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Adaptation to second order 
stimulus features by electrosensory 
neurons causes ambiguity
Zhubo D.  Zhang & Maurice J. Chacron

Understanding the coding strategies used to process sensory input remains a central problem in 
neuroscience. Growing evidence suggests that sensory systems process natural stimuli efficiently by 
ensuring a close match between neural tuning and stimulus statistics through adaptation. However, 
adaptation causes ambiguity as the same response can be elicited by different stimuli. The mechanisms 
by which the brain resolves ambiguity remain poorly understood. Here we investigated adaptation in 
electrosensory pyramidal neurons within different parallel maps in the weakly electric fish Apteronotus 
leptorhynchus. In response to step increases in stimulus variance, we found that pyramidal neurons 
within the lateral segment (LS) displayed strong scale invariant adaptation whereas those within 
the centromedial segment (CMS) instead displayed weaker degrees of scale invariant adaptation. 
Signal detection analysis revealed that strong adaptation in LS neurons significantly reduced stimulus 
discriminability. In contrast, weaker adaptation displayed by CMS neurons led to significantly lesser 
impairment of discriminability. Thus, while LS neurons display adaptation that is matched to natural 
scene statistics, thereby optimizing information transmission, CMS neurons instead display weaker 
adaptation and would instead provide information about the context in which these statistics occur. We 
propose that such a scheme is necessary for decoding by higher brain structures.

Growing evidence suggests that natural scene statistics constrain neural coding strategies1–3. Specifically, it is 
thought that information is efficiently coded by ensuring that neurons can adapt their tuning properties to stim-
ulus statistics1,3. However, sensory adaptation can also cause ambiguity as the same neural response can then be 
elicited by different stimuli1,4,5. The mechanisms by which such ambiguity is resolved in the brain remain poorly 
understood.

Weakly electric fish sense amplitude modulations (AMs) of a self-generated electric organ discharge (EOD) 
through an array of electroreceptors scattered on their skin surface6,7. Afferent fibers trifurcate and make synap-
tic contact with pyramidal neurons within three parallel somatotopic maps of the body surface (centromedial: 
CMS, centrolateral: CLS, and lateral: LS) in the hindbrain electrosensory lateral line lobe (ELL) (see ref. 8 for 
review). Natural electrosensory stimuli display rich spatiotemporal characteristics. In particular, when two con-
specifics come into close contact, interactions between their EODs give rise to a sinusoidal AM (first order) with 
frequency equal to the difference between the individual EOD frequencies and whose amplitude (second order) 
varies depending on the relative distance and orientation between both fish9–11 (see ref. 12 for review). While 
much is known about how ELL pyramidal neurons respond to first order features of electrosensory stimuli (for 
review see refs 6,8,13), considerably less is known about how they respond to second order features14–20. In par-
ticular, the adaptation properties of pyramidal neurons across different segments to the second order features of 
electrosensory stimuli and their consequences on coding are unknown.

Here we investigated how pyramidal neurons within the CMS and LS maps respond to step changes in second 
order electrosensory stimuli. We found stronger adaptation in LS than CMS neurons. The time course of the 
adaptation in both segments was scale invariant and could be well-fit by a power law with exponent α . Thus, the 
adaptation was matched to the stimulus statistics as the apparent time scale varied with step duration as assessed 
by instead fitting an exponential to the data. We then used signal detection theory21 to assess the ability of an 
ideal observer to discriminate between the firing rate distribution immediately before step onset and the distri-
butions immediately after (i.e. before adaptation) and immediately before step offset (i.e. after adaptation). Our 
results show that adaptation can significantly reduce discriminability as quantified by the area under the receiver 
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operating characteristic (ROC) curve (AuC) and suggest that ambiguity is resolved by processing inputs from 
CMS and LS pyramidal neurons in parallel.

Results
ELL pyramidal neurons display spike frequency adaptation in response to envelope steps. We 
obtained extracellular recordings from n =  45 LS and n =  32 CMS ELL pyramidal neurons in vivo (Fig. 1A). 
Stimuli consisted of amplitude modulations of the animal’s own EOD whose time course mimicked the stimu-
lation caused by interference between the EODs of two conspecifics and whose variance switched periodically 
between a low and a high value (Fig. 1A,B). It is important to note that the EOD is a carrier waveform and that 
the relevant stimulus here is the EOD AM (Fig. 1A,B, blue). We then quantified adaptation in ELL pyramidal 
neuron responses to step changes in stimulus amplitude (Fig. 1B, red). For this reason, we will refer to the EOD 
AM as first order and to the envelope as second order, respectively. We note that these correspond to the second 
and third order features of the full signal received by the animal (Fig. 1A, green), respectively. Figure 1B shows 
the extracellularly recorded responses from example LS (middle) and CMS (bottom) pyramidal neurons. Both 
cells responded to the envelope step onset through an increase in firing rate whose subsequent decay was more 
pronounced in the LS neurons (Fig. 1B).

We characterized spike frequency adaptation by averaging neural responses across step onsets and plotting 
the time dependent firing rate as a peri-stimulus time histogram (PSTH). Plotting the PSTH for an example LS 
pyramidal cell revealed that the cell responded to the step onset by a sharp increase in firing rate followed by a 
slower decay that is characteristic of spike frequency adaptation (Fig. 2A). In contrast, an example CMS pyrami-
dal cell responded to the step onset by a similar sharp increase in firing rate that did not decay as much (Fig. 2B). 
We quantified the tendency of cells to display spike frequency adaptation in response to envelope steps by plot-
ting the difference between the maximum firing rate and the firing rate just before step offset (i.e. the adaptation 

Figure 1. ELL pyramidal neurons across different maps respond differentially to envelope steps. (A) Schematic 
of the experimental setup. Amplitude modulations of the animal’s own electric field are delivered via two electrodes 
on the side while ELL pyramidal neurons within the LS and CMS maps are recorded from. (B) Stimulus waveform 
(blue) and its envelope (red) (top) as well as recordings from example LS (middle) and CMS (bottom) pyramidal 
neurons.
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strength). Comparing datasets from LS and CMS neurons revealed that the former tended to display signifi-
cantly more adaptation than the latter (Fig. 2C). Interestingly, no significant difference in adaptation strength was 
observed when comparing values for ON and OFF-type pyramidal neurons in either LS or CMS (p >  0.1 in each 
case). The implications of this result are discussed below.

Adaptation to envelopes in pyramidal neurons is scale invariant. What is the time course of adap-
tation in ELL pyramidal neurons? To answer this important question, we fitted both exponential and power law 
models to our data in response to step changes in envelope at frequencies between 0.05 and 16 Hz thereby varying 
the step duration. If adaptation to envelopes displays a characteristic timescale, then we would expect that PSTH 
responses to step onset with different duration will all be well-fit by an exponential curve with the same time con-
stant. If, in contrast, adaptation to envelopes were scale invariant, then we would expect that PSTH responses to 
step onset with different duration would all be well-fit by a power law curve with the same exponent. The apparent 
decay time constant of adaptation as quantified by fitting an exponential is then proportional to the envelope 
duration4,22.

Our results show that LS pyramidal neuronal adaptation to step changes in envelope with different durations 
were all well-fit by power laws with similar exponents (Fig. 3A, compare black and blue). In contrast, while each 
curve could also be well-fit by an exponential, the time constant decreased when the step duration decreased 
(Fig. 3A, compare black and red). Similar results were seen across our dataset as the population-averaged expo-
nential time constant decreased as a function of step frequency (Fig. 3B) while the power law exponent did not 
(Fig. 3C). As a result, the time constant of the best exponential fit and switching frequency were significantly neg-
atively correlated (r =  − 0.317, p <  10−5) (Fig. 3D). In contrast, the exponent of the best power law fit was constant 
as a function of switching frequency (r =  − 0.004, p >  0.95) (Fig. 3E). We conclude that LS pyramidal neurons 
display power law adaptation in response to step changes in envelope.

While our results show that CMS pyramidal neurons displayed significantly less adaptation than their LS 
counterparts, it was possible in general to characterize the timecourse of adaptation in these cells. Overall, quali-
tatively similar results were seen in that responses to different step durations were all well fit by a power law with 
similar exponents (Fig. 4A, compare black and blue). While each curve could be well-fit by an exponential, the 
time constant of the best exponential fit strongly varied with stimulus duration (Fig. 4A, compare black and red). 
Similar results were seen across our CMS dataset as the population-averaged exponential time constant decreased 
as a function of step frequency (Fig. 4B) while the power law exponent did not (Fig. 4C). As a result, the expo-
nential time constant was strongly and significantly negatively correlated with switching frequency (r =  − 0.6,  
p ≪  0.001) (Fig. 4D). In contrast, the power law exponent was not significantly correlated with switching fre-
quency for up to 1 Hz (r =  0.0498, p >  0.5) and only a weak positive correlation was observed when taking into 
account all frequencies (r =  0.213, p >  0.5) (Fig. 4E).

Adaptation to envelope steps by ELL pyramidal neurons causes ambiguity. We next examined 
the functional role of adaptation to envelopes in ELL pyramidal neurons. While previous studies have made 
it clear that adaptation can greatly enhance information processing by optimizing neural responses to natural 
stimuli1, it is also clear that adaptation can also cause ambiguity in the neural response1,4. To quantify ambiguity 
resulting from adaptation, we used signal detection theory to quantify the performance of an ideal observer as 
discriminating between the neural response preceding the step onset and the neural response at various times 
following the step onset21.

Results from an example LS neuron shows that spike frequency adaptation impairs discriminability (Fig. 5A). 
Indeed, there was less overlap between the firing rate distribution immediately before and after the step onset, 

Figure 2. LS and CMS ELL pyramidal neurons display differential degrees of adaptation to envelope steps. 
(A) Peri-stimulus time histogram (PSTH) from an example LS neuron (black) in response to the envelope step 
(red) with binwidth =  500 msec. We computed the strength of adaptation as the difference between the firing 
rate at step onset and offset Δ f. (B) PSTH response from an example CMS neuron. Note the lesser degree of 
adaptation. (C) LS pyramidal neurons display significantly larger adaptation strengths (left, n =  45) than CMS 
(right, n =  32) pyramidal neurons (p =  0.0377, one-way ANOVA). The gray open circles show the adaptation 
strength of each neuron while population-averages with SEM are shown in black.
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before adaptation, than between the firing rate distributions immediately before the step onset and offset, after 
adaptation, (Fig. 5B) as reflected in the ROC curves (Fig. 5C). We quantified discriminability by computing the 
area under the curve (AuC) for ROC curves and plotting this quantity as a function of time. Our results show that 
the AuC increased markedly after step onset and showed a pronounced decay. Similar results were seen across 

Figure 3. LS pyramidal neurons display power law adaptation to envelope steps. (A) PSTH response 
(black) from an example LS neuron to envelope steps switching at rates of 0.1 Hz (left), 0.25 Hz (center), and 
1 Hz (right). Also shown are exponential (red) and power law (blue) fits with time constants and exponents, 
respectively. Note that the power law exponents obtained for each rate were similar whereas large differences 
were observed for the time constants. (B) Exponential time constants for the fits in (A) with error bars as 95% 
confidence intervals. (C) Power-law exponents for the fits in (A), with 95% confidence intervals. (D) Best-
fit exponential time constants from individual neurons as a function of switching frequency. We observed 
a significantly negative correlation (R =  − 0.32, p ≪  0.01). (E) Best-fit power law exponent from individual 
neurons as a function of switching frequency. Both quantities were not significantly correlated (R =  − 0.0043, 
p =  0.95).
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our LS dataset in terms of overlap between distributions (Fig. 5E), ROCs (Fig. 5F), and the timecourse of the AuC 
(Fig. 5G). We note that the AuC remained significantly above chance level even 5 sec after step onset indicating 
that some discriminability is achievable at the single neuron level.

We next investigated whether the weaker degree of adaptation displayed by CMS pyramidal neurons (Fig. 6A) 
gave rise to greater discriminability. Our results show that overlap between the firing rate distributions imme-
diately before and after the step onset was similar to that between those immediately before the step onset and 

Figure 4. CMS pyramidal neurons display power law adaptation to envelope steps. (A) PSTH response 
(black) from an example CMS neuron to envelope steps switching at rates of 0.1 Hz (left), 0.25 Hz (center), and 
1 Hz (right). Also shown are exponential (red) and power law (blue) fits with time constants and exponents, 
respectively. (B) Exponential time constants for the fits in (A) with error bars as 95% confidence intervals.  
(C) Power-law exponents for the fits in (A) with 95% confidence intervals. (D) Best-fit exponential time 
constants from individual neurons as a function of switching frequency. We observed a strong and significantly 
negative correlation for frequencies up to 1 Hz (blue, R =  − 0.47, p ≪  0.01) and 8 Hz (red, R =  − 0.62, p ≪  0.01). 
(E) Best-fit power law exponent from individual neurons as a function of switching frequency. Both quantities 
were not significantly correlated (R =  − 0.0043, p =  0.95) for frequencies up to 1 Hz (blue). When including 
higher frequencies up to 8 Hz, we observed a weak but significantly positive correlation (red, R =  0.21, p =  0.04).
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Figure 5. Adaptation to envelope steps causes ambiguity in LS pyramidal neurons. (A) PSTH response 
from the same example LS neuron shown in Fig. 2A (black) and standard deviation (dashed black lines). We 
compared the firing rate distributions immediately after step onset (blue) and after adaptation before step offset 
(red) to that immediately before step onset (gray). (B) Firing rate probability densities immediately before step 
onset (black), immediately after step onset (blue), and immediately before step offset (red). (C) ROC curves 
from chance (black), immediately after step onset (blue), and after adaptation (red). (D) Area under the ROC 
curve (AuC) as a function of time with reference being immediately before step onset. (E) Population-averaged 
firing rate probability densities immediately before step onset (black), immediately after step onset (blue), and 
immediately before step offset (red). The firing rate was normalized by first subtracting the mean baseline and 
dividing by the standard deviation. (F) Population-averaged ROC curves from chance (black), immediately 
after step onset (blue), and after adaptation (red). (G) Population-averaged AuC as a function of time. The gray 
bands show 1 SEM.
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Figure 6. Adaptation to envelope steps causes less ambiguity in CMS pyramidal neurons. (A) PSTH 
response from the same example CMS neuron shown in Fig. 2B (black) and standard deviation (dashed black 
lines). We compared the firing rate distributions immediately after step onset (blue) and after adaptation before 
step offset (red) to that immediately before step onset (gray). (B) Firing rate probability densities immediately 
before step onset (black), immediately after step onset (blue), and immediately before step offset (red). (C) ROC 
curves from chance (black), immediately after step onset (blue), and after adaptation (red). (D) Area under the 
ROC curve (AuC) as a function of time with reference being immediately before step onset. (E) Population-
averaged firing rate probability densities immediately before step onset (black), immediately after step onset 
(blue), and immediately before step offset (red). (F) Population-averaged ROC curves from chance (black), 
immediately after step onset (blue), and after adaptation (red). (G) Population-averaged AuC as a function of 
time. The gray bands show 1 SEM. Inset: The change in AuC was significantly greater for LS (left) than for CMS 
(right) neurons (p <  0.05, one-way ANOVA).
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offset (Fig. 6B) as reflected in the ROC curves (Fig. 6C). Consequently, the AuC remained more or less constant 
after the step onset (Fig. 6D). Qualitatively similar results were seen across our CMS dataset in terms of overlap 
between distributions (Fig. 6E), ROCs (Fig. 6F), and the timecourse of the AuC (Fig. 6G). Comparing results 
between CMS and LS revealed a significantly lesser change in AuC (i.e. the difference between the AuC at step 
onset and offset) for the former than for the latter (Fig. 6G, inset).

Thus, we conclude that adaptation can significantly reduce discriminability of responses to step changes in 
envelope. Discriminability impairment was greatest in LS and weakest in CMS. The implications of these results 
are discussed below.

Discussion
Summary of results. We investigated how pyramidal neurons within the ELL CMS and LS segments 
responded to second order step changes. We found that LS pyramidal neurons responded to such stimuli through 
an initial increase in firing rate followed by a slower decay whose timecourse was scale invariant as it was well fit 
by a power law independently of step duration. CMS pyramidal neurons also responded to the step onset with an 
increase in firing rate but displayed significantly less adaptation than their LS counterparts. We then used signal 
detection theory to quantify the ability of an ideal observer to discern the change in firing rate due to the step 
increase during the early and late phases of adaptation. Our results showed that adaptation in LS significantly 
reduced discriminability as the mean firing rate decreased closer to its value before step onset. In contrast, dis-
criminability did not decrease as much for CMS neurons, consistent with their decreased tendency to display 
adaptation.

Resolving ambiguity caused by adaptation. It is well known that adaptation in neural responses causes 
ambiguity as stimuli with different characteristics (e.g. intensity) can then give rise to the same neural response 
(e.g. firing rate)1,4,5. Our results have shown that the greater level of adaptation in LS neurons caused greater ambi-
guity than the lower levels seen in CMS neurons. How then does the brain resolve ambiguity caused by adapta-
tion? One potential solution to this problem is to take advantage of the fact that the neural response immediately 
after the step can encode stimulus amplitude23. Our results show that this solution can also be implemented in the 
electrosensory system but requires that the stimulus after onset varies slowly, which is not typically seen under 
natural conditions9–11. Another solution is to use parallel coding such that information about first and second 
order stimulus attributes are encoded separately, either by different neural circuits or through different attributes 
of the neural response. Indeed, it was proposed that information about first and second order stimulus features 
could be encoded by firing rate and spike timing in within the same spiking response, respectively4. Our results 
however support the former hypothesis in that pyramidal neurons within different maps of the body surface can 
resolve ambiguity by displaying differential degrees of adaptation. Pyramidal neurons within all ELL segments 
project to the midbrain torus semicircularis (TS) (see ref. 8 for review). While the adaptation properties of TS 
neurons to second order attributes of electrosensory stimuli have not been systematically characterized to date, 
previous studies have shown that these neurons can respond selectively to different features of electrosensory 
stimuli such as movement24–26, natural communication stimuli27–29, and second order attributes16. In particular, 
the ambiguity caused by adaptation is most likely resolved in TS as different subsets of neurons each respond 
selectively to first and second-order features of electrosensory stimuli16. Further studies are however needed to 
understand how TS neurons integrate input from pyramidal neurons within all ELL segments.

Mechanisms mediating adaptation by ELL pyramidal neurons to second order electrosensory 
stimuli. What are the mechanisms underlying the differential degree of adaptation to second order electrosen-
sory stimuli observed in CMS and LS pyramidal neurons? Previous studies have shown that pyramidal neurons 
across the different ELL segments displayed differential expressions of SK channels30. Indeed, SK channel expres-
sion is lowest in CMS and highest in LS pyramidal neurons. Previous studies have also shown that SK channel 
expression was directly correlated with the differential degree of adaptation displayed by these cells to first order 
steps in current injection in vitro31,32. Here we have shown that this differential degree of SK expression also cor-
relates with differential degrees of adaptation to second order steps in sensory stimulation in vivo. We note that 
only two SK channel subtypes are expressed in the ELL: SK1 and SK2, and both subtypes display the same pattern 
of graded expression amongst the three tuberous ELL segments30,31. However, while SK2 channels are located on 
the somata of ON-type pyramidal neurons only, SK1 channels are instead located on the apical dendrites of both 
ON- and OFF-type pyramidal neurons. Since we observed that both ON and OFF-type pyramidal neurons did 
not display major differences in terms of adaptation to second order stimuli, we hypothesize that it is SK1, rather 
than SK2, channels that likely mediate the differential adaptation properties of CMS and LS pyramidal neurons. 
As mentioned below, SK2 channels are more likely involved in the processing of AM stimuli. Importantly, pyram-
idal neurons receive large amounts of feedback on their apical dendrites33,34, which can strongly alter responses 
to sensory input35–42. It is thus likely that the differential adaptation properties of CMS and LS pyramidal neurons 
are due to differential integration of feedback input that is mediated by SK1 channels. Further studies are however 
needed to test this hypothesis.

Previous studies have shown that neuromodulators can strongly influence ELL pyramidal neuron tuning to 
sensory input43–45 (see refs 46,47 for review). In particular, serotonin increases ELL pyramidal neuron responses 
to stimuli associated with same sex conspecifics44 by inhibiting SK channels43. As mentioned above, LS pyramidal 
neurons display the strongest while CMS pyramidal neurons display the weakest levels of SK channel expres-
sion30. Interestingly, LS pyramidal neurons also receive the highest levels of serotonergic input while CMS pyram-
idal neurons received little to no serotonergic input43. A recent study has shown that SK channels play a significant 
role in determining ELL pyramidal neuron responses to envelopes in LS20. Indeed, pharmacological inactivation 
of SK channels strongly increased responses to low frequency envelopes, which is consistent with decreases in 
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adaptation strength20. It is thus very likely that increases in serotonin levels will strongly alter LS ELL pyrami-
dal neuron responses to envelopes by downregulating SK channels. We thus predict that increases in serotonin 
levels will decrease adaptation in LS pyramidal neurons, thereby increasing their responses to the low frequency 
components of envelopes and making their responses more similar to those of CMS pyramidal neurons. Further 
studies are needed to verify this prediction and are beyond the scope of this paper.

Comparison between coding strategies used by the electrosensory system for processing first 
vs. second-order stimulus features. Comparison of results obtained when considering either the EOD 
AM or envelope of electrosensory stimuli have revealed that the electrosensory system uses different strategies 
for each stimulus attribute. These differences start at the level of the sensory periphery. Indeed, electroreceptor 
afferents display pronounced adaptation in response to step changes in EOD amplitude48, thereby perform-
ing high-pass filtering of these stimuli49,50. This adaptation has important functional roles in enabling strong 
responses to natural electrocommunication stimuli occurring on top of a background51,52 and possibly optimizing 
information transmission based on temporal decorrelation of natural AM stimuli10. Furthermore, power law 
adaptation in afferents is necessary in order for the firing rate response to looming objects to be independent of 
object velocity53. Such adaptation however causes ambiguity since a given object, despite giving rise to the same 
change in EOD amplitude, actually gives rise to different firing rates in a given afferent depending on whether 
it is looming or receding54. The situation is quite different when instead considering envelopes as a recent study 
has shown that afferent sensitivity to envelopes is actually independent of temporal frequency18, implying that 
peripheral afferents do not display adaptation to this stimulus attribute. Further, correlations between afferents 
can faithfully track the envelope’s detailed time course19. These results imply that afferents can faithfully and 
unambiguously code for envelopes, which is not the case for AMs as mentioned above.

Differences in coding strategies for AMs and envelopes are also found at the level of the ELL. Indeed, previous 
studies have found strong differences between the tuning curves of ELL pyramidal neurons to AMs across the 
CMS, CLS, and LS maps. Indeed, CMS, CLS, and LS neurons tend to be tuned to low, medium, and high tem-
poral frequencies, respectively55,56. These differences appear to be largely intrinsic in origin and likely involve SK 
channels and other calcium-dependent mechanisms32,56. Importantly, differences in levels of expression of SK2 
channels between ON and OFF-cells in the CLS and LS maps correlate well with differential adaptation prop-
erties, thereby potentially explaining why ON-cells display more phasic responses to AMs than their OFF-type 
counterparts32. In general, ON and OFF-type pyramidal neurons tend to respond in opposite fashion to AM 
stimuli20,35,38,57–59. A recent study has shown synergy between ON and OFF-type cells as the ambiguity in terms of 
distinguishing between looming and receding motion introduced by adaptation in peripheral afferents is resolved 
at the level of the ELL by having ON and OFF-type cells respond similarly to looming and receding motion, 
respectively54. The situation is, however, quite different when envelopes are instead considered. Indeed, while 
previous studies have shown that ELL pyramidal neurons can respond to envelopes14,16, their tuning has only been 
reported recently20. Interestingly, as mentioned above, no differences were seen between the responses of ON and 
OFF-type pyramidal neurons to envelopes, which contrasts with their opposite responses to AMs. Scale invariant 
adaptation in LS cells to envelopes enables optimal encoding of natural envelope stimuli through temporal decor-
relation at the single neuron level20. Specifically, the responses of ELL LS pyramidal neurons to natural envelope 
stimuli are then independent of temporal frequency, which is similar in concept to previous results showing that 
power law adaptation in peripheral afferents makes their responses to looming objects independent of velocity53.

While studies including this one have concentrated on how single ELL pyramidal neurons respond to enve-
lopes, it is clear that population coding of envelopes must be considered. This is especially important as ELL 
pyramidal neurons display correlations in their responses to electrosensory stimuli that are a function of receptive 
field overlap as well as stimulus statistics36,37,60. While the traditional point of view is that correlated activity is 
detrimental to information transmission61, theoretical studies have shown that correlations can actually benefit 
information transmission62, as recently shown experimentally63. While experiments have shown that correlations 
in CLS and LS ELL pyramidal neurons are strong36,37,60, correlations in CMS have not been measured to this day 
in A. leptorhynchus. The smaller receptive field sizes of CMS neurons, and the consequential lesser degree of 
receptive field overlap64, would suggest that they are weaker in this map. However, it is important to note here that 
ELL pyramidal neurons are organized in columns each consisting of six cells that receive nearly identical input 
from peripheral afferents64. It is thus likely that, even within CMS, ELL pyramidal neurons within a given column 
will display significant correlations. Further studies are needed to understand population coding of envelopes by 
ELL pyramidal neurons and how adaptation in LS, which mediates temporal decorrelation at the single neuron 
level20, affects such coding.

Parallel coding of behaviorally relevant stimulus features by multiple maps of the body surface.  
Parallel processing of sensory information is a common strategy used across modalities including auditory65–67, 
visual68–70, and electrosensory7,71,72 in order to code for different stimulus attributes. In particular, in the lateral 
geniculate nucleus, magnocellular cells display strong adaptation to contrast whereas parvocellular cells instead 
display weak or nonexistent adaptation73. Moreover, many systems have multiple representations of the same 
sensory space by different neural populations, thereby allowing each representation to focus on a subset of behav-
iorally relevant stimuli74,75. While previous studies have shown that pyramidal neurons within different maps of 
the ELL were tuned to different frequency ranges of first order attributes of electrosensory stimuli and displayed 
differential degrees of adaptation to these attributes32,55,56, which is in agreement with the hypothesis that these 
maps code distinct features of electrosensory stimuli. Our results showing that pyramidal neurons within dif-
ferent maps display differential degrees of adaptation to the second order attributes of electrosensory stimuli 
therefore suggest that parallel coding of these attributes is also achieved by these maps.
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As mentioned above, further studies are needed in order to determine how pyramidal neurons within each 
map are tuned to second order attributes of electrosensory stimuli and are beyond the scope of this paper.

Alternatively, it is possible that the weak adaptation displayed by CMS pyramidal neurons enable them to 
faithfully encode the second order attributes of electrosensory stimuli while the stronger adaptation displayed by 
LS neurons instead enables them to perform temporal decorrelation76. Previous theoretical arguments suggest 
that efficient coding of natural stimuli through temporal decorrelation should be complemented by a faithful rep-
resentation of such stimuli77. LS pyramidal neurons then efficiently encode natural second order stimuli through 
temporal decorrelation as shown recently20 while CMS pyramidal neurons instead provide a faithful representa-
tion of these stimuli. Input from both channels would be necessary for decoding in downstream areas such as TS.

Materials and Methods
Animals. All procedures have been described previously16,27,37,44,52,78 and were approved by the McGill 
University Animal Care Committee. All experiments were performed in accordance with the guidelines and 
regulations of the Canadian Council on Animal Care. Weakly electric fish Apteronotus leptorhynchus of either sex 
were obtained from tropical fish suppliers and acclimated to laboratory conditions as per published guidelines79.

Surgery and recordings. Animals were injected intramuscularly with Tubocurarine chloride pentahydrate 
(Sigma, 1 μ g/g body weight), and then respirated with water flowing over the gills at a rate of ∼ 10 mL/min. The 
fish was kept submerged in water except for the top of its head. Local anesthetic (2% lidocaine) was applied prior 
to removing ∼ 6 mm2 of the skin above the skull and gluing a metal post to the skull surface to ensure stability. A 
∼ 2 mm2 hole through the skull was then drilled over the eminentia granularis posterior over the ELL. We used 
metal-filled micropipettes80 to obtain extracellular recordings from ELL pyramidal neurons within the lateral 
(LS) and centromedial (CMS) segments. As before, we used surface landmarks as well as the depth of recording 
in order to differentiate between both segments56,81. The resulting signal was amplified (Model 1000 amplifier, 
A-M systems) and sampled at 10 KHz prior to being stored on the computer using a CED Power1401 and Spike2 
software.

Stimulus. Our stimuli consisted of amplitude modulations (AMs) of the animal’s own EOD that persists after 
curare injection. It is important to note here that the EOD is a carrier signal and that the relevant stimulus for ELL 
pyramidal neurons is the EOD AM. The animal’s EOD was recorded with chloridized silver wires placed near the 
head and tail. The EOD’s zero-crossings with a positive slope were used to trigger a function generator (Agilent 
33220A) in order to create a train of sinusoidal cycles at a frequency slightly (40 Hz) higher than the EOD fre-
quency. This train was then multiplied with the EOD AM stimulus (MT3 multiplier, Tucker Davis Technologies), 
attenuated (LAT45 attenuator, Leader Electronics), and then isolated from ground (A395 linear stimulus isolator, 
World Precision Instruments), prior to being delivered to the experimental tank via two chloridized silver wires 
located ∼ 20 cm on each side of the fish. Stimulus intensity was monitored by a small dipole located ∼ 2 mm from 
the skin surface and placed at the animal’s midpoint with respect to both the rostro-caudal and dorso-ventral 
axes. Stimulus contrast (i.e the ratio of the AM to the baseline EOD amplitude) was about 15% as in previous 
studies18,19,36,37,44.

AM stimuli consisted of 4Hz sinusoids as well as band-pass (5–15 Hz and 60–80 Hz, fourth-order Butterworth) 
filtered white noise (i.e. first order) whose amplitude (i.e. the envelope or second order) was modulated in a step-
wise fashion at frequencies 0.05, 0.1, 0.25, 0.5, 1, 2, and 4 Hz for 5–15 Hz and 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 8, and 
16 Hz for 60–80 Hz. The 5–15 Hz and 60–80 Hz first order modulations mimic signals that occur during encoun-
ters between same and opposite-sex conspecifics, respectively. Changes in the distance and orientation between 
two or more conspecifics will give rise to a time-varying envelope signal under natural conditions9–12. Each stim-
ulus was presented for a sufficiently long duration such that responses could be averaged for at least 15 cycles (for 
low frequencies) and up to 180 cycles (for high frequencies). All stimuli were generated in Matlab (Mathworks).

Data analysis. Data analysis was also performed in Matlab. We first high-pass filtered (eighth-order 
Butterworth, 300 Hz cutoff) the digitized extracellular recording and action potential times were obtained as 
the times at which the signal crossed an appropriately-chosen threshold. These were then used to make a binary 
representation of the spike train at 10 kHz by setting the value of a given bin to 1 if an action potential occurred 
within it and 0 otherwise. Since no significant differences were observed when comparing responses to 5–15 Hz 
and 60–80 Hz noises, data were pooled.

Pyramidal neurons were first classified as either ON or OFF-type based on whether they responded to the 
upstrokes or downstrokes of a 4 Hz sinusoidal stimulus6. We then constructed peri-stimulus time histograms 
(PSTHs) by averaging over each step onset and offset and typically used 50 bins for a given step duration. The 
tendency to display spike frequency adaptation (i.e. the adaptation strength) was quantified as the change in firing 
rate in response to the step onset for a 0.1 Hz frequency (i.e. the difference between the peak firing rate and the 
firing rate just prior to the step offset).

Time course of spike frequency adaptation. The time course of spike frequency adaptation was characterized by 
first estimating the steady state firing rate from PSTHs generated using evenly spaced bins. The steady state firing 
rate was then subtracted from PSTHs generated using logarithmically spaced bins prior to normalizing by, and 
aligned on, the maximum value. The normalized PSTHs were then fitted using Matlab’s “nlinfit” function using 
either exponential or power law curves:

= τ−r t Ae( ) , (1)exp
t/
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= α−r t Bt( ) (2)pow

where rexp(t) and rpow(t) are now the normalized respective firing rates for the exponential and power law fits, A, B 
are constants, τ is the exponential time constant in seconds, and α is the power law exponent. We note that nor-
malization does not alter the values of either τ or α.

Receiver operating characteristic analysis. We quantified the ability of an ideal observer to distinguish between 
low and high envelope values using receiver-operator characteristic (ROC) analysis of single neuron activity. We 
computed the probability distributions of firing rate for a single cell over the course of a 0.1 Hz switch by separat-
ing the time course into 500 ms bins, computing the firing rate during each bin over each repetition, and creating 
a histogram of those firing rates. To compute the ability to discriminate an input envelope, we compared the firing 
rate distributions just before and at several times after the step onset. The probabilities of correct detection (PD) 
and false alarm (PFA) were computed by integrating the distributions up to a threshold and the ROC curve was 
obtained by plotting PD as a function of PFA while systematically moving the threshold21. We quantified discrim-
inability by computing the area under the ROC curve (AuC). A value of 1 indicates perfect discrimination while 
a value of 0.5 indicates chance level.

To compute the population-averaged discriminabilities of LS and CMS pyramidal neurons, we normalized the 
firing rate probability distributions for each cell with respect to the reference distribution taken from just before 
the step onset, setting the mean of that distribution to zero and scaling all other distributions by the standard 
deviation of the reference. This normalization allows us to compare firing rate histograms between cells. We then 
computed the ROC curve of each cell separately from these distributions. To compute the average ROC curve, we 
first rotated all points of the curve clockwise by π

4
 radians. We binned the interval [0, 2 ] into 7 bins, set the 

“centre” of each bin as the average abscissa value of the points contained in the bin, the mean of the ROC curve as 
the mean of the ordinate values in that bin, and the 95% confidence intervals of the ROC curve as the 95% confi-
dence intervals of those same ordinate values. These points are then rotated counter-clockwise π

4
 radians back to 

the ROC-style orientation.
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