Ross Otto

Academic title(s): 

Assistant Professor


Contact Information:


Office: 2001 McGill College, 711
Phone: 514.398.6109
Email: rotto[at]


Mailing Address:
Department of Psychology
2001 McGill College, 7th floor
Montreal, QC
H3A 1G1


Ross Otto

Research Areas:

Behavioral Neuroscience | Cognition & Cognitive Neuroscience

Research Summary:

Why do we sometimes rely on slow, deliberative, and effortful choices, while at other times we rely on fast, habitual, and reflexive choice? On one hand, making the best possible decision is effortful and time-consuming, but on the other hand, the benefits resulting from deliberative behavior may be small relative to its cost. My research investigates why we sometimes rely on slow and effortful choices, while at other times we rely on fast and reflexive choice. For example, how does an individual’s reliance upon reflective versus reflexive choice vary situationally based on factors like availability of cognitive resources, stress, time pressure, or perceived costs and benefits? Why might individuals differ, dispositionally, in their reliance upon reflective versus reflexive choices? To answer these questions, we use a combination of computational, behavioral, and psychophysiological, and neuroimaging techniques.

Selected References:

Otto, A. R. & Vassena, E. (in press). It’s all relative: reward-induced cognitive control modulation depends on context. Journal of Experimental Psychology: General.

Otto, A. R., & Daw, N. D. (2019). The opportunity cost of time modulates cognitive effort. Neuropsychologia, 123, 92–105.

Momennejad, I., Otto, A. R., Daw, N. D., & Norman, K. A. (2018). Offline replay supports planning in human reinforcement learning. eLife, 7, e32548.

Otto, A. R., & Eichstaedt, J. C. (2018). Real-world unexpected outcomes predict city-level mood states and risk-taking behavior. PLOS ONE, 13(11), e0206923.

St-Amand, D., Sheldon, S,. & Otto, A.R. (2018). Modulating episodic memory alters risk preference during decision-making. Journal of Cognitive Neuroscience, 30(10), 1433-1441.

Sandra, D. A., & Otto, A. R. (2018). Cognitive capacity limitations and Need for Cognition differentially predict reward-induced cognitive effort expenditure. Cognition, 172, 101–106.

Otto, A. R., Fleming, S.M., & Glimcher, P.W. (2016). Unexpected but Incidental Positive Outcomes Predict Real-World Gambling. Psychological Science, 27(3), 299-311.

Otto, A. R., Skatova, A., Madlon-Kay, S., & Daw, N. D. (2015). Cognitive Control Predicts Use of Model-based Reinforcement Learning. Journal of Cognitive Neuroscience, 27(2), 319–333.

Otto, A.R., Knox, W.B., Markman, A.B., & Love, B.C. (2014). Behavioral and physiological signatures of reflective exploratory choice. Cognitive, Affective, & Behavioral Neuroscience, 14(4), 1167–1183.

Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A., & Daw, N. D. (2013). Working-memory capacity protects model-based learning from stress. Proceedings of the National Academy of Sciences, 110(52), 20941–20946.

Otto, A.R., Gershman, S.J., Markman, A.B., & Daw, N.D. (2013). The curse of planning: dissecting multiple Reinforcement Learning systems by taxing the central executive. Psychological Science, 24(5), 751-761.




Back to top