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Temporal decorrelation by SK channels enables
efficient neural coding and perception of natural
stimuli
Chengjie G. Huang1, Zhubo D. Zhang1 & Maurice J. Chacron1

It is commonly assumed that neural systems efficiently process natural sensory input.

However, the mechanisms by which such efficient processing is achieved, and the

consequences for perception and behaviour remain poorly understood. Here we show that

small conductance calcium-activated potassium (SK) channels enable efficient neural

processing and perception of natural stimuli. Specifically, these channels allow for the

high-pass filtering of sensory input, thereby removing temporal correlations or, equivalently,

whitening frequency response power. Varying the degree of adaptation through

pharmacological manipulation of SK channels reduced efficiency of coding of natural stimuli,

which in turn gave rise to predictable changes in behavioural responses that were no longer

matched to natural stimulus statistics. Our results thus demonstrate a novel mechanism by

which the nervous system can implement efficient processing and perception of natural

sensory input that is likely to be shared across systems and species.
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U
nderstanding the key computations by which neurons
process incoming natural sensory stimuli, thereby giving
rise to perception and behaviour, remains a central

problem in neuroscience. There is growing evidence that sensory
systems developed coding strategies to suit a dynamic range of
statistics in natural sensory stimuli1–5. Indeed, sensory systems
can efficiently process input by matching their adaptation
properties to natural stimulus statistics, thereby removing
redundant information and thus maximizing the information
transmission in presence of noise6–8. Specifically, efficient neural
coding can be achieved by ensuring that the neural tuning
function is inversely proportional to stimulus intensity as a
function of frequency, thereby achieving a neural response that is
decorrelated in the temporal domain or, equivalently, whose
amplitude is independent of frequency9. Such ‘temporal
whitening’ has been observed across species and systems10,11.
However, the mechanisms giving rise to efficient neural
processing and, importantly, whether, and if so how, this
information is decoded downstream in order to mediate
perception and behaviour remains poorly understood to this
day. Here we show that SK channels, which are found
ubiquitously in the brain12, mediate efficient processing of
natural stimuli by sensory neurons through temporal
decorrelation and, importantly, how such processing ensures
that perception is matched to natural stimulus statistics at the
organismal level.

Gymnotiform wave-type weakly electric fish sense amplitude
modulations (AM) of their self-generated quasi-sinusoidal electric
organ discharge (EOD) through peripheral electroreceptors found
on their skin. These electroreceptors in turn send afferents onto
sensory pyramidal neurons within the electrosensory lateral line
lobe (ELL) that subsequently project to higher brain areas,
thereby mediating perception and behavioural responses13,14.
Natural electrosensory stimuli have complex spatiotemporal
characteristics15,16 and, as in other systems, display both first
and second-order attributes that vary independently of one
another and whose intensity decreases as a power law as a
function of temporal frequency under natural conditions15,17.
First-order stimulus attributes consist of changes in the animal’s
EOD amplitude caused by objects with conductivity different
than that of the surrounding water (for example, prey, plants,
rocks and other fish)15,16. In contrast, the second-order stimulus
attributes occur exclusively during social interactions with
conspecifics. For example, when two fish come into close
proximity to one another, interference between both EODs
gives rise to a sinusoidal stimulus (that is, a beat or first-order)
whose frequency is equal to the difference between the two EOD
frequencies. The beat amplitude (that is, the envelope or second-
order) then depends on the relative distance and orientation
between both fish and is therefore a time-varying signal under
natural conditions that carries behaviourally relevant information
and elicits robust behavioural responses15,17–19.

The responses of electrosensory neurons to first-order electro-
sensory stimulus attributes have been well characterized (see refs
13,14,20–21 for review). Importantly, peripheral receptor
afferents display high-pass filtering characteristics of time-
varying first-order attributes that oppose the strongly decaying
intensity as a function of temporal frequency seen under natural
conditions15,22–24. These afferents are thus thought to efficiently
process natural first-order natural electrosensory stimulus
attributes by temporal whitening15. Each afferent trifurcates and
makes synaptic contact onto pyramidal cells within three parallel
maps (lateral segment, LS; centrolateral segment, CLS;
centromedial segment, CMS) of the body surface within the
ELL25. Pyramidal cells are the sole output neurons of the ELL and
project to higher brain areas26. Parallel processing occurs at the

level of the ELL as pyramidal cells within each map extract
different features of first-order attributes in part through
differential frequency tuning27–29 that are necessary to elicit
appropriate differential behavioural responses at the organismal
level30.

In contrast, much less is known about coding strategies used for
the processing of second-order electrosensory stimulus attributes.
In particular, previous studies have shown that peripheral afferents
can faithfully encode these both at the single neuron and
population levels31–33. However, because their tuning was found
to be independent of temporal frequency, afferents do not
efficiently process natural second-order electrosensory stimulus
attributes through temporal whitening31. While previous studies
have shown that ELL pyramidal cells can respond to second-order
electrosensory stimulus attributes34, their temporal frequency
tuning to these has not been investigated to date. It is therefore
not known whether and, if so, how, processing of second-order
electrosensory stimulus attributes by these cells is constrained by
natural stimulus statistics.

We found that ELL pyramidal neurons efficiently process
natural second-order electrosensory stimulus attributes through
temporal whitening. Indeed, neural responses were characterized
by weak correlations and by constant power for envelope
frequencies spanning three orders of magnitude. Further
experimentation and modelling revealed that such temporal
whitening is achieved because pyramidal neurons display time-
scale-invariant adaptation to envelope stimuli. This adaptation
enables high-pass filtering of the input through a fractional
derivative operation whose exponent is matched to natural
stimulus statistics. We further show that small conductance
calcium-activated potassium (SK) channels mediate adaptation to
envelopes in pyramidal neurons. Indeed, both pharmacological
activation and inactivation of these channels altered the degree of
fractional differentiation and tuning to envelope stimuli, thereby
reducing efficiency of processing of natural stimuli. Importantly,
these manipulations caused predictable changes in behavioural
responses to natural stimuli by inducing a mismatch between
behavioural sensitivity and natural stimulus statistics. Our results
therefore reveal a general mechanism by which SK channels can
enable efficient processing and perception of natural stimuli
through scale-invariant adaptation.

Results
Fractional differentiation enables temporal whitening. We
recorded ELL pyramidal neuron responses to stimuli (n¼ 14) in
awake and behaving animals (Fig. 1a). Our stimuli consisted of a
fast time-varying waveform (first-order) with a slow time-varying
amplitude (that is, the envelope or second-order) as encountered
under natural conditions15,18. Figure 1a shows an example AM
waveform (magenta), its envelope (blue), as well as the full signal
received by the animal (green) with respective frequency content.
It is important to realize that the animal’s unmodulated EOD is a
carrier and that the meaningful stimulus here is the EOD AM.
Thus, we note that the first- and second-order features of the
stimulus actually correspond to the second- and third-order
features of the full signal received by the animal, respectively.

We considered envelope waveforms that either varied sinu-
soidally or whose timecourse mimicked of that seen under natural
conditions (Fig. 1b, see Methods). Specifically, for the latter case,
the envelope autocorrelation decayed over a time window of
400 ms (Fig. 1c, inset) while the envelope power decayed as a
power law with exponent astim¼ � 0.8 (Fig. 1c). We found that
pyramidal neurons displayed robust responses to such stimuli
(Fig. 1b, bottom). Interestingly, further analysis revealed that
pyramidal neurons perform temporal decorrelation of natural
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envelope stimuli. Indeed, the response autocorrelation function
decayed to zero much faster than that of the stimulus over a time
window of 27.5 ms (Fig. 1c, inset) as quantified by significant
differences in correlation time (see Methods, Fig. 1d, left).
Moreover, the response power spectrum was constant for
frequencies spanning three orders of magnitude (Fig. 1c),
indicating whitening. Indeed, the population-averaged neural
whitening index was significantly larger than that of the stimulus
(Fig. 1d, right). We note that ELL pyramidal cells can be classified
as either ON or OFF-type based on whether they respond with
increases or decreases in firing rate to increases in EOD AM (that
is, first-order), respectively35. Cells in our data set could be easily
identified as either ON or OFF-type based on responses to
sinusoidal AMs (Supplementary Figs 1A,B). We however found
no significant differences between ON and OFF-type pyramidal
cell responses to envelope stimuli (Supplementary Figs 1C,D).
Data from each cell class were thus pooled in subsequent
analyses.

How is temporal whitening of natural stimuli by pyramidal
neurons achieved? Theory posits that such whitening is achieved
by ensuring that the neuron’s tuning curve is matched to the
statistics of natural input9. Neural sensitivity should then be
highest for frequencies at which stimulus power is lowest. A
simple derivation (see Methods) predicts that, in order to achieve
temporal whitening of stimuli whose power decreases with
exponent astim¼ � 0.8, neural sensitivity should increase as a
power law with exponent aneuron¼ � astim/2¼ 0.4 (Fig. 2a).

To verify this prediction, we recorded pyramidal neuron
responses (n¼ 14) to sinusoidal envelope stimuli with frequencies
spanning the behaviourally relevant range (0.05–1 Hz). We found
that pyramidal neurons responded to such stimuli through
sinusoidal modulations in firing rate that increased in amplitude
as a function of frequency (Fig. 2b). We then used linear systems
identification and plotted the sensitivity and phase relationships
between stimulus and neural response as a function of frequency
(Fig. 2c). Our results show that sensitivity indeed increased as a
power law as a function of frequency with exponent 0.4 (Fig. 2c,
top), while the phase remained constant (Fig. 2c, bottom). Such
phase constancy is typical of fractional differentiation, a
mathematical operation that is thought to be advantageous for
coding36. Fractional differentiation in the time domain is
equivalent to linearly filtering by a transfer function with gain
(2pf)a and phase ap/2 (see Methods), where f is the frequency and
a is the order of differentiation. We thus fitted a fractional
derivative model with a¼ 0.4 to our data (see Methods) and
found an excellent fit (Fig. 2c). Importantly, this simple model
correctly predicted temporal decorrelation and whitening seen in
response to naturalistic envelope stimuli (Fig. 2d) as quantified by
both correlation time (Fig. 2e) and whitening index (Fig. 2f). We
conclude that temporal whitening of natural envelopes occurs
because pyramidal neurons high-pass filter the input stimulus
through fractional differentiation whose exponent is precisely
matched to natural stimulus statistics.

A simple model reproduces experimental data. To gain insight
into the mechanism which enables pyramidal neurons to effi-
ciently process natural stimuli through fractional differentiation,
we built a simple model based on the leaky integrate-and-fire
formalism that included a spike-activated adaptation current that
decayed as a power law in the absence of firing37, see Methods
(Fig. 3a). The output model spike train was analysed in the same
way as our experimental data. Numerical simulation revealed that
this simple model accurately reproduced our experimental data
(compare Figs 2b and 3b). Indeed, the model neuron’s sensitivity
and phase closely matched those obtained experimentally
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Figure 1 | Temporal decorrelation of natural stimuli by electrosensory

pyramidal neurons. (a) Schematic representation showing the awake

behaving preparation where a stimulus is presented to the animal while

neural activity is being recorded. Shown on the right are: example AM

waveform (magenta), its envelope (blue), and the full signal received by the

animal (green) with their respective frequency contents. (b) Natural

envelope stimulus (blue) as well as the firing rate (middle) and spiking

(bottom) response of a typical ELL pyramidal neuron. (c) Stimulus (blue),

and population-averaged (red) neural response power spectrum. Note the

flattening of the response spectrum (black arrow). The grey band shows

one s.e.m. Inset: stimulus (blue), and population-averaged (red) neural

response autocorrelation function. Note that the neural autocorrelation

function decays to zero much faster than that of the stimulus (black arrow).

The grey band shows the 95% confidence interval around zero. (d, left)

Correlation time for the stimulus (blue) and neural response (red). (right)
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statistical significance at the P¼0.01 level using a Wilcoxon rank-sum test

with N¼ 14.
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(Fig. 3c). Importantly, the model also accurately reproduced
temporal whitening in response to naturalistic stimuli (Fig. 3d) as
quantified by correlation time (Fig. 3e) and white index (Fig. 3f).

To understand how adaptation can lead to efficient processing
of natural stimuli, we next systematically varied the strength of
the adaptation current in our model. We found that, without
adaptation, our model displayed constant sensitivity and no phase
lead in response to envelope stimuli (light green curves in
Fig. 4a,b). Increasing the adaptation strength led to sensitivity
curves which increased more steeply as a function of frequency
and furthermore increased phase lead (compare light and dark
green curves Fig. 4a,b), consistent with increases in the neural
exponent aneuron (Fig. 4c). These results have important
implications as they predict that, for a given adaptation strength,

our model can only achieve temporal decorrelation/whitening of
stimuli whose power decays with a given exponent. This was
verified by plotting the whitening index for naturalistic envelope
stimuli (that is, astim¼ � 0.8) as a function of the adaptation
strength. Indeed, both lower and higher adaptation strength led to
tuning curves that were not matched to natural stimulus statistics
and lowered coding efficiency as quantified by lower white index
values (Fig. 4d).

Our model therefore makes two important predictions. The
first is that, in order to observe temporal whitening of scale-
invariant natural stimuli through fractional differentiation,
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neurons must display adaptation that is also scale invariant (that
is, decay as a power law). The second is that temporal whitening
is only achieved for a given adaptation strength. Thus, increases
or decreases in the adaptation strength will alter neural tuning
and lead to sub-optimal processing of natural stimuli.

Pyramidal neurons display power law adaptation. To test
whether pyramidal neurons display scale-invariant adaptation, we
recorded their responses to step changes in envelope (Fig. 5a).

We found that pyramidal neurons responded to such stimuli by a
rapid increase in firing rate followed by a slower decay following
the step onset, which is characteristic of spike frequency
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adaptation (Fig. 5a). If adaptation displays a characteristic time-
scale (that is, is not scale invariant), then we expect that the
peristimulus time histogram (PSTH) responses to step onset with
different duration will all be well-fit by an exponential curve with
the same time constant, whereas a power law will instead give a
poor fit. If adaptation is instead scale invariant, then we expect
that PSTH responses to step onset with different duration will all
be well fit by a power law curve with the same exponent. The
apparent decay time constant of adaptation as quantified by fit-
ting an exponential will then be inversely proportional to the step
duration6,38.

To test our hypothesis, we plotted the time-dependent firing
rate in response to steps with different durations. The curves
obtained did not overlap and were each well fit by exponentials
but with different time constants (Fig. 5b). Rescaling both the
firing rate and time led to strong overlap between the curves that
were all well fit by power laws with the same exponent (Fig. 5c).
We note that rescaling both firing rate and time will not alter the
power law exponent. Thus, our results suggest that the timecourse
of adaptation in ELL pyramidal cells follows a power law rather
than an exponential. We next systematically varied the step
duration and found that, while the exponential time constant
varied strongly as a function of step duration (Fig. 5d, left), the
power law exponent was instead relatively independent of step
duration (Fig. 5d, right). We conclude that pyramidal neurons
indeed display scale invariant (that is, power law) adaptation in
response to envelopes as predicted by our model.

SK channels promote efficient coding of natural stimuli. So far,
we have shown that ELL pyramidal neurons can efficiently pro-
cess natural stimuli through temporal decorrelation because of
fractional differentiation, which ensures that the neural tuning
increases as a power law with exponent aneuron that is precisely
related to the power law exponent of the stimulus astim. Our
model predicted that such fractional differentiation can be
explained by including an adaptation current whose timecourse
follows a power law which was confirmed experimentally.
Importantly, our model also predicted that changing the level of
adaptation can strongly affect aneuron, which should decrease
coding efficiency. Thus, we next tested experimentally whether
modifying adaptation in pyramidal neurons will alter their tuning
exponent aneuron, and whether this will decrease coding efficiency
as quantified by the white index.

We focused on small conductance calcium-activated potassium
(SK) channels. This is because previous results have shown that
pharmacologically activating and inactivating these currents will
increase and decrease adaptation in ELL pyramidal neurons,
respectively39,40. We thus hypothesized that pharmacological
activation and inactivation of SK channels will increase and
decrease fractional differentiation by pyramidal neurons,
respectively, thereby altering tuning. Both manipulations are
then predicted to decrease efficient coding of natural stimuli by
temporal whitening. We thus micro-injected the SK channel
antagonist UCL-1684 (UCL) as well as the SK channel agonist 1-
EBIO (EBIO) in the ELL using well-established methodology
(Bastian41; Deemyad et al.42; Supplementary Fig. 2A, see
Methods) (Fig. 6a). We note that previous studies have shown
that injection of saline alone using this methodology does not
alter pyramidal neuron activity41,42. Consistent with previous
results39,43, we found that UCL and EBIO application both
strongly altered pyramidal neuron activity in the absence of
stimulation (Supplementary Figs 2B–D).

If our hypothesis is true, then we expect that UCL application will
decrease the neural tuning exponent aneuron as neural sensitivity
should then increase less steeply as a function of frequency when
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significance at the P¼0.01 level using a one-way ANOVA with post hoc

Bonferroni correction.
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using sinusoidal stimuli. In contrast, we expect that EBIO application
will increase the neural tuning exponent aneuron as neural sensitivity
should then increase more steeply as a function of frequency.
Consistent with these predictions, neural sensitivity indeed became
relatively independent of frequency following UCL application as
quantified by a decrease in aneuron (Fig. 6b, compare red and purple).
Neural sensitivity increased more steeply as a function of frequency
after EBIO application as quantified by an increase in aneuron (Fig. 6b,
compare red and cyan).

We next tested whether changes in neural tuning do indeed
decrease coding efficiency when instead using natural stimuli. To
do so, we next plotted the response power spectra before and after
application of either UCL or EBIO. We found that, after UCL
application, the response power spectrum decayed as a function
of frequency (Fig. 6c, compare red and purple). In contrast, the
response power spectrum increased as a function of frequency
after EBIO application (Fig. 6c, compare red and cyan). The
changes in power spectra observed were in agreement with
predictions from our simple model (Fig. 6c, compare dashed and
solid curves) that were based solely on the changes in aneuron

(Fig. 6d). Importantly, confirming our prediction; UCL and EBIO
application both significantly reduced coding efficiency as
quantified by the white index (Fig. 6e).

SK channels in ELL determine behavioural responses. Infor-
mation transmitted by neurons is only useful to an organism if it
is actually decoded downstream. Thus, we next investigated how
efficient coding of natural stimuli by ELL pyramidal neurons
mediates perception. To do so, we took advantage of the fact that
weakly electric fish display robust behavioural responses to
envelope stimuli18,31 (Fig. 7a). These consist of changes in the
animal’s EOD frequency that follows the stimulus’ detailed
timecourse but whose magnitude decreases with increasing
frequency (Fig. 7b). Behavioural response sensitivity is matched
to natural stimulus power (Fig. 7c). Indeed, both curves decreased
as a power law with exponents abehaviour and astim that were not
significantly different from one another (Fig. 7c, inset). This
matching ensures that behavioural sensitivity is greatest for
stimulus frequencies that tend to occur most frequently in the
natural environment4,18.

We hypothesized that behavioural sensitivity is directly related
to ELL pyramidal neuron tuning. Thus, changing the neural
tuning exponent aneuron should cause changes in the behavioural
exponent abehaviour (Fig. 8a) and a simple model predicts that
Dabehaviour¼ �Daneuron (see Methods). To test our hypothesis,
we injected UCL and EBIO bilaterally into the ELL (Fig. 8b)42,44

(see Methods). As a control, injection of saline alone had no
significant effect on behavioural responses (Supplementary
Fig. 3). In contrast, UCL and EBIO injection both strongly
altered behavioural sensitivity (Fig. 8c). Indeed, behavioural
sensitivity decreased more steeply following UCL application as
quantified by a greater behavioural exponent abehaviour (Fig. 8c,
compare red and purple, Fig. 8c, inset). In contrast, behavioural
sensitivity decreased less steeply after EBIO application as
quantified by a lesser behavioural exponent abehaviour (Fig. 8c,
compare red and cyan, Fig. 8c, inset). Importantly, behavioural
sensitivity was no longer matched to natural stimulus statistics
after both UCL and EBIO application (Fig. 8d). Consistent with
our simple model, changes in behavioural tuning abehaviour

following the UCL and the EBIO applications were consistent
with predictions made from changes in aneuron (Fig. 8e). Thus, we
conclude that efficient processing of natural envelope stimuli by
ELL pyramidal neurons does indeed ensure that behavioural
sensitivity at the organismal level is matched to natural stimulus
statistics.

Discussion
Envelopes constitute a critical component of the natural
electrosensory environment as they carry information about the
relative positions between conspecifics as well as their identi-
ties15,17. In particular, envelopes can arise during movement
between two conspecifics as well as from the static interactions
between the electric fields of three of more fish. While the former
movement envelopes generally tend to contain low (o1 Hz)
temporal frequencies15,17,18, the latter ‘social’ envelopes tend to
instead contain higher (41 Hz) temporal frequencies15,17.
Behavioural studies have shown that weakly electric fish can
perceive both categories of envelopes18,19. While it is known that
electrosensory neurons respond to mimics of social envelope
stimuli32,34,45, little is known about the coding of movement
envelope stimuli.

Here we have shown that ELL pyramidal neurons receiving
direct synaptic input from peripheral afferents optimally process
natural movement envelope stimuli because of scale-invariant
adaptation. Such adaptation leads to high-pass filtering of
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envelopes through fractional differentiation whose exponent is
matched to natural stimulus statistics, thereby removing temporal
correlations in the response or, equivalently, whitening the
response power across frequencies. By whitening the response
power across frequencies, the brain should be able to encode the
most important information in natural sensory stimuli while
discarding any redundancies, most often found in the high-
power, low-frequencies range. This agrees with efficient coding
theory, which states that optimality is achieved by adapting to the
natural stimulus statistics, and by completely removing any
correlations which are potentially present in the signals to be
encoded46. This process was shown to critically depend on SK
channels. It was previously shown that SK2 channels are located
on the somata of ON-type pyramidal neurons, while SK1
channels are instead located on the apical dendrites of both
OFF and ON-type pyramidal neurons47. Despite these
differences, even when we segregated pyramidal neurons into
ON and OFF types, the temporal whitening of natural second-
order stimulus statistics did not differ significantly. Furthermore,
when we applied the SK channel antagonist and agonist in the
apical dendritic tree, we observed that each of their effects were
similar in ON and OFF-type pyramidal neurons. We therefore
hypothesize that SK1 channels are sufficient to give rise to
optimized envelope processing and perception. Pyramidal
neurons receive large amounts of feedback on their apical
dendrites48 that help refine responses to electrosensory stimuli49–51

and previous studies have shown that pharmacological inactivation of
SK1 channels strongly disrupted responses to first-order
electrosensory stimuli43. It is therefore likely that SK1 channels
optimize processing of movement envelope stimuli by altering
feedback input to ELL pyramidal neurons but further studies are
needed to gain more understanding of the underlying mechanisms.
We also note that, while our results make it clear that disrupting
pyramidal neuron responses to envelopes leads to predictable
changes in behaviour, further studies are needed to understand
how downstream targets of pyramidal neurons will respond to this
behaviourally relevant stimulus feature.

Our results suggest a novel mechanism by which neural
responses can be adaptively optimized to process natural stimuli.
Indeed, our modelling and pharmacological manipulations
suggest that SK channel conductance is critical for optimizing
processing of natural stimuli with given statistics. If true, then
regulating SK channel conductances could serve as a dynamic
control for adaptive optimized processing of stimuli following
changes in the environment. In particular, we predict that
exposing the animals to envelope stimuli whose power law
exponents differ from those seen in the natural environment will
give rise to changes in SK channel conductance, thereby altering
ELL pyramidal neuron tuning in order to optimize processing of
these new stimuli through temporal decorrelation/whitening, thus
altering and optimizing perception and behaviour. Dynamic
regulation of SK channel conductance could come from
serotonergic modulation as previous studies have shown that
elevating serotonin levels inhibits SK channels in ELL pyramidal
neurons40,42. Finally, it should be noted that our simplistic model
predicts a direct link between the ELL pyramidal neurons and
behaviour. These behavioural responses are likely to result from
further processing of ELL by several downstream areas possibly
including forebrain. In this context, the observed match between
changes in ELL neural and behavioural responses induced by
pharmacologically manipulating SK might thus appear surprising.
This match should not, however, be taken as evidence that
downstream brain areas always merely relay information carried
in ELL pyramidal cell spike trains. Rather, it is likely that these are
involved in other aspects of behavioural responses to envelopes
that were not considered in the current study such as the
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previously described habituation to repeated presentations of the
same envelope stimulus18. Further studies are needed to test these
interesting hypotheses to demonstrate how processing and
perception of natural stimuli are dynamically optimized based
on input statistics, but are clearly beyond the scope of this paper.

We note that our results showing that the electrosensory
system efficiently process second-order natural electrosensory
stimulus attributes in no way imply that other stimulus attributes
(for example, first-order) are not also processed efficiently. This is
because previous studies have shown that both first- and second-
order attributes are processed in parallel by different subset of
neurons in higher order areas34. However, both attributes must
first be processed by the same neurons in more peripheral areas
before reaching these. In particular, peripheral receptor afferents
respond to both first- and second-order electrosensory stimulus
attributes, but display differential frequency tuning to each
attribute. Indeed, while afferents are preferentially tuned to higher
temporal frequencies for first-order attributes22–24, their tuning
to second-order attributes is instead independent of temporal
frequency31. For first-order statistics, the power law exponent
characterizing the rate at which sensitivity increases is matched to
the power law exponent characterizing the rate at which stimulus
power decays as a function of frequency; afferents are thus
thought to efficiently encode the first-order natural electrosensory
stimulus attributes through temporal whitening15. However, no
such match was observed for second-order attributes as the
sensitivity does not increase as a function of temporal frequency
in order to oppose the rate at which envelope power decays as a
function of frequency31. Thus, peripheral afferents do not
efficiently process natural second-order electrosensory stimulus
attributes through temporal whitening.

Our results show that efficient processing instead emerges at
the level of the ELL and requires SK channels. It is important to
note here that we only recorded from pyramidal cells within LS,
which displays the greatest SK channel expression39. Since
pyramidal cells within CLS and CMS display considerably less
expression, we predict that these will not efficiently process
natural second-order electrosensory stimulus attributes through
temporal whitening. This is not a problem as pyramidal cells
within CLS and CMS have been shown to be involved in the
processing of other stimulus attributes30,52. These include those
encountered during prey capture. Indeed, weakly electric fish
display robust behavioural responses showing that they can
reliably and accurately detect the presence of the underlying weak
stimuli as they then execute a series of movements to capture the
prey16. Such behaviour is likely to require multisensory
integration as the animal then experiences simultaneous
stimulation of its active electrosensory, passive electrosensory
and lateral line systems53. In particular, the passive electric sense
is likely to make a substantial contribution to allow the animal to
first successfully detect the presence of a prey as ampullary
electroreceptors are exquisitely sensitive to the resulting small-
amplitude exogenous electric fields15. The perturbations of the
animal’s own electric field caused by the prey during the detection
phase are very weak and will in turn cause very small
perturbations in the activities of tuberous electroreceptors16.
While these can theoretically be decoded54, further studies are
needed to understand whether and, if so, how neural circuits of
the active electric sense actually decode these faint signals in the
presence of substantial variability. It is thought that the active
electric sense makes an important contribution to give the animal
sensory feedback as to the prey’s location as it is executing a series
of movements to bring the prey close to its mouth. ELL pyramidal
cells within CLS and CMS are then likely to be involved as both
their frequency tuning27,28,52 and receptive field organization55,56

are optimized to the statistics of the input. Importantly, we note

that LS pyramidal cells, which were the focus of the current study,
do not solely process second-order electrosensory stimulus
attributes. Indeed, previous results have shown that these cells
respond to natural communication calls consisting of high-
frequency transients29. Since SK channels are major determinants
of frequency tuning in LS pyramidal cells39,57, it is likely that
these will also contribute to shaping responses to natural
communication stimuli. It is then conceivable that SK channel
expression would be not only constrained to optimally process
second-order electrosensory stimulus attributes as shown here
but might also be constrained to optimally process natural
communication stimuli as well.

Thus, it is likely that electrosensory-coding strategies are
constrained to efficiently process natural stimuli. However, these
will differ depending on the subset of natural stimuli considered
and are likely to involve multiple sensory modalities. A complete
understanding of these will require further studies and is clearly
beyond the scope of this paper that only considered second-order
electrosensory stimulus attributes.

It is very likely that our results will be applicable to other
systems. First, we note that SK channels found in weakly electric
fish display B86% sequence identity with those found in
mammals39. SK channels are furthermore expressed
ubiquitously in the brain and are key determinants of spike
frequency adaptation12. Second, natural stimuli have been shown
to also exhibit power spectra that decay as a power law in the
visual5,58 and auditory59 systems and also display first- and
second-order attributes. Third, growing evidence suggests that
neural coding strategies are adapted to natural stimulus statistics
by optimizing neural responses via temporal decorrelation/
whitening across systems and species10,11. In particular,
adaptation to second-order stimulus attributes is widely
observed7,8,60. Further, our proposed mechanisms underlying
temporal decorrelation/whitening, namely high-pass filtering by
fractional differentiation as mediated by scale-invariant
adaptation, are also generic and have been observed in other
systems including cortex38,61. Thus, our results provide a general
mechanism by which SK channels can optimize neural responses
to natural stimuli through temporal decorrelation/whitening,
which in turn optimizes behavioural responses by making them
best tuned to stimuli that occur most frequently in the natural
environment. Optimized coding and perception of natural stimuli
mediated by SK channels is thus likely to be a universal feature of
sensory processing that is shared amongst systems and species.

Methods
Animals. The weakly electric fish Apteronotus leptorhynchus was used exclusively
in this study. Animals were purchased from tropical fish suppliers and were
acclimated to laboratory conditions according to published guidelines62. All
procedures were approved by McGill University’s animal care committee.

Surgery. A total of 0.1–0.5 mg of tubocurarine (Sigma) was injected intra-
muscularly in order to immobilize the fish for experiments. The fish was respirated
through a mouth tube at a flow rate of B10 ml min� 1 when placed in the
recording tank. To stabilize the head during recording, a metal post was glued to
the exposed area of the skull. A small hole of B2 mm2 was drilled over the caudal
lobe of the cerebellum above the ELL in order to gain access to the pyramidal
neurons.

Electrophysiology. We used well-established techniques to make extracellular
recordings with Woods metal electrodes from pyramidal cells within the LS of the
ELL28. We used CED 1401-plus hardware and Spike II software to record the
resulting signal with resolution 0.1 ms.

Pharmacology. The composition of the vehicle/control saline is as follows (all
chemicals were obtained from Sigma): 111 mM NaCl, 2 mM KCl, 2 mM CaCl2,
1 mM MgSO4, 1 mM NaHCO3 and 0.5 mM NaH2PO4. The pH of the saline
solution was 6.8. Glutamate (Sigma), UCL-1684 Ditrifluoroacetate hydrate (Sigma)
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and 1-EBIO 1-Ethyl-2-benzimidazolinone (Sigma) were dissolved in saline for
application as before43. Drug application electrodes were two-barrel KG-33 glass
micropipettes (OD 1.5 mm, ID¼ 0.86 mm, A-M Systems) pulled by a vertical
micropipette puller (Stoelting Co.) to a fine tip and subsequently broken to attain a
tip diameter of B10mm. The two barrels were used for separate application of
either UCL-1684 (100 mM) or 1-EBIO (2.5 mM) and glutamate (1 mM). During
recordings, we first used excitatory responses to glutamate application via
PicoSpritzer to confirm that we were within proximity of the pyramidal neuron we
were recording from as done previously42. UCL-1684 and 1-EBIO were then
applied as done previously43.

Behaviour. Animals were immobilized and set up in the recording tank similarly
to the method described above. However, both ELLs were exposed and two glass
micropipettes loaded with saline control solution, UCL-1684 (100 mM), or 1-EBIO
(2.5 mM) solution were inserted into the LS segment using previously established
techniques42,44. Simultaneous bilateral injection of either saline, UCL-1684, or
1-EBIO into the LS region of the ELL molecular were delivered via a PicoSpritzer
(pressure¼ 10 psi, pulse duration¼ 140 ms). Sinusoidal waveforms with frequency
of 4 Hz below the animal’s baseline EOD frequency and with intensity of
2 mV cm� 1 with duration of 50 s were presented. Previous studies have shown that
such stimuli will reliably elicit a jamming avoidance response and/or transient
EOD frequency excursion (that is, chirp) responses in A. leptorhynchus42. The
jamming avoidance response magnitude was defined as the maximum frequency
elicited during stimulation minus the baseline (that is, without stimulation) value
and was used as a positive control to confirm that UCL-1684 had an effect.
Envelope stimuli were then subsequently played and saline or UCL injected two or
three times before each stimulus presentation. Behavioural sensitivity was
measured as the ratio between the amplitude of the envelope stimulus as extracted
by the dipole, and the response, which was quantified by the average extracted
change in EOD frequency of the fish over the course of the stimulus. The phase
relationship was quantified by determining the difference between the phase at
which the maximum peak of the envelope stimulus occurred and the phase at
which the maximum peak of the average extracted change in EOD frequency.
abehaviour was obtained by fitting a power law to the behavioural sensitivity as a
function of frequency.

Stimulation. The EOD of A. leptorhynchus is neurogenic, and therefore is not
affected by injection of curare. All stimuli consisted of AMs of the animal’s own
EOD and were produced by triggering at the zero crossing of each EOD cycle as
done previously63. This allowed the train of sinusoid stimuli to be synchronized to
the animal’s discharge and depending on the polarity, either added or subtracted
from the animal’s own discharge. The modulated waveform was subsequently
multiplied (MT3 multiplier; Tucker Davis Technologies) and the resulting signal
was isolated from ground (A395 linear stimulus isolator; World Precision
Instruments). The signal was then delivered through a pair of chloridized silver
wire electrodes placed B15 cm on either side of the recording tank perpendicular
to the fish. The stimulus intensity was adjusted to give rise to changes in EOD
amplitude that was B20% of the baseline level as in previous studies63 that were
measured using a small dipole placed close to the animal’s skin. The stimuli
consisted of two noisy AM waveforms with frequency contents 5–15 and 60–80 Hz,
whose envelopes were modulated, sinusoidally with frequencies ranging from 0.05
to 1 Hz (ref. 15) or in a stepwise fashion at frequencies 0.05, 0.1, 0.25, 0.5, 1, 2 and
4 Hz for 5–15 Hz and 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8 and 16 Hz for 60–80 Hz (note
that the step duration is then half of the stimulus period). Stimuli also consisted of
envelope stimulus waveforms obtained under natural conditions18 as well as noisy
waveforms whose power spectrum decayed as a power law with exponent
astim¼ � 0.8 and whose phase varied uniformly. The slope of the spike triggered
average computed in response to the noisy AM waveform was used to assign each
cell as either ON of OFF-type as done previously64.

Fractional differentiation model. Fractional differentiation65 can be described
simply as the differentiation operation, da/dta, in which the order of differentiation, is a
non-integer number. In the frequency domain, fractional differentiation of order a
corresponds to filtering by a transfer function H(f) given by

H fð Þ ¼ 2pfð Þaexp ia
p
2

� �

The gain G(f) and phase f(f) of the model can then be written as

G fð Þ ¼ H fð Þj j ¼ 2pfð Þa

f fð Þ ¼ arctan
Im H fð Þ½ �
Re H fð Þ½ �

� �
¼ a

p
2

where Im[H(f)] and Re[H(f)] are the imaginary and real parts, respectively. We fitted a
fractional differentiation model to our data using the Grunwald–Letnikov definition,
which was adapted to use a vectorization method to pass signals through a spectrum of
fractional derivative values between 0 and 1 from which we obtained aneuron

65.

Matching response sensitivity to stimulus statistics in order to ensure tem-
poral decorrelation. Linear response theory66 posits that the response power
spectrum Prr(f) is related to the gain G(f) and the stimulus power spectrum Pss(f) by
the following equation:

Prr fð Þ � G2 fð ÞPss fð Þ
Thus, if the stimulus power spectrum decays as a power law with exponent astim

and if the neural gain increases as a power law with exponent aneuron, then we have

Prr fð Þ � f 2aneuron þ astim

The response power spectrum will then be independent of frequency f if
2aneuronþ astim¼ 0 or, equivalently, if

aneuron ¼ �
astim

2

Relationship between neural tuning and behaviour. We assume that the neural
tuning exponent aneuron and the behavioural exponent abehavioural are related by

abehavior ¼ � aneuron � 0:4

We then have

Dabehavior ¼ �Daneuron

where Da is the change in exponent a resulting from pharmacological manipula-
tion of SK channels.

Neuron model. To model the responses of the pyramidal neurons to the stimuli
used in this study, we implemented a leaky integrate-and-fire model with power-
law adaptation

C
dV
dt
¼ � gleak V �Eleakð Þ� z1 tð Þþ Iþsnoisex tð Þþ sstims tð Þ

where C is the membrane capacitance, gleak is the leak conductance, Eleak is the leak
reversal potential, I is a constant bias current, x(t) is gaussian white noise with zero
mean and s.d. unity, snoise is the noise intensity, s(t) is the stimulus which was
taken to have the same statistics as for the data, sstim is the stimulus intensity, V is
the membrane potential and z1(t) is the adaptation current. Each time the mem-
brane potential reaches the threshold y, it is reset to Vreset and an action potential is
said to have occurred at that time. The adaptation current is then incremented.

We approximated the power law adaptation using N variables z1yzN that
obeyed the following system of differential equations37:

dzi

dt
¼ � zi tð Þþ ziþ 1 tð Þ

ti
þ b g1� i

X
j

d t� tj
� �

for i ¼ 1 to N � 1

dzN

dt
¼ � zN tð Þ

tN
þ b g1�N

X
j

d t� tj
� �

ti ¼ tmingi� 1

where tj are the spikes times, d(t) is the delta function, and b and g are constants
that determine the strength and power law exponent aneuron of the neural
sensitivity, respectively. The model was simulated using an Euler–Maruyama
integration with timestep dt¼ 0.025 ms. We used parameter values C¼ 1 mF cm� 2,
gleak¼ 0.36 mS cm� 2, Eleak¼ � 70 mV, I¼ mA cm� 2, snoise¼ mA cm� 2, N¼ 40,
b¼ 0.2, g¼ 1.1253, y¼ � 50 mV, Vreset¼ � 70 mV and C¼ 1 mF cm� 2. For these
parameter values, we obtained amodel¼ 0.4.

Data quantification. We used several methods in order to quantify our experi-
mental data. Correlation time was measured as the duration of time it took to decay
to 5% of maximum autocorrelation value. White index was measured by taking the
normalized area under the power spectrum curve using a trapezoidal method and
dividing by the maximum normalized area to achieve a value between 0 and 1.
The match between behaviour and natural stimulus statistics was obtained as
1� |astim�abehaviour| and thus is maximum when the two power-law exponents
match. This method was used in order to quantify the optimality of the animal’s
behaviour during the pharmacology experiments. For step envelope stimuli, we
constructed PSTHs by averaging over each step onset and offset and typically used
50 bins for a given step duration.
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Supplementary Figure 1: ON and OFF-type ELL pyramidal cells display similar 
responses to second order attributes of natural electrosensory stimuli. A: Example 
responses of example ON-type (green) and OFF-type (brown) ELL pyramidal cells to a 4 
Hz sinusoidal AM (black). B: Distribution of stimulus phase for which ELL pyramidal 
cells in our dataset fired preferentially. The distribution is clearly bimodal (Hartigan’s dip 
test, p=0.0167) with ON-type cells firing preferentially near the maximum of the stimulus 
(phase 0) and OFF-type cells firing preferentially near the minimum (phase π). C: The 
population-averaged response power spectrum (green) for ON (left) and (brown) OFF 
(right) type cells was relatively constant as compared to that of the envelope stimulus 
(blue). Insets: The population-averaged response autocorrelation function (green) for ON 
(left) and (brown) OFF (right) type cells decayed to zero much faster than that of the 
stimulus (blue). D: Population-averaged correlation times (left) and white index (right) 
for ON (green) and OFF (brown) type cells. No significant differences were observed 
between correlation time (Wilcoxon rank-sum test, p>0.05, n.s., N=14) or white index 
values (Wilcoxon rank-sum test, p>0.05, n.s., N=14).  



Supplementary Figure 2: 
UCL and EBIO application 
have opposite effects on 
pyramidal neuron baseline 
activity. A) Glutamate 
ejection causes rapid 
increases in pyramidal neuron 
firing rate, indicating that the 
pharmacology electrode is 
close to the neuron from 
which we are recording. B) 
Baseline activity under 
control (top) and after UCL 
application (bottom) from a 
typical pyramidal neuron. C) 
Same as B for EBIO 
application. D) Population-
averaged burst fractions under 
baseline (control) and after 
UCL and EBIO application, 
respectively. Burst fraction 
was significantly different 
between control and UCL 
(Wilcoxon rank-sum test, 
p<0.05, N=6) and between 
control and EBIO (Wilcoxon 
rank-sum test, p<0.05, N=6). 

 

 

 

 

 

 

 

 



 

 

 

 

 

Supplementary Figure 3: Saline 
injection does not significantly alter 
behavioral responses to envelope stimuli. 
A) Schematic showing the bilateral saline 
injection. B) Top: Low (left) and high 
(right) frequency envelope stimuli. 
Bottom: Corresponding behavioral 
responses before (green) and after (red) 
saline injection. C) Population-averaged 
behavioral sensitivity before (green) and 
after (red) saline injection. The dashed 
lines show the best power law fits to the 
data. Inset: Population-averaged power 
law exponents for before (green) and 
after saline injection (red) (N=3). D) 
Population-averaged phase lag before 
(green) and after (red) saline injection 
(N=3). 
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