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Vonderschen K, Chacron MJ. Sparse and dense coding of natural
stimuli by distinct midbrain neuron subpopulations in weakly electric
fish. J Neurophysiol 106: 3102–3118, 2011. First published Septem-
ber 21, 2011; doi:10.1152/jn.00588.2011.—While peripheral sensory
neurons respond to natural stimuli with a broad range of spatiotem-
poral frequencies, central neurons instead respond sparsely to specific
features in general. The nonlinear transformations leading to this
emergent selectivity are not well understood. Here we characterized
how the neural representation of stimuli changes across successive
brain areas, using the electrosensory system of weakly electric fish as
a model system. We found that midbrain torus semicircularis (TS)
neurons were on average more selective in their responses than
hindbrain electrosensory lateral line lobe (ELL) neurons. Further
analysis revealed two categories of TS neurons: dense coding TS
neurons that were ELL-like and sparse coding TS neurons that
displayed selective responses. These neurons in general responded to
preferred stimuli with few spikes and were mostly silent for other
stimuli. We further investigated whether information about stimulus
attributes was contained in the activities of ELL and TS neurons. To
do so, we used a spike train metric to quantify how well stimuli could
be discriminated based on spiking responses. We found that sparse
coding TS neurons performed poorly even when their activities were
combined compared with ELL and dense coding TS neurons. In
contrast, combining the activities of as few as 12 dense coding TS
neurons could lead to optimal discrimination. On the other hand,
sparse coding TS neurons were better detectors of whether their
preferred stimulus occurred compared with either dense coding TS or
ELL neurons. Our results therefore suggest that the TS implements
parallel detection and estimation of sensory input.
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HOW NEURAL POPULATIONS ENCODE sensory information changes
at each processing stage in the brain. In particular, neurons
located in more peripheral sensory areas tend to use a dense
code in order to represent the external environment in that they
respond to a wide range of stimuli. In contrast, neurons located
in more central areas tend to use a sparse code in that they
respond selectively to particular stimulus features (Barlow
1972) such as faces (Rolls and Tovee 1995; Young and
Yamane 1992), persons and/or objects (Quiroga et al. 2005),
places (Thompson and Best 1989), odors (Hromádka et al.
2008; Perez-Orive et al. 2002), or sounds (DeWeese et al.
2003; Olshausen and Field 2004). Sparse neural codes are
thought to be advantageous as they are easier to read out by
downstream neurons and are more energy efficient (Attwell
and Laughlin 2001; Földiák and Young 1995). However, the
nature of the mechanisms by which a dense code is converted

into a sparse one is poorly understood and remains an impor-
tant problem in systems neuroscience.

Here we focus on the transition from dense to sparse coding
across two subsequent sensory processing stages in the weakly
electric fish Apteronotus leptorhynchus. These fish actively
generate a quasi-sinusoidal electric field through the electric
organ discharge (EOD). Electroreceptors on the skin monitor
EOD amplitude modulations (AMs) caused by prey or conspe-
cifics and relay this information to pyramidal cells within the
electrosensory lateral line lobe (ELL). Pyramidal cells then
synapse onto cells within the midbrain torus semicircularis
(TS), which is homologous to the mammalian inferior collicu-
lus (see Chacron et al. 2011 for review). While ELL pyramidal
cells tend to respond to a broad range of electrosensory stimuli
(Bastian 1981; Chacron et al. 2005), TS neurons instead
display much more selectivity in their responses (Fortune and
Rose 1997a, 2000) and the mechanisms leading to this selec-
tivity are largely unknown (but see Chacron et al. 2009;
Chacron and Fortune 2010).

The spatiotemporal characteristics of natural stimuli in these
fish are well known (Zakon et al. 2002). In particular, two fish
that come into close contact will experience a sinusoidal AM of
their field (i.e., a beat) whose frequency is equal to the
difference frequency between the fields and ranges between 0
and 400 Hz (Benda et al. 2005; Zakon et al. 2002). Moreover,
these fish display communication stimuli (i.e., chirps) during
agonistic and courtship encounters that consist of transient
increases in their EOD frequency that occur on top of the beat
(Bastian et al. 2001; Hupé and Lewis 2008; Zakon et al. 2002).
Although the responses of ELL pyramidal cells to beats and
chirps are well characterized (Krahe et al. 2008; Marsat et al.
2009; Marsat and Maler 2010), the responses of TS neurons to
these stimuli are largely unknown.

To better understand the mechanisms by which TS neurons
become more selective than ELL neurons, we investigated the
responses of ELL and TS neurons to a wide range of behav-
iorally relevant stimuli. While a significant fraction (19%) of
TS neurons were highly selective in their responses, the re-
mainder (81%) displayed dense coding similar to that of ELL
neurons. Our results therefore indicate that the transition from
a dense code in ELL to a sparse code in TS does not involve
making every TS neuron more selective than its afferent input.
Rather, our results show that it involves making a subpopula-
tion of TS neurons display sparse responses in order to better
detect the presence of relevant stimuli in the environment and
making a distinct subpopulation display dense responses in
order to better discriminate between different stimuli. We
suggest that combining the information streams from these two
subclasses allows the animal to both optimally detect and
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distinguish between different natural stimuli. A short report of
part of our results has been published previously in abstract
form (Vonderschen and Chacron 2009).

METHODS

Experimental preparation. Forty-six adult specimens of either sex
of the weakly electric fish A. leptorhynchus were used in this study.
The fish were housed in groups (2–8) at controlled water temperature
(26–29°C) and water conductivity (300–600 �S/cm) in 150-liter
tanks according to published guidelines (Hitschfeld et al. 2009). For
experiments animals were transferred to a Plexiglas tank (30 cm � 30
cm � 10 cm) supplied with water from the animal’s home tank.
Animals were paralyzed with an intramuscular injection of tubocura-
rine chloride hydrate (100 �l of a 0.2% solution; Sigma, St. Louis,
MO) and artificially respirated with water flowing through their gills
at a rate of �10 ml/min. All surgical methods have been described
previously (Chacron and Bastian 2008; Chacron et al. 2009; Chacron
and Fortune 2010; Krahe et al. 2008; Toporikova and Chacron 2009).
Briefly, the animal’s head was locally anesthetized (5% lidocaine
ointment). Subsequently, the skull was partly exposed and a small
fenestra was carved over the recording region. All procedures were
approved by McGill University’s animal care committee.

Recordings. Extracellular recordings from pyramidal cells in the
hindbrain ELL were obtained with Carbostar electrodes (Kation
Scientific). Recordings were limited to pyramidal cells within the
lateral and centrolateral segments of ELL that respond most strongly
to communication signals (Marsat et al. 2009; Marsat and Maler
2010). Pyramidal cells within these segments can be distinguished
from cells within the centromedial segment based on recording depth,
the medio-lateral and rostro-caudal positions of the recording elec-
trode with respect to surface landmarks such as the “T0” vein and its
afferent veins (Maler et al. 1991), and their responses to sensory input
as previously described (Krahe et al. 2008; Marsat et al. 2009; Marsat

and Maler 2010). Using these criteria, we found that n � 6 ELL
neurons were located in the centrolateral segment while the remaining
n � 20 were located in the lateral segment. As response selectivity as
quantified in this study (see below) did not differ significantly be-
tween ELL neurons recorded in the centrolateral and the lateral
segments (Kolmogorov-Smirnov test, P � 0.52), the data were
pooled.

ELL pyramidal cells provide excitatory input to the midbrain torus
semicircularis dorsalis (TS) (Fig. 1A). Recordings from TS neurons
were obtained with patch electrodes (Chacron et al. 2009; Chacron
and Fortune 2010; Rose and Fortune 1996). Briefly, electrodes were
pulled on a horizontal electrode puller (Sutter Instruments P-97) with
borosilicate glass capillaries (OD 1 mm, ID 0.58 mm; AM Systems)
and filled with patch solution (in mM: 100 KAc, 43 D-mannitol, 20
KOH, 10 HEPES, 2 KCl, 1 MgCl2 anhydrous, pH 7–7.3); impedances
ranged between 10 and 30 M�. Extracellular recordings were ob-
tained in the “loose patch” configuration (n � 128). Some neurons
(n � 59) were also recorded from intracellularly. As the response
properties of these neurons were not significantly different from those
of neurons that were recorded from extracellularly, the data were
pooled. Furthermore, some of these intracellularly recorded neurons
(n � 14) were filled with neurobiotin (Rose and Fortune 1996).
Subsequent histological analysis revealed that these were distributed
in layers II–VIIID (data not shown), which suggests that our record-
ings came from most if not all TS layers.

Recordings were amplified (AM Systems 1700, Axoclamp 2B with
HS2A � 0.1 headstage, respectively), digitized at 10-kHz sampling
rate (CED 1401 hardware plus Spike2 software; Cambridge Elec-
tronic Design, Cambridge, UK), and stored on a computer for later
analysis.

Stimulation. A detailed description of the stimulation protocol was
given by Bastian et al. (2002). As A. leptorhynchus possesses a
neurogenic electric organ during adulthood, its EOD is unperturbed by

Fig. 1. In vivo recordings and stimulus ensemble used in
this study. A: schematic side view of the brain of Apter-
onotus leptorhynchus based on Maler et al. (1991). Scale
bar, 1 mm. Recordings were obtained from neurons in
the hindbrain electrosensory lateral line lobe (ELL) and
in the midbrain torus semicircularis (TS). B: cartoon
illustrating the behavioral context of chirp production in
weakly electric fish. Top: the 2 fish produce electric
organ discharges (EODs) at different frequencies, creat-
ing a beat phenomenon that can be perceived by both
fish. The oval rings represent the field lines from each
fish. Bottom: the upper fish produces a small chirp—a
transient rise in its EOD frequency that briefly increases
the beat frequency, which is best seen by looking at the
time course of each fish’s EODs. Note that the chirp
features were exaggerated for illustration purposes. C,
top: instantaneous EOD frequency of the 2 fish in B.
Bottom: amplitude modulation (AM, black line) of the
carrier wave (gray line) due to the ongoing interference
between 2 EODs. Note that the small chirps act as a
phase reset of the beat. Small chirps used in this study
were defined by the beat frequency (bf), the chirp excur-
sion frequency (cf), and the phase of the beat at which
the chirp occurred (cp). D: AM components of natural
and artificial stimuli used in this study. Small chirps
characterized by 5 different beat frequencies, 5 different
chirp excursion frequencies, and 4 different phases of the
beat were used in this study. Only 1 variant of a big chirp
was used. Pure beat stimuli were given at 9 different
frequencies. The noise stimulus consisted of zero mean
Gaussian white noise that was low-pass filtered at
120 Hz.
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injection of paralytic agents. To obtain AMs of the fish’s own EOD,
the desired AM waveform was first multiplied (MT 3; Tucker Davis
Technologies) with a sinusoidal carrier wave that was phase-locked to
the animal’s own EOD. The resulting signal was then attenuated
(Leader LAT-45; Leader Electronics), isolated from ground (WPI
A395 linear stimulus isolator), and delivered to the experimental tank
via a pair of silver-silver chloride electrodes located on each side of
the animal. Such stimuli will primarily activate p-type tuberous
electroreceptors on the animal’s skin that respond to such modulations
through changes in firing rate (Scheich et al. 1973). However, it has
been shown previously in other species of weakly electric fish that
AMs of the EOD will also cause latency shifts in the firing of t-type
electroreceptors (Carlson and Kawasaki 2006b, 2008; Heiligenberg
and Bastian 1980; Heiligenberg and Rose 1985; Kawasaki and Guo
1996; Mathieson et al. 1987; Rose and Heiligenberg 1985). Since the
p- and t-unit pathways display anatomical convergence at the levels of
the ELL and TS (Mathieson et al. 1987; Rose and Heiligenberg 1985),
we cannot fully exclude that the activation of the t-unit pathway
contributes to the observed responses of ELL and TS neurons.

The AM stimuli used in this study consisted of steps (250-ms
duration, 1-Hz repetition), zero mean low-pass filtered (120-Hz cutoff
frequency, 8th order Butterworth filter) Gaussian white noise (5
repetitions of a 20-s-long segment), beats, and the AMs that are
associated with chirps (Fig. 1D). Beats are sinusoidal AMs that
naturally result from the interference of two fishes’ EODs and signal
sex or social status (Hagedorn and Heiligenberg 1985). We used
different beat frequencies (1, 2, 4, 8, 16, 32, 64, 128, 256 Hz).

Chirps are considered communication signals and occur when one
fish transiently increases its EOD frequency in a stereotyped fashion
(Fig. 1, B and C). The two major chirp types are distinct by their
duration, chirp frequency excursion and amplitude modulation, and
associated beat frequencies (Bastian et al. 2001; Hagedorn and Hei-
ligenberg 1985; Zupanc and Maler 1993; Zupanc et al. 2006): small
chirps (type II, frequency excursion 30–180 Hz, duration �15 ms)
have been associated with agonistic behaviors that are mostly ob-
served during male-male encounters. As males tend to produce higher
EOD frequencies (800–1,000 Hz) than females (600–800 Hz) (Zakon
et al. 2002), the EOD frequency differences between same-sex con-
specifics tend to be smaller than those between opposite-sex conspe-
cifics. As a consequence, small chirps tend to occur on top of a lower
(�100 Hz)-frequency beat. In contrast, big chirps (type I, frequency
excursion 300–900 Hz, duration �25 ms, amplitude reduction) have
been associated with courtship (Bastian et al. 2001). They commonly
occur during male-female encounters and occur on top of a higher-
frequency beat. Both big and small chirps occur randomly at any
phase of the beat (Hupé and Lewis 2008).

This frequency excursion can be simulated as a Gaussian function
and leads to an accelerated phase progression of the beat (Benda et al.
2005). To obtain a beat signal with an embedded chirp S(t) �
cos[�(t)], we model the phase as a linear sum of the phase progression
due to the beat and the phase progression due to the chirp: �(t) �
��Beat(t) � ��Chirp(t), where ��Beat(t) � 2� bf t with bf being the
beat frequency in Hz.

The phase advance due to the chirp ��Chirp is defined by the
integral over time of the Gaussian function that describes the fre-
quency excursion during a chirp:

��chirp�t� � cf �
��

t

e�� x � � � tc
� �2

dx

where � � � t⁄2 �ln�10�, with �t being the chirp duration equiva-
lent to the width of the Gaussian function at 10% height; cf is the
maximum of the frequency excursion during the chirp; tc is the chirp
onset time expressed relative to the beat phase and is given by

tc �
n 	 cp

bf

with n being the number of beat cycles preceding the chirp and cp
being the phase of the beat at which the chirp occurs. For small chirps
we used a chirp duration of 14 ms. We varied three parameters: the
beat frequency (bf: 5, 10, 20, 30, 60 Hz), the maximum frequency of
the chirp frequency excursion [i.e., the chirp frequency (cf): 30, 60,
90, 123.2, 153 Hz], and the chirp onset phase of the beat [i.e., the chirp
phase (cp): 0, 25, 50, 75% of the beat period]. Note that, because of
limited recording times, we could not test all possible combinations of
these parameters for a given neuron. Different chirp phases were
presented with chirp excursion frequency fixed to 60 Hz and beat
frequency to 5 Hz as default values; the different chirp frequencies
were presented with the beat frequency set to 5 Hz and the chirp phase
chosen to be the one that elicited the best responses for that neuron.
Finally, beat frequency was varied with the chirp frequency fixed to
60 Hz, and the chirp phase was fixed to the one that elicited the best
responses.

Big chirps were generated with a duration of 24 ms and the onset
phase fixed to cp � 0%. The default settings were a beat frequency of
100 Hz and a chirp frequency of 600 Hz. In addition, big chirps were
characterized by a Gaussian amplitude reduction to 25% of the
peak-to-peak amplitude during the beat, whose time course mirrored
that of the frequency excursion. We also varied some big chirp
attributes such as the beat frequency (bf: 100, 200, 300, 400 Hz), the
chirp frequency (cf: 0, 300, 600 Hz), and the amplitude reduction
(100%, 75%, 50%, 25%). As with small chirps, only one parameter
was varied while the others were held at their default value. A specific
chirp was presented sequentially at least 10 times at a fixed rate. The
interval between two successive small chirps was either 5 beat cycles,
10 beat cycles, or 1 s. Big chirps were presented at a rate of 1/s.

Since the rate of small chirp production is much higher than that of
big chirps even in male-female encounters (Bastian et al. 2001; Hupé
and Lewis 2008) and it was impossible to present every stimulus to
every neuron given the finite recording times, we decided to concen-
trate on varying small chirp attributes more than big chirp attributes
for most of our data set. As such, the standard stimulus protocol
comprised 24 stimuli (1 step, 1 noise, 9 beats, 1 big chirp, 12 small
chirps). However, for three ELL and five TS neurons, we presented
big chirps with varying attributes as described above.

Data analysis. All off-line analysis routines were custom written in
Matlab (MathWorks, Natick, MA). Spike waveforms were detected
by band-pass filtering the recorded trace (low cutoff frequency 20 Hz,
high cutoff frequency 4 kHz, 8-pole Butterworth filter) and setting an
appropriate threshold. Suprathreshold events (i.e., events that crossed
the threshold from below) were sorted and identified by semiauto-
matic cluster analysis based on the minimum and maximum peaks of
the waveform corresponding to each event. Single-unit recordings
were confirmed by standard criteria such as the consistency of the
action potential shape and the presence of an absolute refractory
period.

Testing response significance. Responses to all stimuli were accu-
mulated as peristimulus time histograms (PSTHs) across 10 or more
trials and were smoothed with a 6-ms-wide rectangular window.
Depending on the stimulus, the PSTHs were triggered on the start of
identical noise segments, the step onset, the chirp onset, or phase zero
of the beat. Whether a neuron responded significantly to a given
stimulus was tested based on the entropy of the PSTH (Kajikawa and
Hackett 2005) computed over a time window starting at stimulus
onset and lasting 250 ms. For chirp stimuli the response window was
set to a quarter of the time between two chirps and was resampled
such as to have 20 bins in all cases. The entropy was then compu-
ted as
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H � ��
i�1

n

p�i�log2p�i�

with p(i) being the probability of a spike falling into bin i.
The entropy contained in the PSTH was compared with the entropy

of PSTHs generated from surrogate data sets. One thousand surrogate
data sets were generated by shuffling the spike times randomly in each
trial of the original PSTH, and the entropy was computed for each
surrogate data set. We considered the response significant if the
entropy in the original PSTH was lower than in 95% of the simula-
tions (P � 0.05 level). We note that we could have also compared the
entropy of the baseline activity to that computed during stimulation in
order to determine whether the response was significant or not
(Chacron et al. 2003). However, the entropy computed from the
surrogate data sets is equal, in theory, to that computed from the
baseline activity, as both would give rise to uniform PSTHs because
they are not correlated with the stimulus. Computing the entropy from
the baseline activity would, however, have severely restricted the set
of stimuli from which we could record neural activity, as it would
have then become necessary to record baseline activity for at least as
long as we could record driven activity.

Chirp selectivity index. For chirp stimuli, the response to the chirp
itself also had to be stronger than the response to the beat as well as
satisfying the criterion described above. This was necessary in order
to exclude neurons that actually responded similarly to the beat and
chirp. We quantified the response to the chirp by computing the chirp
selectivity index:

CSI � �Rchirp � Rbeat

Rchirp 	 Rbeat
�

where Rchirp is the maximum firing rate obtained in a PSTH during a
time window starting with chirp onset; Rbeat is the maximum rate
obtained during the ongoing beat in a time window ending on chirp
onset. The time window was set to a quarter of the time between
consecutive chirps, i.e., 250 ms for chirp presentation at 1 Hz; | . . . |
denotes the absolute value. A neuron for which the CSI value was
�0.1 was taken as responding significantly to the chirp.

Movement selectivity index. Moving stimuli were presented by a
small electric dipole with an interelectrode distance of �1 mm moved
back and forth alongside the fish by a programmable robotic arm at
velocities of 10 cm/s. The dipole emitted a constant positive AM as in
previous studies (Chacron et al. 2009; Chacron and Fortune 2010;
Khosravi-Hashemi et al. 2011). The movement selectivity index was
defined as

MSI � � Rmax � R
max��


Rmax 	 R
max��

�

Rmax is the maximal response rate; R
max	�
 is the response rate at
a phase �
 � 1/4 away from 
max, the movement cycle phase that
elicited the maximal rate. A response for which both the MSI value
was �0.1 and the entropy criterion described in the above section was
fulfilled was taken as significant.

Specificity of neural responses. To test whether neurons would
respond specifically to a given stimulus category that consisted of
either small chirps, big chirps, or moving objects, we built two-
dimensional histograms over the best detection index obtained in each
stimulus category. If a neuron responds to one category but not at all
to another, then we would expect that all data points would lie on the
y � 0 and x � 0 axes. The fraction of data points that fell on the axes
was considered significant if it was different at the 0.05 level from the
fraction obtained by surrogate data sets. These were generated by
5,000 runs of Monte Carlo simulations in which the data points are
distributed uniformly within the range occupied by the data.

Response latency. The response latency was defined as the time
between the step onset or, in a few cases, the step offset and the point
where the PSTH reaches half of its maximum value.

Sparseness measures. The sparseness of a neural code can be
quantified either at the population level or at the single-neuron level.
At the population level, the sparseness is inversely proportional to the
fraction of neurons within a given population that respond to a given
stimulus. At the single-neuron level, the sparseness would be in-
versely proportional to the number of stimuli out of a given set of
stimuli that the neuron responds to, the so-called lifetime sparseness
(Perez-Orive et al. 2002). We note that lifetime and population
sparseness can be independent and as such give different information
about the sparseness of a given neural code (Willmore and Tolhurst
2001). We computed sparseness at the population level, using the
population sparseness index SIp defined by

SIp �
1 � Ap

1 � 1 � n

SIp takes values between 0 and 1, and Ap is the activity fraction
defined by Rolls and Tovee (1995):

Ap �

��
i�1

n ri

n�2

�
i�1

n ri
2

n

where ri is the response of neuron i to a given stimulus, i.e., the
maximum firing rate obtained during the response time window (cf.
Chirp selectivity index). In a sparse coding population only a few
neurons will fire strongly in response to a given stimulus. The
respective firing rate distribution will consequently display a long tail
for high values of the firing rate. We note that the activity fraction Ap

is inversely proportional to the length of the tail of the firing rate
distribution.

We also computed the lifetime sparseness, using the lifetime
sparseness index SIl defined by Vinje and Gallant (2002):

SIl �
1 � Al

1 � 1 � n

where Al is the activity fraction defined by

Al �

��
i�1

n Ri

n �2

�
i�1

n Ri
2

n

where Ri is the response of a given neuron to a stimulus i. In practice,
we took Ri and ri as the maximum firing rates from the PSTH during
the response window. We note that the response window length was
typically 250 ms, although it was shorter for some chirp stimuli as
described above.

Mutual information and spike metrics. If a neuron always fires the
same spike train in response to the same stimulus but different stimuli
elicit different spike trains, an ideal observer would be able to identify
each stimulus just by looking at the neural response. Therefore, the
mutual information, i.e., the information contained in a set of re-
sponses about a set of stimuli, can be measured by assessing the
variability of the responses elicited by one stimulus versus the vari-
ability of the response across different stimuli (Borst and Theunissen
1999).

To quantify the similarity between spike trains we used a nonpara-
metric approach introduced by Victor and Purpura (1996). Briefly, the
similarity is measured as distance d between two spike trains, which
corresponds to the cost of transforming one spike train into the other.
Each elementary step needed to transform a spike train is associated
with a fixed cost. Elementary steps consist of inserting a spike,
deleting a spike, or shifting a spike. The cost of inserting and deleting
is 1. The cost q for shifting ranges from 1 to 500 s	1. The value
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assigned to q is important as it sets the temporal precision in com-
paring spike trains: With q � 0 spike trains are compared under the
assumption of a pure spike count code (i.e., a rate code), whereas high
values of q assume a high precision code (i.e., a temporal code). To
find which temporal precision led to the most successful encoding, we
used q ranging from 0 s	1 to 500 s	1 in steps of 50 s	1. For a given
q, we found the sequence of elementary steps that leads to the minimal
cost by using the algorithm provided by Victor and Purpura (1996).
We then computed the distance di

� between a given spike train ti
� and

a set of n other spike trains {tj
�} j�1

n recorded in response to the same
stimulus � � {1,2, . . . k} (k being the number of stimuli) as the
average cost c to transform this spike train into each of the others:

di
� �

1

n � 1 �
j�1,ji

n

c�ti
�, tj

��

Each spike train ti
� was then allocated to the response category � that

elicited a set of spike trains to which it had a minimum distance:

ti
� → � � min��di

��, with � � 	1, 2, . ., k

The frequency of finding a spike train ti

� elicited by stimulus � and
associated with response category � was represented in a k * k
confusion matrix N(�, �), with k being the number of stimuli. When-
ever a spike train had an equal minimal average distance to a number
m of response categories, each corresponding element of N(�, �) was
increased by 1/m. A set of stimuli is optimally encoded if exclusively
the values on the diagonal of the matrix differ from zero. Values off
the diagonal correspond to incorrectly associating a response with a
stimulus that did not give rise to it. We then computed the mutual
information between the set of responses and the set of stimuli as
follows:

MI � �
��1

k

�
��1

k

p�� � ��log2� p�� � ��
p���p����

�
1

Ntot
�
��1

k

�
��1

k

N�� � ���log2N�� � �� � log2�
b�1

k

N�b � ��

�log2�
a�1

k

N�� � a� 	 log2Ntot�
The MI encoded by a set of different neurons z for a fixed set of k
stimuli was obtained by extending the distance measure d from a
single to a multidimensional array with each cell representing one
dimension. For each neuron an equal number of spike trains was
included by randomly choosing out of the set of spike trains (a
minimum of 10 and a maximum of 100 trials per stimulus). Using
large numbers of trials reduces an overestimation of MI that will result
from insufficient assessment of the trial-to-trial response variability
(Abbott et al. 1996). However, allowing different trial numbers
introduces redundancy in the stimulus set and limits the maximum
value of MI that can be obtained. To correct for this, we express MI
as percentage of the maximum obtainable MI for a given stimulus set.
The maximal obtainable MI is equal to the entropy H in the stimulus
set

HStimulus � ��
i

k

p���log2p���

with p(�) being the fraction of trials in which stimulus � was
presented.

The allocation of the ith set of spike trains to a response category
followed this rule:

	cell1ti
�, cell2ti

�, . . , cellzti
� 
 → � � argmin���

h�1

z
cellh di

�� ,

where cellhdi
� refers to the average distance of the ith spike train

measured in cell h to all spike trains elicited from cell h by stimulus
�. The sum of average distances is then built across cells. The

response category that has the minimal sum of distances across cells
is assigned to the ith set of spike trains. Although the spike trains were
restricted to a 100-ms response window starting with stimulus onset,
analysis with different window length (200 ms) led to similar results
(data not shown).

Receiver-operator characteristic curves. The area under the receiver-
operator characteristic (ROC), a measure derived from signal detec-
tion theory (Green and Swets 1966), was used to quantify how well a
given chirp could be detected based on the spike trains obtained in
response to it. To do so, we built the distribution of spike counts in a
100-ms window before and after the chirp onset. Spike count distri-
butions were obtained from responses elicited with an equal number
of trials (at least 10) with different chirp stimuli. We obtained the
probability of false alarm [p(FA)] from the distribution of spike
counts in the window before chirp onset and the probability of correct
detection [p(CD)] from the distribution of spike counts in the window
starting with chirp onset. Different spike count criteria (ranging from
0 to the maximum spike count in steps of 1) were used to assess a
ROC curve. Detection performance was quantified by the area under
the ROC curve, which is 0.5 for random performance and 1 for perfect
detection. For detectability based on the combined activity of several
neurons we built joint spike count distributions by summing spike
counts for each trial elicited in each neuron. To check for the robust-
ness of our results time windows of 100 and 200 ms were used, and
similar results were obtained for both values.

RESULTS

Sparse coding in torus semicircularis. To quantify the set of
transformations by which information from more peripheral
brain areas is decoded by more central areas, we compared the
responses of ELL neurons and their postsynaptic targets, TS
neurons, to a wide range of stimuli.

Figure 2 shows the responses of example ELL (Fig. 2A) and
TS (Fig. 2, B and C) neurons to the set of stimuli used in this
study. The example ELL neuron responded to almost all
stimuli presented (Fig. 2A) and displayed a strong phase-
locking response to the beat, chirp, and noise stimuli. One
example TS neuron, in contrast, responded almost exclusively
to three types of small chirp stimuli (Fig. 2B), while the other
example TS neuron tended to respond to a larger stimulus set
that included beats as well as small and big chirps (Fig. 2C).

These differences in the responses of TS and ELL neurons
were seen across our data set. While ELL neurons tended to
respond to all stimuli, TS neurons instead tended to only
respond to a fraction of the stimuli presented (Fig. 3, A and B).
We quantified this by computing the response probability (i.e.,
the fraction of stimuli a neuron responds to) for ELL and TS
neurons. As expected, the response probability of TS neurons
was on average smaller than that of ELL neurons (ELL: 0.64 

0.18, TS: 0.44 
 0.27; U-test, P � 0.01, n � 26 and 71,
respectively) and was furthermore distributed over a range that
exceeded that of ELL neurons (ELL: 0.25–0.92, TS: 0.04–
0.92; minimum-maximum value) (Fig. 3C). Moreover, the
shapes of the distributions differed between ELL and TS: the
ELL distribution of response probability was consistent with
data drawn from a Gaussian distribution (Lilliefor test, P �
0.5) but was inconsistent with a uniform distribution (�2-test,
P � 0.01). In contrast, the response probability distribution for
TS neurons was not consistent with data drawn from a normal
distribution (Lilliefor test, P � 0.048). This and the fact that
the TS data were consistent with data drawn from a uniform
distribution (�2-test, P � 0.23) suggest that the response
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profiles of TS neurons are more diverse than that of ELL
neurons.

Since TS neurons had lower spontaneous firing rates on
average than ELL neurons (ELL: 17.4 
 7.2 Hz, TS: 6 
 8 Hz;
U-test, P � 0.001, n � 27 and 187, respectively), we next
tested whether this might help explain their lower response
probability. Our results suggest that this is the case, as there
was a significant positive correlation between the baseline
firing rate and response probability for TS neurons (r � 0.5,
P � 0.01; Fig. 3D). In contrast, this correlation was not
significant for ELL neurons (r � 0.34, P � 0.09; Fig. 3D).

High response selectivity in neurons has been associated
with sparse coding (Perez-Orive et al. 2002). In a sparse code,
a small fraction of neurons would be activated by any given
stimulus, with each neuron responding to a small set of stimuli.
The former aspect can be quantified by the population sparse-
ness index, while the latter aspect can be quantified by com-
puting the lifetime sparseness index (Willmore and Tolhurst
2001). As previous studies have shown that the population
sparseness and lifetime sparseness indices can be independent
(Willmore and Tolhurst 2001), we computed both indices for
ELL and TS neurons. Our results show that the lifetime
sparseness index was rather low on average in ELL neurons
(0.23 
 0.08, n � 26) and was distributed over a narrow range
(0.14–0.47) (Fig. 3E). In contrast, the lifetime sparseness
index was significantly larger in TS neurons (0.46 
 0.2; n �
71, U-test, P � 0.001) and varied over a broad range (0.11–
0.83) that contained the range of values found for ELL neurons
(Fig. 3E). Moreover, TS neurons with high (�0.5) lifetime
sparseness displayed lower baseline firing rates than TS neu-
rons with low (�0.5) lifetime sparseness (Fig. 3D). Similar to

the response probability, the distribution for lifetime sparse-
ness for ELL neurons was consistent with data drawn from a
Gaussian distribution (Lilliefor test, P � 0.37) but not with
data drawn from a uniform distribution (�2-test, P � 0.01).
Interestingly, the lifetime sparseness distribution for TS was
not consistent with data drawn either from a normal or from a
uniform distribution (Lilliefor test, P � 0.048; �2-test, P �
0.01). Moreover, the distribution was not consistent with data
drawn from a unimodal distribution (Hartigan’s dip test com-
pared with random uniform data, 1,000 bootstrap runs, P �
0.017, bins � 10). Furthermore, we investigated whether
lifetime sparseness was correlated to response latency. TS
neurons displayed variable first spike latencies in response to
steps with median 11 ms and with 50% of the data falling
within the range of 9–20 ms. The first spike latency was not
significantly correlated with lifetime sparseness (r � 0.08,
P � 0.64, n � 35). Moreover, TS neurons with lifetime
sparseness � 0.5 and TS neurons with lifetime sparseness �
0.5 displayed latencies that were not significantly different
from one another (P � 0.05, U-test).

We next quantified population sparseness in ELL and TS
neurons and found that TS neurons displayed significantly
higher values than ELL neurons (TS: 0.53 
 0.1, ELL: 0.25 

0.1; U-test, P � 0.01; Fig. 3F). However, the distributions for
ELL and TS neurons were both unimodal in nature (Fig. 3F).
This can be explained by the fact that, unlike the lifetime
sparseness measure, the population sparseness measure is plot-
ted for different stimuli and not for different neurons. As such,
the population sparseness measure confirms the fact that TS
neurons are, as a population, more selective than ELL neurons.
This is consistent with our previous results, since some TS

Fig. 2. Transformation of the neural code between the ELL and TS. Aligned raster diagrams of spike responses to a set of 24 stimuli comprising 12 small chirps,
1 big chirp, 9 pure beats, a step, and a noise stimulus are shown. Stimulus parameters are everywhere, as indicated in A. Time 0 marks the chirp/step onset. Noise
and beat stimuli start at time 	0.1 s and last throughout the entire time segment. Response rasters to beats were built by cutting and wrapping around the spike
times in response to 1 ongoing beat stimulus of several seconds duration. The same applies to the frozen noise that consisted of 5 identical pieces. Since chirps
were interspersed into a beat, the prestimulus time comprises the ongoing beat stimulus. Between 10 and 30 trials are represented for each stimulus and 5 for
the noise stimulus. Gray response windows indicate significant responses as determined by comparing the response entropy to surrogate data sets as described
in METHODS under Testing response significance. Note that not all trials are shown for each stimuli. A: typical ELL neuron displaying strong phase-locking
behavior during most beat stimuli and firing bursts of spikes in response to most chirps. B: example TS neuron. The neuron had very little activity during beat
stimuli and responded exclusively to 3 chirps. C: another example TS neuron that showed a significant decrease in firing in response to the step and phase-locking
behavior during most beat stimuli and increased its firing rate in response to most chirps.
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neurons are more selective in their responses than ELL
neurons.

To verify that our results were not a direct consequence of
the fact that not all stimuli were tested for all neurons, we took
the subset of neurons for which all 24 stimuli were presented
(17 ELL and 29 TS neurons). We found that the distributions
of response probability, lifetime sparseness, and population
sparseness were not significantly different for this subset of
neurons compared with the full data set for both ELL and TS
(U-tests, P � 0.05 in all cases). Second, in order to verify that
our results were not an artifact of the particular stimulus set
used in this study, we randomly took n stimuli out of the
possible 24 (8 � n � 24) and recomputed the response
probability, lifetime sparseness, and population sparseness in-
dices for this stimulus subset. For each stimulus number we
repeated this process using up to 100 different stimulus sub-
sets. Irrespective of the subset and the stimulus number, we
obtained qualitatively similar results: TS neurons had signifi-
cantly smaller response probabilities than ELL neurons. Both
lifetime and population sparseness were larger in TS than in

ELL (U-test and Kolmogorov-Smirnov test, P � 0.01 in all
cases). As such, it is extremely unlikely that our results are an
artifact of the stimulus ensemble used in this study.

To summarize our results so far, we have shown that TS
neurons are more selective than ELL neurons on average and
as a population. However, this is because some TS neurons are
quite selective while other TS neurons display response prop-
erties similar to those of ELL neurons. The bimodal distribu-
tion of lifetime sparseness across TS neurons, with one mode
largely overlapping with the unimodal distribution of lifetime
sparseness in ELL neurons, suggests that there are two sub-
populations in TS and strongly speaks against the hypothesis
that all TS neurons are more selective than ELL neurons.

Response selectivity between different stimulus categories.
To better characterize response selectivity for different stimu-
lus categories, we next quantified the selectivity in the re-
sponses of ELL and TS neurons to natural communication
stimuli (i.e., chirps). Our data show that ELL neurons could fire
a burst of spikes reliably in response to either small chirps
(Fig. 4A) or big chirps (Fig. 4C) while also firing spikes during

Fig. 3. Comparing sparse coding in ELL and TS. A and B:
population activity for a set of 24 stimuli measured in 17
ELL neurons (A) and 29 TS neurons (B). Black squares
mark stimuli for which a significant response was ob-
tained. Cells were sorted as a function of their response
probability. C: response probabilities for TS (black bars)
and ELL (gray bars) neurons computed as the fraction of
the stimuli each cell responded to. Response probabilities
were included from neurons tested with a minimum of 12
different stimuli. The response probability of TS neurons
was significantly lower than that of ELL neurons (U-test,
P � 0.01). Response probability was distributed nor-
mally in ELL (Lilliefor test, ELL: P � 0.5, TS: P � 0.04)
and uniformly in TS (�2-test, ELL: P � 0.01, TS: P �
0.23). D: baseline (i.e., in the absence of stimulation)
firing rates were correlated with response probability for
TS neurons (r � 0.5, P � 0.01), not for ELL neurons
(r � 0.34, P � 0.09). Note that spontaneous firing rates
reached much lower values in TS neurons than in ELL
neurons (U-test, P � 0.01). Different markers label
sparse TS neurons with lifetime sparseness index � 0.5
(triangles), dense TS neurons with lifetime sparseness
index � 0.5 (black filled circles), and dense ELL neurons
with lifetime sparseness index � 0.5 (gray filled circles).
E: lifetime sparseness indices were consistent with data
drawn from a normal distribution in ELL (Lilliefor test,
P � 0.37) but were significantly different than data
drawn from a unimodal distribution in TS neurons (Har-
tigan’s dip test, P � 0.017). On average TS neuron
responses were sparser than ELL neuron responses (U-
test, P � 0.01). The sparseness is quantified based on the
firing rate distribution (see METHODS). Insets: firing rate
distributions corresponding to the same neurons as in Fig.
2, A and B. LS, lifetime sparseness. F: population sparse-
ness was higher across TS neurons than across ELL
neurons (U-test, P � 0.01). Insets: firing rate distribu-
tions for responses to a small chirp (bf � 5 Hz, cf � 60
Hz, cp � 75) for ELL and TS. PS, population sparseness.
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the beat. TS neurons, in contrast, could be highly selective to
chirp stimuli: some neurons responded exclusively to small
chirps (Fig. 4B) or big chirps (Fig. 4D). Typically, these
neurons displayed no spiking activity during the beat and
responded to small chirps with a single spike (Fig. 4B) and to
big chirps with a burst of spikes (Fig. 4D). We quantified these
responses, using a chirp selectivity index (CSI) ranging be-
tween 0 and 1 (0 means that the neuron responds equally well
to the chirp and the beat, and 1 means that the neuron responds
exclusively to the chirp and not to the beat). While both
example TS neurons had CSI � 1, the most chirp-responsive
neurons in ELL displayed less selective chirp responses and
had lower CSI values for both small and big chirps (Fig. 4, A
and C). This is mostly due to their ongoing spiking activity
during the beat.

TS neurons displayed a significantly larger range of CSI
values than ELL neurons (Ansari-Bradley test, P � 0.01, n �
187, 28; Fig. 4, E and F, left). Some responded equally well to
chirps and beats, while others responded exclusively to chirps.
In contrast, ELL neurons tended to respond to the presented
chirps in a more consistent manner that is similar to that
previously described by Marsat et al. (2009) and Marsat and
Maler (2010). While we observed no significant correlation
between CSI and lifetime sparseness for ELL neurons (r �

0.19, P � 0.48; Fig. 4E, right), these measures were signifi-
cantly correlated for TS neurons (r � 0.47, P � 0.01; Fig. 4F,
right). This indicates that TS neurons that are selective to
chirps also tend to not respond to other stimuli.

As big and small chirps are preferentially elicited in different
behavioral contexts, we first tested whether selective responses
to big and small chirps were mutually exclusive. To do so, we
plotted the maximum CSI obtained for each neuron for small
chirps as a function of the CSI obtained for big chirps. Neurons
with mutually exclusive responses to either small or big chirps
will appear as data points on either x � 0 or y � 0 axes,
respectively. We found a significant proportion of data points
on the x � 0 and y � 0 axes for TS (Fig. 4H; Monte Carlo
simulation, 5,000 runs, P � 0.01, n � 146) but not for ELL
(Fig. 4G; P � 0.08, n � 24) neurons. We conclude that a
significant fraction (33%) of TS neurons respond selectively to
either big or small chirps.

Previous studies have shown that TS neurons can also
respond strongly to moving object stimuli (Chacron et al. 2009;
Chacron and Fortune 2010; Khosravi-Hashemi et al. 2011).
Therefore, we next tested for selectivity between responses to
chirps and to moving objects. Our results show that TS neurons
that responded strongly to moving objects (Fig. 5A) did not
respond selectively to chirp stimuli (Fig. 5B). Moreover, neu-

Fig. 4. TS neurons are highly selective to natural commu-
nication signals. Maximal selectivity to small and big
chirps was smaller in ELL (A, C) than in TS (B, D). Each
example is taken from a different neuron and shows the
stimulus waveform (top), the raster plot (middle), and the
peristimulus time histogram (PSTH; bottom). The chirp
selectivity index (CSI) quantifies the contrast in maximal
firing rates during the response window (gray rectangles)
and before chirp onset. E and F, left: maximum CSI values
obtained in each cell across all chirp stimuli were more
variable in TS than in ELL (Ansari-Bradley test, P �
0.01). A subpopulation of TS neurons reached CSIs of
�0.8 that were never observed in ELL. Right: best CSI
values observed in each neuron were correlated with life-
time sparseness in TS (r � 0.47, P � 0.01, marked by
asterisk), not in ELL (r � 0.19, P � 0.48). G and
H: histograms of maximum CSI value for big chirps as a
function of the maximum CSI value for small chirps
measured in 24 ELL neurons (G) and 146 TS neurons (H).
We only included neurons for which CSI � 0.2 for at least
1 stimulus. Although a few TS neurons were highly selec-
tive for both small and big chirps, there was a general trend
for TS neurons to be selective either to small or to big
chirps. This was reflected in the fact that the fraction of
data falling onto the axes was significantly larger than
expected from random data for the TS population (Monte
Carlo test, P � 0.01) but not for the ELL population (P �
0.08).
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rons that did respond selectively to chirp stimuli tended not to
respond to moving objects (Fig. 5, C and D). As above, we
tested whether the selective responses to chirps and moving
objects were mutually exclusive by plotting the maximum CSI
as a function of the MSI. We found a significant proportion of
data points (43%) on the x � 0 and y� 0 axes (Fig. 5E; Monte
Carlo simulation, 5,000 runs, P � 0.01, n � 27), indicating that
neurons that were selective for moving objects tended not to be
selective to chirps and vice versa. However, their nonselective
response to chirps could occur because these neurons respond
nonselectively to beats and chirps (i.e., display a dense code) or
because they respond selectively to moving objects and do not
respond to other stimuli. To test this, we quantified the re-
sponses of 27 TS neurons to six stimuli (a moving object, 3
chirp stimuli, and 2 beat stimuli) (Fig. 5F). We found that the
coding properties for these neurons were similar to those
described for TS neurons tested with a different stimulus set
(compare Figs. 5F and 3A). Indeed, they displayed similar
response probabilities (U-test, P � 0.24) as well as population
sparseness (U-test, P � 0.86). The lifetime sparseness for these
neurons was slightly but significantly larger than that obtained
for TS neurons tested with a different stimulus set (U-test, P �
0.001). Furthermore, 4 of these 27 neurons responded exclu-

sively to moving objects (Fig. 5F). As such, our data indicate
that sparse coding in TS neurons applies to moving object
stimuli as well.

Do chirp attributes determine TS and ELL neural responses? We
next tested whether the responses of ELL and TS neurons could
be used to discriminate between chirps with different attri-
butes. Such discrimination can be quantified by comparing the
response variability to different stimuli to that measured from
repeated presentations of the same stimulus. We used a dis-
tance metric between responses and an automatic decision
algorithm (Victor and Purpura 1996) to assign a given response
as being generated by a given stimulus based on both sources
of variability. The performance of the algorithm was assessed
by computing the confusion matrix whose element (�,�) gives
the probability that a response was assigned as being generated
by stimulus � given that it was actually generated by stimulus
�. As such, the sum of the diagonal elements in the confusion
matrix indicates the average probability that a response was
correctly assigned, whereas the sum of the off-diagonal ele-
ments indicates the average probability that a response was
incorrectly assigned.

The results for an example ELL neuron are shown in
Fig. 6A. The neuron responded differentially to most chirps

Fig. 5. TS neurons are selective to moving objects and com-
munication signals. A: example TS neuron that was responsive
to a small dipole moved alongside the fish when the dipole was
at a specific location on the animal’s rostro-caudal axis. The
movement selectivity index (MSI) was defined in analogy to the
CSI. The gray rectangle marks the window of movement cycle
to which the maximal firing rate is being compared. B: this
same example neuron was not responsive to small chirps (nor to
big chirps, CSI � 0; not shown). C: example TS neuron that
was not responsive to the moving dipole. D: this same neuron
responded to big chirps (best CSI for small chirps was 0). E: the
maximum value of MSI as a function of maximum value of CSI
for TS neurons (n � 27) showed a strong trend for selectivity
for either chirps or moving objects. This is a consequence of the
data points falling significantly more often on the axes than
expected from random data (Monte Carlo test, P � 0.01).
F: response profiles for a set of 6 stimuli including the moving
object sorted as a function of response probability. Note that
most neurons responded to �2 stimuli.
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with different attributes. Its responses varied greatly for chirps
with different attributes but displayed little trial-to-trial vari-
ability overall (Fig. 6A). These responses allow for increased
chirp discrimination performance, as can be seen from confu-
sion matrices that displayed relatively low numbers of nonzero
off-diagonal elements (Fig. 6A). We quantified the perfor-
mance by computing the mutual information normalized by its
maximum value. A mutual information value of log2(N) bits
implies that the system can discriminate between N stimuli. For
each neuron, we expressed the mutual information as a per-
centage of the maximum mutual information that can be
obtained for the set of stimuli used for that neuron. The
discrimination performance for the example ELL neuron
scored high mutual information (�40%).

Our results obtained from two representative TS neurons are
shown in Fig. 6, B and C. While one neuron was highly
selective in its responses and responded to only a few chirp
stimuli (Fig. 6B), the other tended to respond differentially to
most chirp stimuli (Fig. 6C), which was reminiscent of the ELL
neuron. As such, the responses from the first TS neuron were
unreliable signals when used to discriminate between chirps
with different attributes, as can be seen from the confusion
matrices that displayed significant nonzero off-diagonal ele-
ments (Fig. 6B). However, the confusion matrix from the
second TS neuron displayed relatively fewer nonzero off-
diagonal elements (Fig. 6C). Accordingly, this was quantified
by a small amount of information obtained for the first example
TS neuron (�20%), while the second encoded more informa-
tion (�60%). This is mostly due to the fact that the former did
not respond to a significant fraction of the stimuli used in this
study while the latter did so with differential responses.

On the basis of the strong positive correlation between the
lifetime sparseness index and maximal CSI in TS neurons (Fig.
4E) and the bimodal distribution of lifetime sparseness values

(Fig. 3E), we segregated the TS data into two groups: one with
low lifetime sparseness and CSI � 0.8 (dense group) and one
with high lifetime sparseness and CSI � 0.8 (sparse group). Of
the 187 TS neurons for which CSI was obtained, we found that
152 (�81%) belonged to the dense group while the remaining
35 (�19%) belonged to the sparse group. We then compared
the mutual information obtained from all three groups for a
restricted stimulus set (the same chirp delivered at 4 phases)
and our full stimulus set. Sparse TS neurons had MI � 23 

18% and MI � 13 
 8% for the restricted and full stimulus
sets, respectively. In contrast, dense TS neurons had MI �
44 
 30% and MI � 36 
 24% for the restricted and full
stimulus sets, respectively. Finally, ELL neurons had MI �
37 
 22% and MI � 27 
 19% for the restricted and full
stimulus sets, respectively. Although these differences were
statistically significant only between sparse and dense TS
neurons for the full stimulus set (multiple comparison test, P �
0.05), we observed the trend that dense TS neurons encoded
the largest amount of information, followed by ELL neurons,
followed by sparse TS neurons. As such, we conclude that
chirp discrimination persists at the level of TS. While dense TS
neurons displayed larger mutual information than sparse TS
neurons or ELL neurons in absolute terms, sparse TS neurons
actually transmitted significantly more information per spike
(1 
 0.5 bits/spike) than dense TS neurons (0.68 
 0.52
bits/spike) and ELL neurons (0.22 
 0.13 bits/spike) (multiple
comparison tests, P � 0.05). This is primarily because sparse
TS neurons displayed significantly lower spontaneous firing
rates (3.3 
 3.5 spikes/s) than both dense TS (10.6 
 9.3
spikes/s) and ELL (19.6 
 8 spikes/s) neurons (multiple
comparison tests, P � 0.05).

We next tested whether combining the activities of multiple
TS and ELL neurons in response to chirp stimuli might
improve their discrimination performances. In particular, if

Fig. 6. Discrimination of chirps based on spike trains of single TS and ELL neurons. A: example ELL neuron that responded to most chirps. Left: raster plots
obtained with 13 different chirps. Response windows were 100 ms long and started at chirp onset. The 4 raster plots at the bottom (dark gray fill) indicate
responses to 4 small chirps with identical beat and chirp frequencies presented at different phases of the beat. Top right: confusion matrix for the restricted
stimulus set consisting of these 4 chirps occurring at different phases. The confusion matrix shows the probability of assigning a spike train that was actually
elicited by the stimulus corresponding to the column as being elicited by the stimulus corresponding to the row. Such elements on the main diagonal correspond
to correct classification and off-diagonal elements to incorrect classification. Bottom right: confusion matrix for the full stimulus set consisting of all 13 chirps.
B: example TS neuron that responded selectively to only a few chirps, notably small chirps presented at 3 different phases plus the big chirp. Left: raster plots
obtained with 13 different chirps. Top right: confusion matrix for the restricted stimulus set. Bottom right: confusion matrix for the full stimulus set consisting
of all 13 chirps. C: example TS neuron that responded to most chirps. Left: raster plots obtained with 13 different chirps. Top right: confusion matrix for the
restricted stimulus set. Bottom right: confusion matrix for the full stimulus set consisting of all 13 chirps. Note that stimulus attributes could be best
discriminated by using the activity of the dense TS neuron, followed by that of the ELL neuron, and followed by that of the sparse TS neuron. MI, mutual
information in % of the maximal mutual information available in the stimulus set. Cost measures the time precision of the decoder at best performance.
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different sparse TS neurons were selective to disjoint sets of
chirps, then it is expected that such a procedure would lead to
large improvements in discrimination performance as quanti-
fied by the mutual information.

Our results show that combining the activities of multiple
neurons led to large improvements in the mutual information
for all three groups for both the restricted (Fig. 7A) and full
stimulus (Fig. 7B) sets (Kruskal-Wallis test, P � 0.01). Com-
bining the activities of as few as 12 dense TS neurons led to
optimal (MI � 100%) discrimination for the restricted set and
almost optimal (MI � 99 
 1%) discrimination for the full
stimulus set. In contrast, combining the activities of 12 ELL
neurons gave rise to MI values of 97 
 5% and 85 
 8% for
the restricted and full stimulus sets, respectively. Finally,
combining the activities of 12 sparse TS neurons gave rise to
MI � 86 
 12% and MI � 46 
 5% for the restricted and full
stimulus sets, respectively. We note that the mutual informa-
tion for the full stimulus set obtained by combining the activ-
ities of sparse TS neurons was always significantly lower than
that obtained from a group of ELL neurons with the same size,
which in turn was lower than that obtained for dense TS
neurons (multiple comparison tests, P � 0.05). As such, the
differences in discrimination performance observed between
dense TS neurons, ELL neurons, and sparse TS neurons re-
mained when we pooled neural activities. We note in passing
that there were no synergistic effects for the stimuli used here
when we considered either TS neurons that are excited by
increases in EOD amplitude (E type) or TS neurons that are
inhibited by increases in EOD amplitude (I type) (data not
shown). This is because many stimuli used here can elicit
excitatory responses from both E- and I-type TS neurons.

Precision of spike timing in response to chirp stimuli. We
note that the spike metric we are using depends on a cost factor

that is indicative of the temporal precision of the code. Our
results show that this cost factor was similar for individual
neurons of all three groups for the restricted and full stimulus
sets, but a significant difference was observed between dense
TS and ELL neurons (Fig. 7, C and D). For increasing popu-
lation size, the average cost factor tended to decrease in all
groups for the restricted stimulus set (Kruskal-Wallis test, P �
0.01). For the full stimulus set, precision decreased with
increasing population size in sparse TS neurons and ELL but
increased in dense TS neurons (Kruskal-Wallis test, P � 0.01).
Moreover, the average cost factor for dense TS neurons tended
to be higher than that of both sparse TS and ELL neurons for
population sizes � 7 units (multiple comparison test, P �
0.05). This suggests that spike timing is important mainly for
dense TS neurons.

Chirp detection. The poor performances of sparse TS neu-
rons at discriminating between chirps suggest that they might
be more apt at detecting their occurrence. Since the precision
of spike timing was the lowest for this neuron group, we used
signal detection theory (Green and Swets 1966) to quantify an
ideal observer’s performance at discriminating the spike count
obtained before and after chirp stimuli irrespective of chirp
attributes. The performance of an example sparse TS neuron is
shown in Fig. 8A. It is seen that this neuron was mostly silent
before the chirp and responded to most small chirps strongly,
giving rise to spike count distributions that were discriminable
for both the restricted (Fig. 8B) and full stimulus (Fig. 8C) sets.
We then quantified discriminability by computing the ROC
curve and quantified the area under it (an area of 0.5 implies
chance discrimination, whereas an area of 1 implies optimal
discrimination) and obtained 0.69 and 0.64 for the restricted
and full stimulus sets, respectively.

Fig. 7. Discrimination of chirps based on pooling of the activities of sparse TS, dense TS, and ELL neurons. A: average mutual information (error bars represent
SD) as a function of population size for the restricted stimulus set. Chirp discrimination was enhanced by combining the activities of multiple neurons for all
3 groups (analysis as in Fig. 6; Kruskal-Wallis test, P � 0.01 for all groups). It is seen that all 4 chirps can be optimally discriminated by the dense coding TS
population. B: mutual information as a function of population size for the full stimulus set. The discrimination performance of dense TS neurons was significantly
greater than that of ELL neurons. Moreover, the discrimination performance of ELL was significantly greater than that of sparse TS neurons. C: cost values
indicating the precision that led to the maximal mutual information for the restricted stimulus set. D: cost values for the full stimulus set. Precision decreased
with increasing group size in ELL and sparse TS neurons but increased for dense TS neurons (Kruskal-Wallis test, P � 0.01 for all groups). Brackets labeled
“ns” indicate pairs that were not significantly different based on pairwise group comparisons; all other groups displayed significant differences (Kruskal-Wallis
test with Tukey-Kramer correction for multiple comparisons, P � 0.05).
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To provide a comparison, we also quantified detection in
example dense TS (Fig. 8, D–F) and ELL (Fig. 8, G–I)
neurons. It is seen that both neurons responded both before and
after the chirp. For the restricted stimulus set, the response after
the chirp was stronger than that before the chirp, resulting in
discriminability of the spike count distributions (Fig. 8, E and
H). In contrast, for the full stimulus set the spike count
distributions before and after the chirp had limited discrim-
inability and ROC curves were closer to the identity line (Fig.
8, F and I). While both neurons had ROC areas that were
similar to that of the sparse TS neuron for the restricted
stimulus set (�0.65), their ROC areas were barely above
chance level for the full stimulus set (�0.54). These differ-
ences in detection performance were, however, not statistically
significant for single neurons in both stimulus sets (multiple
comparison test, P � 0.05).

While combining the activities of multiple TS and ELL
neurons is expected to lead to improvement in detectability, it
is not clear how this will affect all three neuron groups.
Therefore, we summed the activities of multiple neurons when
computing the spike count distributions. Our results show that
this gave rise to significant improvements in detectability as
quantified by the area under the ROC curve for all three groups
(Kruskal-Wallis test, P � 0.01) (Fig. 8, J and K). However, the
improvement was much greater for sparse TS neurons than
either dense TS or ELL neurons. Indeed, the area under the
ROC curve was significantly larger for sparse TS neurons than
for ELL neurons (multiple comparison test, P � 0.05). The
area under the ROC curve for dense TS neurons was further-
more significantly greater than for ELL neurons when consid-
ering the restricted stimulus set (multiple comparison test, P �
0.05). In contrast, for the full stimulus set the area under the

Fig. 8. Detecting the presence of a chirp stimulus. A: raster plots obtained from an example sparse TS neuron in response to 13 different chirps. B, top: spike
count distributions in a 100-ms window preceding and following chirp onset (white and black bars, respectively) for the restricted stimulus set of 4 chirps
occurring at 4 different phases of the beat. B, bottom: the receiver-operator characteristic (ROC) curve was built by varying a threshold criterion for spike counts
for the restricted stimulus set. The fraction of spike counts above the criterion and occurring before chirp onset represents the probability of false alarm [p(FA)];
the fraction of spike counts above the criterion and occurring after chirp onset is referred to as the probability of correct detection [p(CD)]. The ROC area is
given in the bottom right corner of the ROC plot; 0.5 indicates chance level, 1 indicates perfect detection. C, top: spike count distributions in a 100-ms window
preceding and following chirp onset (white and dark gray bars, respectively) for the full stimulus set consisting of all 13 chirps. C, bottom: ROC curve for the
full stimulus set. D: raster plots obtained from an example dense TS neuron in response to 13 different chirps. E and F are organized analogously to B and C,
respectively. G: raster plots obtained from an example ELL neuron in response to 13 different chirps. H and I are organized analogously to B and C, respectively.
J: population-averaged area under the ROC curve computed from the joint spike count distributions of sparse TS, dense TS, and ELL neurons as a function
of population size for the restricted stimulus set. K: population-averaged area under the ROC curve computed from the joint spike count distributions of sparse
TS, dense TS, and ELL neurons as a function of population size for the full stimulus set. In both cases, chirp detection performance increased with the number
of combined neurons (Kruskal-Wallis test, P � 0.01 for all groups). Chirp detection performance reached superthreshold values for both stimulus sets in sparse
TS neurons only (the dashed line shows the ROC area threshold of 0.76) and was significantly better in sparse TS neurons than in both dense TS neurons and
ELL neurons. Brackets labeled “ns” indicate pairs that were not significantly different based on pairwise group comparisons; all other groups displayed
significant differences (Kruskal-Wallis test with Tukey-Kramer correction for multiple comparisons, P � 0.05).
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ROC curve was similar in dense TS and ELL neurons when
combining �8 units (multiple comparison test, P � 0.05) and
showed small but significant differences for larger population
sizes (multiple comparison test, P � 0.05).

While we have used the CSI to define the groups of sparse
and dense TS neurons, we note that lifetime sparseness was
significantly different between the groups (sparse TS neurons:
0.48 
 0.16, dense TS neurons: 0.29 
 0.14; U-test, P � 0.01,
n � 19, 13), as expected from the correlation between CSI and
lifetime sparseness. When regrouping neurons based on life-
time sparseness index � 0.5 (sparse group) and � 0.5 (dense
group), we obtained qualitatively similar performances in the
encoding of stimulus attributes, time precision, and chirp
detection (data not shown).

Finally, we note that similar results were found when testing
discrimination and detection performance for a set of 9 big
chirps with different attributes on 3 ELL and 5 TS neurons
(data not shown). All neurons included displayed a maximal
CSI for big chirps � 0.4. Mutual information for both ELL and
TS populations did not exceed 40%, with discriminability
being slightly higher for ELL. In contrast, detectability of big
chirps was much higher based on TS neurons (ROC area �
0.85) than on ELL neurons. We thus conclude that sparse TS
neurons are more apt at detecting the occurrence of either big
or small chirps irrespective of their attributes than either dense
TS or ELL neurons. However, dense TS neurons are more apt
at discriminating between chirps of differing attributes than
either sparse TS or ELL neurons.

DISCUSSION

Summary. The purpose of this study was to characterize the
transformations of the neural code along successive stages in
the electrosensory system. While ELL neurons displayed dense
responses, TS neurons displayed sparser responses. Interest-
ingly, sparsening in the TS population was based on two
subpopulations of neurons. Despite significant overlap between
their response probabilities and sparseness indices, one sub-
population tended to display sparse coding while the other
tended to display dense coding. Sparse coding neurons were
highly selective to either communication signals such as big
chirps and small chirps or moving objects. Moreover, spike
trains of sparse TS neurons provided no basis for the discrim-
ination of chirp attributes within a given class (i.e., big or
small). Instead, their spike trains could be used for chirp
detection. In contrast, information about chirp attributes could
be decoded from the spike trains of dense coding TS as well as
ELL neurons.

Parallel processing in the midbrain. The dense and sparse
coding subpopulations in TS might correspond to parallel
information processing streams. This is supported by anatom-
ical results showing that TS, which is the homolog midbrain
structure of the mammalian inferior colliculus, consists of 12
laminae of which all but the most dorsal one give rise to
parallel streams of processing that feed into different brain
areas such as the optic tectum (OT) and the diencephalic
nucleus electrosensorius (nE) (Carr et al. 1981; Carr and Maler
1985; Heiligenberg and Rose 1985; Metzner and Heiligenberg
1991). In particular, both upper and deeper laminae receive
direct projections from ELL. Neurons in the deeper TS laminae

then project to nE, while neurons from both upper and deeper
laminae project to OT (Carr et al. 1981).

Some TS neurons receive direct input from ELL, whereas
others receive this input indirectly via other TS neurons
through inter- and intralaminar connections (Carr and Maler
1985). Therefore, as an alternative interpretation of our data,
dense TS neurons could represent those that receive direct
inputs from ELL and the sparse neurons might represent later
stages of processing within TS that receive only indirect input
from ELL. However, our results showed that sparse TS neu-
rons did not display first spike latencies that were significantly
larger than those of dense TS neurons, which speaks against
this alternative hypothesis. On the other hand, response latency
is not solely a consequence of the number of synapses away
from the periphery and can be influenced by the interplay of
excitatory and inhibitory kinetics at the cell membrane and
neuromodulators (Faure et al. 2003; Heil 2004; Hurley and
Pollak 2005). Therefore the absence of a correlation between
latency and sparseness may not be sufficient to exclude that the
two subpopulations in TS represent different stages in a serial
processing line. Preliminary histological data from this study
indicate that we recorded from TS neurons across most laminae
(II–IX, n � 13). While dense neurons (lifetime sparseness �
0.5, n � 7) that tended to respond to both beats and chirps were
found in various laminae (II–IX), sparse neurons (lifetime
sparseness � 0.5, n � 6) that tended to be chirp selective seemed to
be confined to layers VII and VIII. This is in line with TS
neurons recorded in the related genus Eigenmannia, in which
neurons sensitive to beat stimuli, i.e., similar to our dense neu-
rons, have been reported in layers V, VII, and VIIIA-C, while
neurons selective for communication stimuli, i.e., similar to our
sparse neurons, have mostly been associated with lamina
VIIID (Metzner and Heiligenberg 1991; Rose and Heiligen-
berg 1985).

However, we note that the hypothetical case in which dense
TS neurons actually project to sparse TS neurons is not
necessarily inconsistent with both TS subpopulations giving
rise to parallel projections to upstream targets outside TS. This
is because, in Eigenmannia, neurons of both response types
have been identified to project to OT, to nE, or to both
(Metzner and Heiligenberg 1991; Rose and Heiligenberg
1985). If we assume homologous projections for Apteronotus,
this speaks strongly in favor of the hypothesis that sparse and
dense TS neurons give rise to parallel processing streams that
project to both OT and nE. Interestingly, neurons in distinct
areas of nE respond preferentially to either communication
signals or beats (Heiligenberg et al. 1991), suggesting that
information from sparse and dense TS neurons is decoded in
nE and continues to give rise to parallel processing streams.
Further studies are needed, however, to verify these predic-
tions.

Mechanisms underlying dense and sparse responses. How
do the coding properties such as the dense or the sparse coding
emerge in TS?

The midbrain TS receives purely excitatory inputs from ELL
neurons (Carr and Maler 1985). Pyramidal cells in the hind-
brain ELL, the first stage of electrosensory processing, are
known to respond to a wide range of EOD amplitude modu-
lations including beats and chirps (Bastian et al. 2002; Krahe et
al. 2002; Maler 2009a, 2009b; Marsat et al. 2009; Marsat and
Maler 2010; Saunders and Bastian 1984). We verified with a
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large stimulus set that ELL responses comply with a dense
coding scheme. Because dense TS neurons showed response
properties similar to ELL neurons, the simplest explanation is
that their response properties are inherited from their afferent
neurons.

To explain the highly selective responses observed in sparse
TS neurons, nonlinear mechanisms are likely necessary. If a
neuron’s membrane potential crosses spiking threshold only in
response to strong synaptic input currents, it behaves nonlin-
early because of the spiking threshold’s rectifying effect.

Neurons that displayed high lifetime sparseness also fea-
tured extremely low spontaneous firing rates (�1 Hz), suggest-
ing that strong synaptic currents were needed to elicit spiking.
Low baseline activity (�1 Hz) was also reported from neurons
highly selective to odors (Perez-Orive et al. 2002; Poo and
Isaacson 2009). In both studies the selective spiking was
explained by selective excitatory input combined with nonse-
lective feedforward inhibition driven by oscillatory activity
from the first-order nucleus. Interestingly, responses to chirps
comprised usually between zero and two spikes or a burst of
spikes. Such transient responses in sparse coding neurons have
been attributed to a precisely tuned interplay of excitation and
inhibition in other electric fish species (Carlson 2009; Pluta and
Kawasaki 2010) and other systems (Covey et al. 1996; Faure et
al. 2003; Higley and Contreras 2006; Leary et al. 2008; Rosen
and Mooney 2003; Wehr and Zador 2003; Zhang et al. 2003).
Alternatively, other mechanisms such as temporal filtering
mediated by active subthreshold conductances have been
shown to enhance selectivity (Carlson and Kawasaki 2006a;
Chacron and Fortune 2010; Fortune and Rose 1997a, 1997b,
2003; Haag and Borst 1996).

Discrimination and detection of chirps. We found that chirp
attributes could be discriminated based on combined spike
activity of a rather low number (12) of ELL neurons and dense
TS neurons. However, Marsat and Maler (2010) found that
small chips are not discriminable from ELL spike trains. These
conflicting results can most likely be explained by different
assumptions made on the decoder. As a major difference,
Marsat and Maler (2010) assumed a specific decoder since they
used a short response window (10–50 ms) adjusted in time to
contain the maximum response after the chirp, averaged away
trial-to-trial variability, and filtered the neural response. In
contrast, our analysis made less stringent assumptions on the
decoder: We used a larger time window (100 ms), which
increases the potential discriminability of the spike trains as
they contained the response to the chirp and parts of the beat.
Furthermore, our methodology accounted for trial-to-trial vari-
ability and therefore represents an estimate of the available
information and precision contained in the spike trains.

How reliably neurons respond to stimuli clearly contributes
to the ability of an observer to discriminate between these
stimuli. Such reliability can take the form of synchronization to
specific times during the beat or chirp, such that the small
differences in temporal structure of chirps with different attri-
butes could be resolved from the spike trains. The use of
high-precision decoders resulted in the maximum mutual in-
formation (i.e., best discriminability) when the activity of eight
or more dense TS neurons was combined (Fig. 7, B and D).
This suggests that dense neurons use high temporal precision in
order to transmit information. We note that the low decoding
precision obtained when only a few neurons were combined

does not necessarily contradict this, as these few neurons then
do not provide a complete representation of the stimulus set. A
decoder with high temporal precision thus becomes essential
when information on small timing differences in the responses
of several neurons can help distinguish between stimuli given
that spike timing is reliable from trial to trial in the first place.
Our data further indicate that spike timing was on average
more precise and reliable in dense TS neurons than in ELL.
This might be due to the fact that TS neurons obtain higher
temporal precision from averaging over convergent inputs
from ELL pyramidal cells.

In contrast, chirps with different attributes could not be
discriminated based on spike trains from sparse TS neurons.
This was surprising: If each chirp with given attributes were
encoded by a distinct group of sparse neurons, it would suffice
to know which neurons are active in order to identify the
stimulus from the population activity. Our analysis of popula-
tion activity aimed at quantifying the information contained in
such a labeled-line code. This code requires that 1) each
stimulus evokes responses from at least one neuron; 2) these
responses are reliable; and 3) different stimuli activate disjoint
sets of neurons. While conditions 1 and 3 were observed in
sparse TS neurons (data not shown), their large trial-to-trial
variability in response to chirps was detrimental to discrimi-
nation. It thus appears that sparse TS neurons do not transmit
information about specific chirp attributes within a given cat-
egory but instead respond selectively to a particular stimulus
category (e.g., small, big chirps, moving objects). This selec-
tivity was the basis for these neurons showing better chirp
detection than either ELL or dense TS neurons.

Thus the processing of electrosensory stimuli may segregate
into different streams that allow either detection or discrimi-
nation within TS. Given the fact that the lifetime sparseness
index distribution was bimodal, we suggested that these two
processing streams are carried by two distinct neural subpopu-
lations. While it is possible that TS neurons instead form a
continuum in terms of their response selectivity, this does not
affect the qualitative nature of our conclusions. Such segrega-
tion is reminiscent of the “what” and “where” processing
streams in the visual system (reviewed in, e.g., Ungerleider and
Haxby 1994) that have also been proposed for the auditory
system (Rauschecker and Tian 2000). While it is known that
these fish respond behaviorally to chirps (Bastian et al. 2001;
Hagedorn and Heiligenberg 1985; Hupé and Lewis 2008),
further studies are needed to uncover whether they use the
information contained in different chirp attributes.

Preserving sensory information in sparse coding populations. Nu-
merous studies of higher-order neurons in different sensory
modalities support the doctrine of a transition from dense to
sparse coding along the sensory processing chain (Barlow
1972; DeWeese et al. 2003; Hromádka et al. 2008; Olshausen
and Field 2004; Perez-Orive et al. 2002). In the visual system
as the classic example, ganglion cells feature simple center-
surround receptive fields (Kuffler 1953), while neurons in V1
function as edge detectors (Hubel and Wiesel 1959), and
finally neurons in higher cortical areas such as MT can be
selective to individual faces or objects (Quiroga et al. 2005;
Rolls and Tovee 1995; Young and Yamane 1992).

Does transitioning from a dense code to a sparse code
preserve sensory information? Recent work suggests that in-
formation from the retina is preserved in thalamus while at the
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same time leading to a sparse representation (Rathbun et al.
2010; Sincich et al. 2009; Wang et al. 2010). Such sparsening
involves the fact that thalamic neurons have lower firing rates
than retinal ganglion cells. Thus sparse codes seem to be an
energy-efficient way (Attwell and Laughlin 2001; Földiák and
Young 1995) to represent information about the sensory world
once the categories, objects, or filters are well matched to
relevant sensory patterns. As such, the information on the
occurrence of a chirp was recovered from the sparse TS
population. However, the attributes of the chirp, i.e., its timing
within the beat and frequency excursion, could only be recov-
ered from spike trains of the dense TS neurons that had high
firing rates and displayed the highest spike time precision.
Hence preserving both categorical information about a sensory
object as well as descriptive information on the time-varying
stimulus features through parallel dense and sparse subpopu-
lations seems advantageous, as it allows for discrimination of
behaviorally relevant stimuli without compromising their
detection.

Most studies have reported sparse responses only in a small
percentage (�15%) of recorded neurons (Quiroga et al. 2005;
Young and Yamane 1992), leaving the possibility open that a
parallel dense coding population is present as well. Other
studies explicitly state that beneath the sparse coding neurons
a small subpopulation of auditory and olfactory cortical neu-
rons displayed dense responses (Hromádka et al. 2008; Poo
and Isaacson 2009). Even in the insect olfactory system, which
displays an impressive degree of sparsening between the first-
order projection neurons and the second-order Kenyon cells,
�10% of the Kenyon cells had lifetime sparseness indices
�0.3 and thus displayed dense coding (Perez-Orive et al.
2002).

Preserving energy-costly descriptive stimulus information
through dense coding may allow an animal to form selectivity
to new sensory patterns through learning mechanisms possibly
implemented in higher brain structures. In starlings, which
acquire new song sequences throughout their life span, selec-
tivity to new sequences emerges in forebrain neurons after a
period of exposure (Gentner and Margoliash 2003). Alterna-
tively, the preservation of dense coding subpopulations may be
important, if behavioral output needs to be synchronized to the
time-varying features of a sensory stimulus. This could be the
case in echo chirping (Hupé and Lewis 2008; Zupanc et al.
2006), concerted signal production during group hunting in
electric fish (Arnegard and Carlson 2005), or chorus-singing
birds (Mann et al. 2006).

We suggest that dense coding may be sustained in small
parallel subpopulations to help preserve sensory information.
Our results suggest that parallel sparse and dense subpopula-
tions give rise to rapid detection and estimation of incoming
behaviorally relevant sensory input. Further studies carried out
in higher-order brain areas are needed to understand the de-
coding of these parallel information streams.
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