algorithm

including dynamic time warping. A: Optimally sorted dendrogram (green). The color code is the same as in Fig 4A. B:

Summarized concatenated PSTH response to the four chirp stimuli used in the study are presented for each neuron in the same

order as the adjacent dendrogram. The color code is the same as in Fig 4B.

https://doi.org/10.1371/journal.pone.0175322.g005
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whether there is any relationship between the responses of the different anatomical ELL pyra-

midal cell classes.

To do so, we took advantage of the fact that there exists a strong correlation between the

physiologically measured baseline firing rate and the anatomically measured apical dendritic

length [29, 30] (see S1 Fig). Cells whose baseline firing rates were less than 15 Hz were labeled

superficial, cells whose baseline firing rates were greater than 15 Hz but less than 30 Hz were

labeled intermediate, and cells whose baseline firing rates were greater than 30 Hz were labeled

deep. Such a classification scheme has been used previously in the literature in order to reveal

important functional differences between the different anatomically defined classes [34, 35, 39,

46–50].

Using this criterion, we found that our dataset was composed of 18 superficial, 15 interme-

diate and 4 deep On-type pyramidal cells and of 17 superficial, 14 intermediate, and 6 deep

Off-type pyramidal cells. We then investigated how pyramidal cell heterogeneities influenced

their responses to natural electro-communication “chirp” stimuli. To do so, we used four stim-

ulus waveforms caused when a chirp occurs at different phases of the beat (Fig 6A, top panels,

green). The responses of example On-type (blue) and Off-type (red) pyramidal cells to each

chirp are shown in Fig 6A. Responses to all four chirps are then depicted as glyphs (Fig 6A).

The PSTH responses of different On-type cells to the different chirp stimulus waveforms

are shown in Fig 6B. In general, On-type deep pyramidal cells responded more strongly to

chirps than their intermediate and superficial counterparts and the strongest and weakest

responses were elicited when the chirp occurred at phases 3π/2 and π/2, respectively (Fig 6B).

Qualitatively similar results were seen for Off-type pyramidal cells: deep cells responded more

strongly to chirps than their intermediate and superficial counterparts (Fig 6C). However, Off-

type cells responded most strongly and weakly when the chirp occurred at phases π/2 and 3π/

2, respectively, which is the opposite from what was observed for On-type cells (Fig 6C). As

such, the responses of On- and Off-type pyramidal cells were significantly different from one

another when considering chirps occurring at phases 3π/2 (One-way ANOVA, p = 0.0002)

and π/2 (One-way ANOVA, p = 0.0003) but not at phases 0 (One-way ANOVA, p = 0.3518)

and π (One-way ANOVA, p = 0.4107). Plotting the population-averaged responses of On- and

Off-type cells to chirps revealed glyphs that were opposite of one another (Fig 6D, top left

panel).

We further found that the responses of all 6 pyramidal cell classes were all significantly dif-

ferent from one another (Wilks = 0.46216, F = 3.9271, p = 0.00001, Fig 6D, bottom left panel),

indicating that our classification scheme based on the baseline firing rate is unlikely to obscure

any relationship between function and anatomy. However, we also found that there was con-

siderable overlap between the responses of ELL pyramidal cells (Fig 6D, right panel).

Our results so far suggest that there is a relationship between function and anatomy in ELL

pyramidal cells that is somewhat blurred by large overlap between the responses of the differ-

ent anatomical cell classes. In order to further test this possibility, we retraced the steps of our

single linkage clustering algorithm used after either CFA or DTW and the results are shown in

Fig 7A and 7B, respectively. Inspection of these 2D network projections reveals that On-type

neurons tend to be located at one end while Off-type neurons tend to be located at the other

end (Fig 7A and 7B).

If the 6 anatomical classes corresponded to 6 distinctive functional classes, then one could

expect to see that observations grouped by anatomical class would correspond to 6 well sepa-

rated non-overlapping clusters. Indeed, to test this hypothesis, we generated a surrogate dataset

consisting of the PSTH responses of six examples cell from each anatomical class to which

noise mimicking the variability seen in the experimental was added (see Methods). This surro-

gate dataset was then analyzed using DTW followed by hierarchical clustering. We found that
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the resulting dendrogram showed six well-separated clusters (S3 Fig). Labelling the individual

“cells” from our surrogate dataset within a network constructed from the dynamic time warp-

ing algorithm revealed that the different anatomical classes occupy different quadrants (S4A

Fig). This is however not the case for our experimental data. Instead, the different anatomical

classes tend to be dispersed in all directions while occupying common quadrants. Confirming

our previous observations, we did not find any clusters and the data were distributed in a rather

uniform way along what might be described as two convergent planes each corresponding to

Fig 6. Responses of LS pyramidal cells to chirps. A: Illustration of the methodology used to differentiate between the responses to the beat and to the

chirp. The chirp stimuli of interest are shown in green and the corresponding responses from typical On-type (blue) and Off-type (red) neurons are also

shown running the full extent of the stimulus. The response to a beat stimulus is then aligned in phase with the beat of the stimulus of interest both before

and after the chirp. These two alignments are indicated by two separate dashed lines identified as the pre-chirp and post-chirp beat and run the full extent

of the stimulus of interest. Directly beneath actual responses is a signal which can take on both positive and negative values as it was generated by

subtracting the pre-chirp and post-chirp responses from the response to the stimulus of interest. The line running though or above this signal indicates a

value of zero with positive values highlighted an appropriate color. The maximum value of this signal within the grey window (25 msec after chirp onset) is

taken as the response of the neuron to the chirp. Responses to each of the four chirps are used to generate a 2 dimensional representation of the 4

dimensional response space known as a glyph. The correspondence between glyph dimensions and neural response to chirp phases are demonstrated

for average On- and Off -type examples. Correspondence is indicated by highlighting the glyph axis associated with a given chirp phase on the glyph seen

to the right of that chirp phase response. B: Peri-stimulus histograms from the same six example On-type cells used in Fig 2. Responses to the 4 different

chirps were concatenated. Note that, while responses of superficial On-type cells to the beat are difficult to discern from the PSTH’s in Fig 2, their

responses to chirps are quite clear. A glyph summarizing each example neuron’s location within the response space to these four chirps is located to the

right of their PSTH and their logged peak firing rate response is indicated by a leftward or rightward pointing triangle on the adjacent colorbar. C: Same as

in B but for 6 example Off-type neurons. D: Representation of the response space to 4 natural communication signals averaging over different populations.

(Top left) Chirp responses of all On-type cells were averaged along each dimension of response space to generate an average “On glyph”. The same was

done for all Off-type cells. Multidimensional scaling was used to project the response space into two dimensions and glyphs where plotted centered on

their two coordinate representation. The visualization procedure was repeated but for more specific subpopulations by dividing On- and Off-type further

into deep, intermediate, and superficial (bottom left). For comparison, the glyphs from individual neurons are also shown (right).

https://doi.org/10.1371/journal.pone.0175322.g006
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On- or Off-type responses (Fig 7A and 7B). We next labeled individual neurons in either the

factor space (Fig 7C) or within a network constructed from the dynamic time warping algo-

rithm (Fig 7D). In both cases, we found that the representational space is highly meaningful as

it relates to known anatomical and physiological properties (Fig 7C and 7D). Although there is

some noise/overlap, on average the 6 anatomical classes occupy different regions that are them-

selves organized relative to one another in a meaningful way although there is clear overlap

between adjacent regions, unlike what is seen for the surrogate dataset (S4B Fig). For example,

superficial and deep classes are located at opposite ends of Factor 3 and the intermediate classes

Fig 7. A: At each step of the single linkage algorithm clusters are merged on the basis of the minimum distance between two observations each

belonging to separate clusters. Which observations were linked at each iteration of the algorithm (nodes of the above dendrogram) and at what

distance they were from each other within the original pairwise distance matrix was used to generate an adjacency matrix or network that was

then represented as a network graph. At each two dimensional coordinate the glyph summarizing the observations location within the response

space to 4 chirp stimuli was plotted and a colored letter indicating On- (blue) or Off-type (red), deep (D), intermediate (I) or superficial (S) was

plotted atop this. B: Same as A but for DTW. C: Response profiles captured by 44 response features projected into a three dimensional feature

space using an 8 Factor statistical model (χ2 = 1266 d.f. = 622 p = 3.47x10-46) accounted for 78% of the variance. Each observation is colored

according to its anatomical designation and each observation is connected to the mean value of its anatomical class within the factor space. D:

Network graph (desaturated black lines) constructed from an adjacency matrix where each observation was connected to the closest one half of

the population using the warping distance between observations as entries with each mode labeled according to On- or Off-type as well as

anatomical cell class. The mean coordinate for each of the six anatomical designations was computed and observations were linked to their

respective groups mean.

https://doi.org/10.1371/journal.pone.0175322.g007
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are located between these two while On- and Off-type neurons appear to be well separated

along Factors 1 and 2, in agreement with the anatomical organization of ELL pyramidal cells

(Fig 7C). Qualitatively similar results were obtained using dynamic time warping (Fig 7D).

Overall, the results are in agreement with those obtained when considering response magni-

tude to the different chirps (Fig 6).

We conclude that, while the responses of the different anatomical cell classes are different

from one another on average, considerable overlap between these implies that they are distrib-

uted along a continuum. On-type cells are located on one side and Off-type cells on the other.

Furthermore, on each side, there is a general ordering of responses from deep to intermediate

and from intermediate to superficial cells but it is the overlap between adjacent groups that

prevents functional classification based on responses to chirp stimuli alone. Comparison

between results obtained from our experimental and surrogate dataset suggest that this overlap

is due to significant heterogeneity in responses within each anatomical class.

Discussion

Summary of results

We investigated ELL pyramidal cell responses to natural electro-communication stimuli. Spe-

cifically, we tested whether these responses could be used to functionally classify cells. Qualita-

tively similar results were obtained using two different unsupervised classification algorithms

in that responses lied along a continuum. We furthermore investigated whether there was a

relationship between anatomy and function. Overall, we found that the responses of On- and

Off-type neurons could easily be distinguished from one another. The responses of superficial,

intermediate, and deep pyramidal cells were different from one another on average, indicating

that there is indeed a relationship between anatomy and function in ELL pyramidal cells.

While the responses of different anatomical classes are ordered and occupy different regions

in functional space, response heterogeneities within each anatomical class cause overlap

between these regions, thereby forming a continuum. As such, our results provide strong evi-

dence against the hypothesis that ELL pyramidal cells can be functionally classified based on

their responses to natural electro-communication stimuli alone despite belonging to distinct

anatomical classes.

Potential caveats

Any functional classification is limited by the first step of data sampling [62]. It is conceivable

limited sampling in general could have impacted the Factor model solution (i.e., CFA) derived

from correlations among variables in the population. However, our results from the DTW

time series classification do not suffer from this potential shortfall since, unlike CFA, the dis-

tances computed between each pair of neurons are independent of the population. Further-

more, DTW limits the number of free parameters to consider and allows for non-linear

comparisons between neuron pairs. Given the good agreement between the two methods, as

seen when comparing anatomical labeling in the factor space (i.e., CFA) and the n/2-NN net-

work projection (i.e., DTW), as well as our results showing that clusters can be recovered from

a surrogate dataset analyzed in the same way as the experimental data, it is unlikely that our

results were an artefact of finite sampling or of our methodology.

There is a wide variety of clustering algorithms available including the commonly used k-

means method. This method was not considered here due to a lack of spherically shaped clus-

ters observed in the factor space [63]. Interestingly, the single linkage method used here has

been criticised for producing chains [64], which could be argued to lead to the impression of a

continuum. However, we note that all algorithms impose a structure on the data however the
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single linkage method is the only algorithm where the structure is least dependent on popula-

tion composition. Essentially every observation is linked such that the minimum length of

edges needed to connect every point in space is the final outcome of the algorithm. It is

unlikely that our results were an artefact of using a single linkage algorithm as testing this algo-

rithm on a toy data set with well-separated clusters chains were only observed locally within

clusters and did not lead to the impression of a continuum. This is furthermore supported by

results showing that using our methodology on surrogate data with the same variability as our

experimental dataset but which consisted on six different response profiles by construction

revealed six well-separated clusters.

We note that our anatomical class labels were assigned based on their baseline (i.e., in the

absence of stimulation) properties rather than anatomical features per se. This is however

unlikely to affect the qualitative nature of our results because: 1) previous studies have estab-

lished a very strong linear correlation (-0.8) between morphology and baseline activity [29,

30]; 2) baseline activity is independent of stimulus driven activity and; 3) we found statistically

significant differences between the average responses of On- and Off-type pyramidal cells as

well as between the deep, intermediate, and superficial subclasses as determined using baseline

activity. We note that, while it is possible to reconstruct ELL pyramidal cell morphology by fill-

ing the neuron with a tracer while recording intracellularly [29, 30], such methodology will

not suffice in order to give unambiguous assignment. This is because measures of morphology

such a dendritic length or spread are distributed along a continuum [29, 30]. Rather, one

would need to label the cell being recorded from and the other five pyramidal cell types

belonging to the same ELL column. Such techniques cannot be achieved in ELL pyramidal

cells and are beyond the scope of the current study.

Finally, we note that our set of stimuli was limited to a beat as well as to four small chirp

waveforms. It is conceivable that including responses to a greater stimulus set could lead to

better separation between anatomical subclasses (i.e., deep, intermediate, and superficial). This

is unlikely to be the case as pyramidal cells also display large heterogeneities in their responses

to these stimuli [34, 46–48]. Our results showing that On- and Off-type cells could clearly be

distinguished when only considering the beat (Fig 2C and 2E) but less so when adding the

chirp stimuli (Fig 6D) supports our hypothesis but further studies are needed to test this

prediction.

Implications for coding in the electrosensory system

Our results show that the responses of different anatomical classes of ELL pyramidal cells were

distributed along a continuum. An important question is then: why have different anatomical

cell classes in the first place?

First, we note that deep pyramidal cells constitute a functionally separate population from

their intermediate and superficial counterparts. This is because only deep pyramidal cells proj-

ect to the nucleus praeminentialis (nP) [28, 29]. Neurons within nP in turn send feedback pro-

jections both directly and indirectly back to ELL pyramidal cells [65]. Previous studies have

shown that deep pyramidal cells receive much less feedback than their superficial and interme-

diate counterparts and that, importantly, feedback to deep pyramidal cells is not plastic [29].

Thus, an important functional role for deep pyramidal cells is to provide feedback input pri-

marily to their superficial and intermediate counterparts. Such feedback serves to attenuate

responses to redundant stimuli [29, 47, 66–68] as well as provide gain control [69, 70].

Second, previous studies have compared responses of deep, intermediate, and superficial

pyramidal cells to stimuli not considered in the current study including step increases in EOD

amplitude, noisy time-varying waveforms, sinusoidal waveforms at different frequencies,
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other communication stimuli, and envelope stimuli [34, 41, 46–48]. In general, deep pyramidal

cells showed the least selectivity in their response profiles that is reminiscent of that of periph-

eral afferents in general while superficial pyramidal cells showed the most selectivity. Some of

this selectivity is due to feedback from deep pyramidal cells [29, 46, 47]. Interestingly, deep

pyramidal cells tended to show more linear responses than their intermediate and superficial

counterparts, which is in part due to their higher baseline firing rates [46, 71]. In general, it is

thought that an important function of deep pyramidal cells is to provide the electrosensory

brain with an accurate estimate of the actual stimulus independent of adaptation or filtering.

This is because previous studies have shown that deep ELL pyramidal cells display little adapta-

tion and have broad tuning curves when compared to their intermediate and superficial coun-

terparts [28, 39, 47, 48, 72].

Our results showing that the responses of the different anatomical classes to natural electro-

communication stimuli are significantly different from one another provide further evidence

that there is a relationship between anatomical and functional classification of ELL pyramidal

cells when considering their responses to natural electro-communication stimuli. However,

this relationship is not one-to-one because response heterogeneities within each anatomical

class cause overlap between responses of adjacent anatomical classes, thereby giving rise to a

continuum. Despite these large response heterogeneities, we argue that it is important that

future studies continue taking into account the different anatomical cell classes. This is

because, as mentioned above, multiple studies including our own have found a relationship

between anatomy and function in ELL pyramidal cells and because deep pyramidal cells con-

stitute a distinct cell class in terms of anatomy and function.

We further argue that having ELL pyramidal cell responses to stimuli be distributed along a

continuum provides more heterogeneity in their response profiles, which is in turn beneficial

for coding. Indeed, both theoretical [73, 74] and experimental [34, 75, 76] studies have shown

that neural heterogeneities are beneficial for coding. In particular, heterogeneities in ELL pyra-

midal cells are beneficial for estimating the characteristics of electro-communication stimuli

used primarily during courtship behavior [34]. It is likely that such heterogeneities are benefi-

cial for population coding of other types of electro-sensory stimuli but further studies are

needed to test this hypothesis. This is because ELL pyramidal cells display correlations between

their variability (i.e., noise correlations) [77, 78] that can only be estimated using simultaneous

recordings. As such, population responses cannot be estimated by combining non-simulta-

neous single-unit recordings.

Moreover, the large diversity in responses afforded by a continuous representation is remi-

niscent of non-linear mixed selectivity, which is a well-known signature of high dimensional

representations [79]. Neurons within the prefrontal and parietal cortices exhibiting such

mixed selectivity are thought to behave as multitaskers by responding differentially depending

on context, thereby performing different functions in different dynamically constructed

ensembles [80]. Interestingly, since linear readout grows exponentially with dimensionality

[80], such high dimensional representation would permit detection and/or discrimination of

the diversity of stimulus features potentially encountered by the animal in its natural environ-

ment. We propose that heterogeneities in the responses of ELL pyramidal cells permit them to

optimally encode behaviorally relevant stimulus features based on context. It is likely that the

large amounts of neuromodulatory input received by ELL pyramidal cells help mediate this

function [38, 81, 82].

We also argue that the strong heterogeneities in the response profiles of ELL pyramidal

cells is beneficial for transmitting information to higher brain structures as all anatomical clas-

ses of ELL pyramidal cells project to the midbrain Torus semicircularis [29]. The responses of

TS neurons are in general more selective than those of ELL pyramidal cells [32, 36, 71, 83, 84].
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Interestingly however, some TS neurons show response profiles that are reminiscent of those

of ELL pyramidal cells [36, 83]. It is conceivable that deep pyramidal cells project to such TS

neurons while superficial and intermediate pyramidal cells instead project to more selective TS

neurons but further studies are needed to test this prediction. It has been suggested that sparse

selective responses of TS neurons serve to detect the occurrence of behaviorally relevant stimu-

lus features while those of less selective TS neurons would instead serve to discriminate

between different stimuli [36]. Both types of TS neurons furthermore project to higher brain

areas [83]. We propose that the nonlinear mixed selectivity of ELL pyramidal cells is a mecha-

nism permitting the emergence of selective and non-selective TS neurons.

Supporting information

S1 Fig. ELL pyramidal cells display strong correlations between anatomical and physiolog-

ical properties. Plot of apical dendritic length as a function of baseline firing rate for On-type

(blue) and Off-type (red) cells. The best-fit line is given by dendritic_length = 8613–145 × spon-

taneous rate (r = -0.73, p<10−3, n = 36). This figure is reproduced, with permission, from ref.

[29].

(TIF)

S2 Fig. No strong correlations were observed between recording depth and baseline firing

rate. Plot of recording depth as a function of baseline firing rate. No significant correlation

was found (r = -0.05, p = 0.8, n = 33).

(TIF)

S3 Fig. Testing dynamic time warping and hierarchical clustering on a surrogate dataset

consisting of six well-defined clusters. A: Optimally sorted dendrogram (green). The color

code is the same as in Figs 4A and 5A. The red dashed line indicates a level at which the den-

drogram can be partitioned to recover the six original clusters. B: Summarized concatenated

PSTH responses to the four chirp stimuli used in the study are presented for each simulated

neural response in the same order as the adjacent dendrogram. The color code is the same as

in Figs 4B and 5B.

(TIF)

S4 Fig. Network graphs obtained from surrogate reveal six well-defined clusters. A: Net-

work graph obtained from the surrogate data. Glyphs summarizing the observations location

within the response space to 4 chirp stimuli for each cell are also plotted. The colored letters

indicate whether each cell was On- (blue) or Off-type (red) as well as either deep (D), interme-

diate (I) or superficial (S). Unlike the graph obtained from our experimental data (see Fig 7B),

the cells are clearly ordered per type, allowing one to draw separating lines between these

(dashed gray lines). B: Network graph from the surrogate dataset (desaturated black lines).

Unlike the graph obtained from our experimental data (see Fig 7D), one can see six well-sepa-

rated clusters.

(TIF)

S1 File. This file contains the data used to generate the main figures in this manuscript.

Please see “readme.txt” file for more information.
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