Coronavirus (COVID-19) updates

Check out general updates on the coronavirus (COVID-19) situation from

Eric McCalla

Assistant Professor

B.Sc. (Mount Allison University, 2000)
M.Sc. (McGill University, 2002)
B.Ed. (Memorial University of Newfoundland, 2005)
Ph.D. (Dalhousie University, 2013)
Postdoc (Collège-de-France, Paris, France, 2014-2015)
Postdoc (University of Minnesota, Minneapolis, USA, 2015-2017)

Contact Information

Office: OM 312
Phone: (514) 398-1074
Lab Phone: (514)398-6916
Email: Eric.McCalla [at] McGill.ca
Website: www.McCallaLab.ca

Research Themes

Materials Chemistry and Chemical Physics

Research Interests

Our research is focused on the design of new functional materials through a combination of high-throughput synthesis along with more traditional solid-state chemistry approaches. Of immediate interest are novel materials for a wide variety of battery technologies including positive electrodes for Li-ion batteries (nearing maturity), Na-ion batteries (not to market, still in development) as well as solid electrolytes for all-solid-batteries (a promising technology with significant engineering and chemistry related issues still needing to be resolved). Such research is of highest priority for immediate societal needs including the widespread implementation of electric vehicles as well as grid storage given that the use of intermittent renewal energy sources drives the need for better batteries.

One key approach that we use involves a combinatorial synthesis approach that allows efficient screening of materials across broad and extremely complex composition spaces. Our group applies a proven method using co-precipitation reactions to make mg-scale samples which are then characterized in an automated manner with X-ray diffraction, but we are also developing high-throughput electrochemical techniques in order to characterize the vast arrays of samples in a more comprehensive manner. These techniques will allow the rapid screening of novel materials across the multi-component systems now used commercially as well as next-generation materials and technologies beyond Li-ion.

Complementary to the high-throughput approach, our group uses traditional solid-state synthesis to make bulk samples in order to study in detail the mechanisms taking place during operation of the batteries and to ensure that the results obtained on the small combinatorial samples scale up. These studies involve a wide variety of characterization techniques including X-ray photoemission spectroscopy, transmission electron microscopy, DFT calculations, Mössbauer spectroscopy, X-ray absorption spectroscopy, neutron diffraction and synchrotron XRD. The vast number of experimental techniques required for such work provides students with numerous opportunities to collaborate with world-class researchers. This interdisciplinary work is extended further by also studying electronic transport and magnetic properties of key novel materials developed within the context of the battery research.

Currently Teaching

CHEM 273 Intro Phys Chem2:Kinetics&Meth 3 Credits
    Offered in the:
  • Fall
  • Winter
  • Summer

CHEM 429 Chem of Energy, Storage & Util 3 Credits
    Offered in the:
  • Fall
  • Winter
  • Summer

Back to top