MEG Unit

MEG Unit

Magnetoencephalography (MEG) at the BICReal-time, millisecond brain imaging

Our MEG program was inaugurated in 2012 and has become a busy unit of the McConnell Brain Imaging Centre. Our MEG users have published their data in top-tier journals and benefit from strong technical and software support from our core staff. We also have organised 4 week-long MEG training workshops, with attendees traveling from as far as Europe, China and Japan. Overall, our mission is to provide state-of-the-art support and expertise to everyone interested in learning or perfecting new skills in brain electrophysiology and imaging.


Details

What is MEG?

Magnetoencephalography (MEG) is a neurophysiology modality for basic and clinical brain research at the scale of systems and networks. MEG measures non-invasively and in real time the tiny magnetic fields generated by neuronal currents. A unique asset of MEG imaging is its unrivaled temporal resolution, reaching the millisecond time scale across the entire brain. Clinically, MEG has been typically indicated for the pre-surgical work-up of severe, drug-resistant epilepsy and the functional pre-surgical mapping of brain tumors. There is also great potential in using MEG to investigate the pathophysiology of many other neurological syndromes and neuropsychiatric disorders (e.g., stroke, dementia, movement disorders, depression, Alzheimer’s disease, autism spectrum disorders, etc.). MEG has strong value in revealing the dynamics of brain activity in sensory perception, cognition and behavior: it has provided unique insight on the time-resolved processes of brain functions and network integration including resting-state dynamics. The MEG community comprises about 200 MEG centers worldwide. It is constantly contributing new methods and improving software tools to make the technique more accessible to a wider range of investigators.

Physiological origins of MEG signals

S. Baillet, Nature Neuroscience 20, 327–339 (2017)

S. Baillet, Nature Neuroscience 20, 327–339 (2017)

Neurons generate electrophysiological currents (shown in yellow), which travel through the entire brain volume and head tissues. They eventually reach the scalp surface – although very distorted and attenuated – where they can be detected using electrodes with electroencephalography (EEG). Magnetic fields (in green) travel more freely across tissues and are much less distorted than current flows. They can be captured using arrays of magnetometers with MEG. The blue and red colors on the scalp illustrate the continuum of magnetic fields distributed at the surface of the head.

Scale of MEG signals

The ultra-sensitive MEG sensors deal with a range of environmental magnetic fields of about 10 to 12 orders of magnitude, most of which consist of nuisances and perturbations from external sources masking the brain activity at the femto-Tesla scale (1 fT is 10-15 T). A magnetically-shielded room (MSR) is therefore an important element to MEG sensing technology. It is built from a variety of metallic alloys meant to greatly attenuate external electromagnetic perturbations, including mu-metal, a nickel-iron alloy with a high magnetic permeability, which makes it very effective at screening external static or low-frequency magnetic fields. This makes MEG recordings possible, even in noisy environments like hospitals or nearby MRI scanners.

The MEG system

Courtesy CTF MISLP www.ctf.com

275 pick-up coils are arranged in a rigid helmet around the head. 64 channels of EEG can also be recorded simultaneously at up to 12 kHz sampling rate, i.e. one full brain image every 100 μs. The system can operate both in seated upright and supine horizontal positions, for maximum patient/participant comfort. The raw data consists of traces that represent the magnetic field fluctuations detected by each sensor.

Participant comfort and safety

The MEG instrument and environment are considered safe and there are no medical restrictions. The measurement is entirely passive: magnetic sensors inside a helmet measure the magnetic fields generated by neural activity that propagate outside the head. No energy, radiation or other agent is impressed, injected or used.

MEG requires minimal subject preparation: head-positioning coils are affixed to the skin to monitor head movements and standard ECG and EOG electrodes are positioned for basic monitoring of heart beats and eye movement respectively. The heart and eyes cause artefacts in MEG recordings and the electrode recordings help to attenuate them during analysis. All equipment and supplies for a generic MEG session have received adequate safety certifications for human use.

The MEG instrument is located inside a passive magnetically shielded room (MSR), consisting of 3 layers of metal alloys to attenuate magnetic interference from the environment. The room is about 80 sq ft. At all times, participants can communicate via video and audio intercom with the operators outside the room. A caregiver can stay in the MSR seating next to the participant, if necessary. They can also exit the room at all times by operating the hand wheel from inside the MSR.

Participants sit or lie down on a comfortable chair/bed. Unlike an MRI "tunnel", only their head is brought inside the rigid MEG helmet, which covers essentially the lateral, superior and posterior aspects of the cranium, leaving the face and eyes unobstructed. This is usually well tolerated by participants prone to claustrophobia. There is no noise generated during acquisition, hence MEG is generally considered comfortable to participants, including for most patients and young children.

Another potential risk from MEG is the spontaneous boil-off of the liquid helium used for refrigeration of the superconducting sensing system. This is similar to MRI quenching, though the volume is much smaller in an MEG system. Although very unlikely, boil-off can occur with minimal risk to participants: the MEG instrument has safety valves to prevent pressure from building inside the helium reservoir and if helium is released, it would rise to the ceiling and be vented rapidly by the air ventilation system inside the MSR. Although helium is inert, there is a risk of oxygen depletion inside the MSR in case of massive helium release. Because of this, there is an oxygen sensor inside the MSR and an alarm would sound if low levels are detected. It would take only seconds for the attending personnel to open the MSR door, which would immediately resolve the situation.

Finding task-related brain activity

There is constant neuronal activity all across the brain. Therefore to separate signals related to a specific function from this background activity, we often need to average the signal over many repetitions of the same task. The images on the right show the average signal recorded when a subject hears a tone, over 200 trials. The left image shows the average traces at each sensor location, and the right image shows the average field distribution at 100 ms after the tone onset.

Registration with MRI

The 3-D locations of anatomical fiducial points are digitized to overlay the MEG results on high-resolution MRI images. Head-positioning indicators are also taped to the subject’s head to detect and compensate for small head movements occurring during the session.

Merging anatomy and function

MEG functional data is combined with MRI structural information. Head tissues are identified and extracted from the MR image volume and are used to model the electromagnetic properties of the head (left) to localize the brain regions that have generated the MEG signals. The images on the right show the average brain response to a subject hearing a tone 200 times.

Research activities

Our core research activities focus on developing new methods, analysis techniques and software to advance MEG as a functional brain imaging modality.

Cross-frequency interaction: Brain rhythms are coupled and interdependent, which can be revealed by measures such as phase–amplitude coupling (PAC). Here, PAC analysis of MEG traces obtained in the resting-state of a healthy adult shows that the amplitude of fast gamma activity is modulated by the phase of slower oscillations.

 E. Florin & S. Baillet, The brain’s resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations, NeuroImage 111, 26–35 (2015)

Neurofeedback: We have developed the technology to use MEG as a real-time, closed-loop imaging technique. Real-time reconstruction of brain activity is performed as the subject is being scanned. Indices of activity/connectivity of key brain areas are extracted and presented back to the subject. The goal is to promote predefined patterns of brain activity, which are designed for a determined objective. Some clinical applications are on the horizon: epilepsy seizure control, optimized motor and speech rehabilitation after stroke, etc.

G. Sudre et al., rtMEG: a Real-time Software Interface for Magnetoencephalography, Comput Intell Neurosci, 327953 (2011)

Connectivity: Brain regions communicate very rapidly with one another, forming networks that contribute to the integration of information by the brain. MEG can help reveal how these regions communicate. The figure to the right represents virtual axonal white fibers estimated from functional connectivity metrics obtained with MEG source imaging. Three different frequency bands are represented showing the brain regions connected with the strongest coupling in those bands.

Sébastien Déry

Clinical applications

Presurgical mapping of drug-resistant epilepsy: Regions involved in the early onset of epileptic events can be detected thanks to the millisecond time resolution of MEG. Additionally, the localization of crucial brain functions (language, motor control) can be mapped on the patient’s brain and help determine the best target for neurosurgery. The image on the left shows fast propagation of epileptic activity detected with MEG source imaging, shown in red, as registered on the patient's anatomy obtained with MRI structural imaging.

Presurgical mapping of brain tumors: MEG can help determine whether brain regions within or in the vicinity of a malignant brain tumor are involved in critical brain functions such as language and motor processes. Combined with other imaging modalities, this information can assist neurosurgeons in planning the safest surgical approach on an individual basis. The figure shows time-resolved mapping of language-related processes (in orange) in a brain tumor patient during a word-reading test. The lesion is shown in green.

Collaboration with Binder's Language Laboratory (Medical College of Wisconsin).

Requesting Access for a New Study

New MEG studies require technical development time to identify potential issues in the implementation of the paradigm (acquisition parameters, event triggering, testing of experimental equipment, etc.) and the acquisition of pilot data. To encourage access to the MEG by new investigators, the following specific procedure applies.

  1. Contact the Director of MEG Research (sylvain.baillet [at] mcgill.ca) to schedule the presentation of the project by the investigator at the weekly MEG staff meeting (Thursdays at 2pm). The researcher will present his/her project for about 20 minutes and benefit from interacting with the MEG staff and the local MEG community in elaborating the MEG implementation of his/her study.
  2. Contact the MEG system manager (marc.lalancette2 [at] mcgill.ca) to schedule time in the MEG suite to test experimental parameters and setup equipment. Training for operating the MEG is also available. 
  3. Obtain review from the MEG Research Committee (MEGRC). Instructions and policies can be found on the MNI website (MEG Research Committee). Note that projects with standard anatomical MR scans of participants can be accommodated without requiring to obtain approval from the MRI Research Committee. Following the meeting of the MEGRC, the Principal Investigator will receive a letter with the Committee’s decision and recommendations, should changes be required.
  4. Seek approval from the appropriate Research Ethics Board (REB). Instructions and policies can be found on the MNI website (REB). The letter from the MEG Research Committee must be included in this submission.
  5. Contact the BIC Accounting Clerk (bic-finance.mni [at] mcgill.ca) for instructions on setting up your account and study in the BIC booking system. Each new study must be added to the system and require an REB file number and billing information (FOAPAL or PO for external researchers - see Pricing below). [link to the form?]
  6. Schedule up to 3 pilot sessions. These sessions are used to test the experimental setup and timing, and adjust the protocol as needed. Special billing applies. Contact the MEG system manager if you wish book these sessions before you receive REB approval.

Billing

For all McGill Downtown campus researchers: A FOAPAL must be provided for all scanning services. Please use 010243 (MEG Scanning) for the Activity code. At the end of each month, payments are processed through McGill Banner feeds using the given FOAPAL. An invoice will be sent to the investigator each month to approve the charges.

For all other researchers (including other McGill network researchers, including from the Douglas or RI-MUHC): Researchers must provide the BIC with a standing Purchase Order issued by the hospital or company who is paying for the services. The total amount of the standing PO must be large enough to cover all scan requests until the end of the fiscal year (approximation). Invoices will be sent from McGill Central Accounting and not the BIC. Purchase Order is to be made out to:

McGill University
Accounts Receivable
3465 Durocher St., Suite #323
Montreal, Quebec, H2X 0A8

Contact: Maria Anania – maria.anania [at] mcgill.ca
Telephone: 514-398-2311
Fax: 514-398-1327

Once the PO is issued, please send it to us by email, for processing.

MEG-Infinity

The MEG-infinity program is a subscription-based billing model that enables high-powered neuroscience research, encourages the adoption of open-science practices, and maximizes the impact of research funds. This program was trialed from June to Dec 2019. It is being reviewed and is not currently available.

MEG-infinity offers unlimited 24/7 access to MEG scanning against the payment of a flat subscription fee, valid over a 6-month period from the first booking. The subscription is for one study, with an unlimited number of participants (cross-sectional design) and/or sessions (longitudinal design). The rates apply to MEG certified users who have been trained and approved to operate the system without assistance (see Training tab). The rates are tailored to match the amount of seed funding readily granted for pilot studies (e.g., BIC, CRBLM, QBIN, etc.).

Studies that require full assistance from our MEG staff remain at the hourly rate. The discounted hourly rate for certified users who prefer to access on a case-by-case basis remains effective as well. Current BIC cancellation policies apply (see above), with special attention against booking-cancelling several blocks of time at once.

We foresee that the MEG-infinity program will enable approaching exciting neuroscience questions concerning the neural dynamics of brain systems in health and disease with high-powered studies yielding robust results.

Usage-Based Pricing

Usage-based billing is still available. Researchers will be invoiced for the maximum of the time reserved and the effective time used if a session exceeds the scheduled duration.

Different rates apply depending on the level of service provided by the MEG staff, the certification of the investigator as MEG operator (see Training) and whether the booking is a pilot or a regular research session.

Non-Profit Agency funded

  • $500/hour, with technical assistance
  • $400/hour, for certified users*
  • $200/hour, for development or pilot
  • Anatomical MRI (T1) $100/participant

*User certification requires 3 supervised sessions at $500/hour. User certification remains valid for all future sessions and studies.

Industry sponsored

  • Contact core Director

Data Pre-Processing and Analysis

Data pre-processing & analysis is available upon request. Investigators need to contact the Director of MEG Research for billing quotes and scheduling of service.

 

Instrument and Staff Availability

The MEG instrument is available 7 days a week / 24 hours a day to investigators with MEG-operator certification (see Training).

The MEG staff is available to assist investigators for MEG measurements or obtaining certification. Regular hours are Monday to Friday, 9:00 -17:00.

System maintenance imposes interruptions of MEG measurements for one hour once or twice a week, usually at the end of the day, Wednesdays and Fridays. The MEG staff will accommodate booking on these days to the best of their ability.

Booking requests are placed online by investigators through the McGill Faculty of Medicine core services schedule (see Booking Procedure below).

Definition of an MEG Session: When booking online, investigators need to specify the amount of time needed for each session and will be billed accordingly. An MEG session is defined as the time necessary for MEG data acquisition in the instrument and the duration for subject preparation, and any additional time required to leave the suite ready for the next user. The time necessary for subject preparation varies from a minimum of 15 minutes for a MEG-only acquisition to an hour when EEG needs to be acquired simultaneously with MEG. The recording time depends on the protocol and will vary by study. There is no restriction in the number of subjects within a session. If additional time is used, it will be billed (see Billing).

Booking Procedure

All requests for measurement times must be submitted using the reservation schedule. Each new study and user must first be set up in the system; see Requesting access for a new study, step 5.

  1. Review the calendar to find an appropriate free time
  2. Request a reservation
    Participant ID: Please fill in the subject code for all MEG bookings, as proof that there is a confirmed participant. Reserving time slots without a confirmed participant is not allowed.
    Time requested: You must book the entire time required for your study (setup + recording). This is typically 3 hours for a pilot study or when using the EEG cap, and 2 hours for most standard subject recordings. The duration of the session billed to the researcher includes the subject preparation time and measurement time. Billing starts with the booking time even for late arrivals.
  3. Reserved time will be approved within 24 hours of the request. It is the responsibility of the researcher to verify that his/her session block has been correctly granted.

MEG Data Collection and Retrieval

Raw data is collected and stored on the acquisition workstation (quickly.bic.mni.mcgill.ca). Typical disk space usage are about 10 GB per hour of recording. The raw data is then transferred overnight to the MEG data storage (/meg/meg1/data/) and made available to their respective investigator on the BIC network for at least a month following the session date. Data is automatically deleted each month. It is therefore the sole responsibility of the investigator to retrieve his/her data in a timely manner.

For investigators who have access to the BIC data storage, raw MEG data can be copied directly to that storage space. Arrangements must be made directly with the MEG system manager. For information regarding access and billing rates for BIC data storage, see https://mcgill.ca/bic/core-facilities/computing-data-storage.

Session Cancellation

In the event that a booked session needs to be cancelled, this can be done directly on the schedule by the investigator up to 5 working days before a session. For late cancellations (under 5 working days before the session), the session will be billed at the normal rate.

For the MEG-infinity plan, after 3 late cancellations, an additional penalty fee of $250 will be charged for all further late cancellations.

Every effort will be made to avoid changes in the MEG schedule but occasional staffing shortages, equipment failure or other unforeseen issue may require that a confirmed session be rescheduled. The researcher will be notified as soon as possible and every effort will be made to reschedule the session shortly thereafter, with no penalty charge.

275-channel CTF MEG 2005 Series

  • Manufacturer: CTF MEG International Services Limited Partnership (CTF MISLP)
  • 275 axial gradiometer SQUID channels in a head-shaped helmet, up to 12 kHz sampling rate
  • 29 reference channels for reducing environmental magnetic signals
  • 64 simultaneous EEG channels (56 + 8 bipolar)
  • 16 analog input channels,
  • Digital input channels: DB37, two parallel (DB25) and two serial (DB9) ports
  • Continuous head position tracking
  • Located in a magnetically shielded room
  • Comfortable reclining chair or bed for seated or supine participant positioning

Auxiliary devices

  • VPixx ProPixx projector (1920 x 1080 resolution, up to 500 Hz color, 1440 Hz greyscale)
  • E-A-RTone insert earphones with disposable foam tips
  • Two Digitimer DS7A constant current stimulators
  • Eye tracking (in-house system)
  • Various response devices: VPixx ResponsePixx MRI system with two custom 5-button pads, finger tapper, MEG-compatible USB keyboard and mouse, joystick
  • Audio & video participant/patient monitoring and recording capabilities

Stimulus software

  • Matlab & PsychToolbox
  • Presentation
  • E-Prime
  • OpenSesame
  • PsychoPy
  • Real-time neuro-feedback with Brainstorm

Investigators that collect MEG data can use the workstations in the MEG suite to learn how to pre-process and analyze their data with the assistance of the MEG team. This access is typically granted for a period of time, pending availability of workstations, long enough to analyze 1-2 subjects and develop an analysis workflow.

For investigators looking for MEG training or that are interested in learning more about Brainstorm, there are several training courses offered throughout the year. The schedule can be found on the BIC website under Training and Events, MEG training.

Obtaining MEG Operator Certification

Investigators are encouraged to obtain certification to become an operator of the MEG instrument to benefit from 24/7 access to the MEG instrument, i.e. access outside regular opening hours and a discount on rates.

To obtain certification, the investigator should contact the MEG System Manager (marc.lalancette2 [at] mcgill.ca). Training begins with one or two sessions (about 3 hours) in the MEG lab to cover many aspects:

  • subject safety,
  • equipment operation,
  • basic system design and principles,
  • general procedure for participant set up and data collection,
  • acquisition software,
  • identifying artefacts,
  • troubleshooting.

Following this, the trainee will be supervised and assisted by the MEG System Manager during at least the first 3 recording sessions of his/her own study. These training sessions are billed at the regular data acquisition rate (with assistance). There is no additional cost to obtaining this certification.

The MEG System Manager and the Director of MEG Research may require that additional training sessions are necessary before obtaining certification. Additional training sessions can also be requested by the investigator.

The investigator will then be notified by a letter from the Director of MEG Research that he/she has obtained certification to operate the MEG system independently. The certification is valid for all current and future studies run by this investigator. The MEG Program will maintain a list of certified MEG operators so that other PI's are encouraged to use their services.

Our Team

We offer expertise, training and support to all investigators interested in learning about MEG and performing a MEG study. We also develop our own research in the neuroSPEED laboratory.

Dr Sylvain Baillet Director, MEG Core sylvain.baillet [at] mcgill.ca
Marc Lalancette MEG System Manager marc.lalancette2 [at] mcgill.ca
Martin Cousineau Core Software Developer martin.p.cousineau [at] mcgill.ca

For inquiries and more information, please contact the Director of the MEG Core.

Software

The analysis and interpretation of MEG data require the exploration of large volumes of data. Our program contributes original software developments to facilitate the integration of MEG in the standard clinical workflow and promote research productivity.

Our main effort is Brainstorm, a collaborative, open-source application dedicated to the analysis of multimodal electrophysiology, with the objective of sharing a comprehensive set of user-friendly tools with the scientific community. For physicians and researchers, the main advantage of Brainstorm is its rich and intuitive graphic interface, which does not require any programming knowledge, a rich online documentation and strong user support (20,000 user accounts, 950 journal articles, 36 training workshops since 2011).

Brainstorm Consortium: McGill, USC, Cleveland Clinic, CNRS/INSERM (France); NIH funded.

 

Open Science

Our unit is also at the forefront of open-science efforts. The Open MEG Archive (OMEGA) is the fruit of a collaborative effort between our program and the Université de Montréal to provide a core repository of MEG data for open dissemination. It now contains multimodal data from over 200 participants, about 300 resting-state MEG records. It also features anatomical T1-weighted MRI volumes and anonymized demographic and questionnaire data. OMEGA will continue to expand, with contributions from the scientific community.

  

 

The Brain Imaging Data Structure (BIDS) is an emerging standard for the harmonization of neuroimaging data, to which we contributed to extend to MEG. The MEG-BIDS specifications were defined in accord with best-practice guidelines for conducting MEG research, with direct inputs from MEG investigators, technical support staff and data managers. All MEG data collected at our unit is automatically organized according to BIDS when copied from the acquisition system to our storage server, where researchers access their recordings.

Back to top