Robert A Murgita

Academic title(s): 

Retired Professor

Robert A Murgita
Contact Information
Fax number: 
Email address: 
robert.murgita [at]
Faculty Members
Lyman Duff Medical Building
Graduate supervision: 



Current research: 

Transient protein-protein interactions (PPIs), which underlie most biological processes, are a prime target for therapeutic development. Immense progress has been made towards computational prediction of PPIs using methods such as protein docking and sequence analysis. However, docking generally requires high resolution structures of both of the binding partners and sequence analysis requires that a significant number of recurrent patterns exist for the identification of a potential binding site. Researchers have turned to machine learning to overcome some of the other methods’ restrictions by generalizing interface sites with sets of descriptive features. Best practices for dataset generation, features, and learning algorithms have not yet been identified or agreed upon, and an analysis of the overall efficacy of machine learning based PPI predictors is due, in order to highlight potential areas for improvement. Interaction sites on protein surfaces mediate virtually all biological activities, and their identification holds promise for disease treatment and drug design. Novel algorithmic approaches for the prediction of these sites have been produced at a rapid rate, and the field has seen significant advancement over the past decade.


Prediction Algorithm; Protein-protein Interaction; Protein-protein Interface; Protein-protein Binding; Feature Selection; Protein Structure; Interface Types; Machine Learning; Biological Databases; Homology, Protein interface identification, Protein prediction scoring

Selected publications: 
  • Bendell, Calem J., et al. "Transient protein-protein interface prediction: datasets, features, algorithms, and the rad-t predictor." BMC bioinformatics 15.1 (2014): 82.
  • Aumentado-Armstrong, Tristan T., Bogdan Istrate, and Robert A. Murgita. "Algorithmic approaches to protein-protein interaction site prediction."Algorithms for Molecular Biology 10.1 (2015): 7.
Back to top