Program Requirements
The B.Sc.; Major in Physics program covers a range of fundamental physical concepts from classical physics to modern topics relevant to contemporary research. The program may be completed in 6063 credits.
Program Prerequisites
Students entering Physics programs from the Freshman program must have successfully completed the courses below or their equivalents. Quebec students must have completed the DEC with appropriate science and mathematics courses.

CHEM 110 General Chemistry 1 (4 credits)
Overview
Chemistry : A study of the fundamental principles of atomic structure, radiation and nuclear chemistry, valence theory, coordination chemistry, and the periodic table.
Terms: Fall 2024
Instructors: Sirjoosingh, Pallavi; Kakkar, Ashok K; McKeague, Maureen; Denisova, Irina (Fall)
Fall
Prerequisites/corequisites: College level mathematics and physics or permission of instructor; CHEM 120 is not a prerequisite
Each lab section is limited enrolment

CHEM 120 General Chemistry 2 (4 credits)
Overview
Chemistry : A study of the fundamental principles of physical chemistry.
Terms: Winter 2025
Instructors: Sirjoosingh, Pallavi; Sewall, Samuel Lewis; Wiseman, Paul; Denisova, Irina (Winter)
Winter
Prerequisites/corequisites: College level mathematics and physics, or permission of instructor: CHEM 110 is not a prerequisite
Each lab section is limited enrolment

MATH 133 Linear Algebra and Geometry (3 credits)
Overview
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases. Linear transformations. Eigenvalues and diagonalization.
Terms: Fall 2024, Winter 2025
Instructors: Macdonald, Jeremy; Ayala, Miguel; Branchereau, Romain; Giard, Antoine (Fall)
3 hours lecture, 1 hour tutorial
Prerequisite: a course in functions
Restriction(s): 1) Not open to students who have taken CEGEP objective 00UQ or equivalent. 2) Not open to students who have taken or are taking MATH 123, except by permission of the Department of Mathematics and Statistics.

PHYS 131 Mechanics and Waves (4 credits)
Overview
Physics : The basic laws and principles of Newtonian mechanics; oscillations, waves, and wave optics.
Terms: Fall 2024
Instructors: Ragan, Kenneth J (Fall)
Fall
3 hours lectures; 1 hour tutorial, 3 hours laboratory in alternate weeks; tutorial sessions
Corequisite: MATH 139 or higher level calculus course.
Restriction(s): Not open to students who have taken or are taking PHYS 101, or who have taken CEGEP objective 00UR or equivalent.
Laboratory sections have limited enrolment

PHYS 142 Electromagnetism and Optics (4 credits)
Overview
Physics : The basic laws of electricity and magnetism; geometrical optics.
Terms: Winter 2025
Instructors: Guo, Hong (Winter)
Winter
3 hours lectures, 3 hours laboratory in alternate weeks; tutorial sessions
Prerequisite: PHYS 131.
Corequisite: MATH 141 or higher level calculus course.
Restriction: Not open to students who have taken or are taking PHYS 102, or who have taken CEGEP objective 00US or equivalent.
Laboratory sections have limited enrolment
78 credits from:

MATH 140 Calculus 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2024, Winter 2025
Instructors: Sabok, Marcin; Trudeau, Sidney; Kalmykov, Artem (Fall)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction(s): 1) Not open to students who have taken MATH139 or MATH 150 or CEGEP objective 00UN or equivalent. 2) Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematics and Statistics.
Each Tutorial section is enrolment limited

MATH 141 Calculus 2 (4 credits)
Overview
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2024, Winter 2025
Instructors: Hassan, Hazem; Trudeau, Sidney; Zlotchevski, Andrei (Fall) Trudeau, Sidney (Winter)
Restriction(s): Not open to students who have taken CEGEP objective 00UP or equivalent.
Restriction(s): Not open to students who have taken or are taking MATH 122,except by permission of the Department of Mathematics and Statistics.
Each Tutorial section is enrolment limited

MATH 150 Calculus A (4 credits)
Overview
Mathematics & Statistics (Sci) : Functions, limits and continuity, differentiation, L'Hospital's rule, applications, Taylor polynomials, parametric curves, functions of several variables.
Terms: Fall 2024
Instructors: Kelome, Djivede (Fall)
Fall
3 hours lecture, 2 hours tutorial
Students with no prior exposure to vector geometry are advised to take MATH 133 concurrently. Intended for students with high school calculus who have not received six advanced placement credits
Restriction(s): 1) Not open to students who have taken or are taking MATH 139 or MATH 140 or CEGEP objective 00UN or equivalent. 2) Not open to students who have taken or are taking MATH 122,except by permission of the Department of Mathematics and Statistics.
MATH 150 and MATH 151 cover the material of MATH 139, MATH 140, MATH 141, MATH 222

MATH 151 Calculus B (4 credits)
Overview
Mathematics & Statistics (Sci) : Integration, methods and applications, infinite sequences and series, power series, arc length and curvature, multiple integration.
Terms: Winter 2025
Instructors: Roth, Charles (Winter)
Winter
3 hours lecture; 2 hours tutorial
Each Tutorial section is enrolment limited
Prerequisite: MATH 150
Restriction(s): 1) Not open to students who have taken or are taking MATH 141 or CEGEP objective 00UP or equivalent. 2) Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematic sand Statistics.
Note: Either MATH 140 and MATH 141 or MATH 150 and MATH 151.
Required Courses (45 credits)
* Students coming into the program with sufficient knowledge of computer programming may replace COMP 208 with PHYS 512 or another 3credit COMP course at the 200 level or above after consulting with an adviser.

COMP 208 Computer Programming for Physical Sciences and
Engineering
(3 credits) *
Overview
Computer Science (Sci) : Programming and problem solving in a high level computer language: variables, expressions, types, functions, conditionals, loops, objects and classes. Introduction to algorithms such as searching and sorting. Modular software design, libraries, file input and output, debugging. Emphasis on applications in Physical Sciences and Engineering, such as root finding, numerical integration, diffusion, Monte Carlo methods.
Terms: Fall 2024, Winter 2025
Instructors: Langer, Michael; PrémontSchwarz, Isabeau (Fall) PrémontSchwarz, Isabeau (Winter)
3 hours
Restrictions: Not open to students who have taken or are taking COMP 202, COMP 204, orGEOG 333; not open to students who have taken or are taking COMP 206 or COMP 250.
COMP 202 is intended as a general introductory course, while COMP 208 is intended for students with sufficient math background and in (nonlife) science or engineering fields.

MATH 223 Linear Algebra (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2024, Winter 2025
Instructors: Elaidi, Shereen; Bellemare, Hugues (Fall) Macdonald, Jeremy (Winter)

MATH 314 Advanced Calculus (3 credits)
Overview
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.
Terms: Fall 2024, Winter 2025
Instructors: Martine, Gabriel (Fall)

MATH 315 Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2024, Winter 2025
Instructors: Paquette, Courtney (Fall) Kamran, Niky (Winter)

PHYS 230 Dynamics of Simple Systems (3 credits)
Overview
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2024
Instructors: Guo, Hong (Fall)

PHYS 232 Heat and Waves (3 credits)
Overview
Physics : The laws of thermodynamics and their consequences. Thermodynamics of PVT systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2025
Instructors: Hilke, Michael (Winter)

PHYS 241 Signal Processing (3 credits)
Overview
Physics : Linear circuit elements, resonance, network theorems, diodes, transistors, amplifiers, feedback, integrated circuits.
Terms: Winter 2025
Instructors: Hessels, Jason (Winter)
Winter
2 hours lectures; 3 hours laboratory alternate weeks
Prerequisite: CEGEP physics or PHYS 142.

PHYS 257 Experimental Methods 1 (3 credits)
Overview
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2024
Instructors: Vachon, Brigitte (Fall)

PHYS 258 Experimental Methods 2 (3 credits)
Overview
Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.
Terms: Winter 2025
Instructors: Cooke, David (Winter)
Winter
6 hours of laboratory and classroom work
Prerequisite: PHYS 257

PHYS 331 Topics in Classical Mechanics (3 credits)
Overview
Physics : Forced and damped oscillators, Newtonian mechanics in three dimensions, rotational motion, Lagrangian and Hamiltonian mechanics, small vibrations, normal modes. Nonlinear dynamics and chaos.
Terms: Winter 2025
Instructors: Gervais, Guillaume (Winter)

PHYS 339 Measurements Laboratory in General Physics (3 credits)
Overview
Physics : Introduction to modern techniques of measurement. The use of computers in performing and analysing experiments. Data reduction, statistical methods, report writing. Extensive use of computers is made in this laboratory; therefore some familiarity with computers and computing is an advantage.
Terms: Winter 2025
Instructors: Ryan, Dominic (Winter)
Winter
6 hours
Prerequisite: PHYS 241 or permission of instructor

PHYS 340 Majors Electricity and Magnetism (3 credits)
Overview
Physics : The electrostatic field and scalar potential. Dielectric properties of matter. Energy in the electrostatic field. Methods for solving problems in electrostatics. The magnetic field. Induction and inductance. Energy in the magnetic field. Magnetic properties of matter. Maxwell's equations. The dipole approximation.
Terms: Fall 2024
Instructors: Liu, Adrian (Fall)

PHYS 342 Majors Electromagnetic Waves (3 credits)
Overview
Physics : Maxwell's equations. The wave equation. The electromagnetic wave, reflection, refraction, polarization. Guided waves. Transmission lines and wave guides. Vector potential. Radiation. The elemental dipole; the halfwave dipole; vertical dipole; folded dipoles; Yagi antennas. Accelerating charged particles.
Terms: Winter 2025
Instructors: Gervais, Guillaume (Winter)

PHYS 346 Majors Quantum Physics (3 credits)
Overview
Physics : De Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.
Terms: Fall 2024
Instructors: Vachon, Brigitte (Fall)

PHYS 447 Applications of Quantum Mechanics (3 credits)
Overview
Physics : One electron atoms, radiation, multielectron atoms, molecular bonds. Selected topics from condensed matter, nuclear and elementary particle physics.
Terms: Winter 2025
Instructors: Wang, Kai (Winter)
Restriction(s): Not open to students in the following programs: · Bachelor of Engineering (B.Eng.)  Honours Electrical Engineering · Bachelor of Engineering (B.Eng.)  Minor Physics · Bachelor of Science (B.Sc.)  Honours Mathematics and Physics · Bachelor of Science (B.Sc.)  Honours Physics · Bachelor of Science (B.Sc.)  Honours Physics and Chemistry · Bachelor of Science (B.Sc.)  Honours Physics and Computer Science
Restriction(s): Not open to students who have taken or are taking PHYS 457.
1. Winter
2. 3 hours lectures
Complementary Courses (1518 credits)
03 credits from:

MATH 222 Calculus 3 (3 credits) *
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2024, Winter 2025
Instructors: Pym, Brent; Tageddine, Damien (Fall)
* Students who did not complete an equivalent to MATH 222 on entering the program must take this course.
3 credits from:

PHYS 329 Statistical Physics with Biophysical Applications (3 credits)
Overview
Physics : This interdisciplinary course introduces Statistical Physics illustrated with modern biophysical applications. Principles covered include partition functions, Boltzmann distribution, bosons, fermions, Bose Einstein condensates, Ferni gases, chemical potential, thermodynamical forces, biochemical kinetics, and an introduction to noise and phase transitions in biology.
Terms: This course is not scheduled for the 20242025 academic year.
Instructors: There are no professors associated with this course for the 20242025 academic year.

PHYS 333 Thermal and Statistical Physics (3 credits)
Overview
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. FermiDirac and BoseEinstein distributions; applications.
Terms: Winter 2025
Instructors: Rutledge, Robert (Winter)
12 credits from:

PHYS 319 Introduction to Biophysics (3 credits)
Overview
Physics : Emerging physical approaches and quantitative measurement techniques are providing new insights into longstanding biological questions. This course will present underlying physical theory, quantitative measurement techniques, and significant findings in molecular and cellular biophysics. Principles covered include Brownian motion, low Reynoldsnumber environments, forces relevant to cells and molecules, chemical potentials, and free energies. These principles are applied to enzymes as molecular machines, membranes, DNA, and RNA.
Terms: Winter 2025
Instructors: Reisner, Walter (Winter)

PHYS 320 Introductory
Astrophysics (3 credits)
Overview
Physics : A survey of astrophysics ranging from stars and planets, to compact objects, galaxies, and the largescale evolution of the Universe. A calculusbased course, with a focus on simple mathematical derivations that capture the essential physics.
Terms: Fall 2024
Instructors: Schutz, Katelin (Fall)

PHYS 321 Data Science and Observational Astrophysics (3 credits)
Overview
Physics : Data analysis methods as applied in experimental physics, with an emphasis on applications in observational astrophysics. An introduction to Bayesian inference, model selection, Markov Chain Monte Carlo, common probability distributions, jackknives and null tests, as they are used in the analysis of observational data from across the electromagnetic spectrum.
Terms: Winter 2025
Instructors: Webb, Tracy (Winter)

PHYS 328 Electronics (3 credits)
Overview
Physics : Semiconductor devices, basic transistor circuits, operational amplifiers, combinatorial and sequential logic, integrated circuits, analogue to digital converters. The laboratory component covers design, construction and testing of basic electronic circuits.
Terms: Fall 2024
Instructors: Chiang, Hsin Cynthia (Fall)
Fall
2 hours lectures; 3 hours laboratory
Prerequisite: PHYS 241 or permission of instructor

PHYS 359 Advanced Physics
Laboratory 1 (3 credits)
Overview
Physics : Advanced level experiments in physics including quantum effects and some properties of condensed matter physics and modern physics.
Terms: Winter 2025
Instructors: Ryan, Dominic (Winter)

PHYS 404 Climate Physics (3 credits)
Overview
Physics : This course covers the essentials of climate physics through the lens of onedimensional, vertical atmospheric models. This includes shortwave and longwave radiative transfer, convection, phase changes, clouds, greenhouse gases, and atmospheric escape. This is an adequate level of detail for understanding Earth's climate, paleoclimate, anthropogenic climate change, or pursing studies of Solar System planets and extrasolar planets.
Terms: Fall 2024
Instructors: Nguyen, Giang (Fall)

PHYS 432 Physics of Fluids (3 credits)
Overview
Physics : The physical properties of fluids. The kinematics and dynamics of flow. The effects of viscosity and turbulence. Applications of fluid mechanics in biophysics, geophysics and engineering.
Terms: Winter 2025
Instructors: Jeon, Sang Yong (Winter)

PHYS 434 Optics (3 credits)
Overview
Physics : Fundamental concepts of optics, including applications and modern developments. Light propagation in media; geometric optics and optical instruments; polarization and coherence properties of light; interference and interferometry; diffraction theory and applications in spectrometry and imaging; Gaussian beams, Fourier optics and photonic band structure. A laboratory component provides handson experience in optical setup design, construction and testing of concepts introduced in lectures.
Terms: Fall 2024
Instructors: Wang, Kai (Fall)

PHYS 449 Majors Research Project (3 credits) ^
Overview
Physics : A supervised research project.
Terms: Fall 2024, Winter 2025
Instructors: Siwick, Bradley (Fall) Siwick, Bradley (Winter)
Winter or Summer
6 hours
Restrictions: U2 or U3 students in a Physics program, or permission of the instructor.

PHYS 459D1 Research Thesis (3 credits) **^
Overview
Physics : Supervised research project and thesis.
Terms: Fall 2024
Instructors: Gale, Charles (Fall)
Fall
Permission of the instructor.
6 hours
Restriction: Honours students or permission of instructor
Students must register for both PHYS 459D1 and PHYS 459D2.
No credit will be given for this course unless both PHYS 459D1 and PHYS 459D2 are successfully completed in consecutive terms

PHYS 459D2 Research Thesis (3 credits) **^
Overview
Physics : See PHYS 459D1 for course description.
Terms: Winter 2025
Instructors: Gale, Charles (Winter)
Winter
Prerequisite: PHYS 459D1
No credit will be given for this course unless both PHYS 459D1 and PHYS 459D2 are successfully completed in consecutive terms

PHYS 469 Advanced Physics Laboratory 2 (3 credits)
Overview
Physics : Advanced level experiments in physics including quantum effects and some properties of condensed matter physics and modern physics.
Terms: Fall 2024
Instructors: Cooke, David (Fall)
Fall
6 hours
Restriction: Honours students or permission of instructor
Prerequisite: PHYS 258 or permission of the instructor
Corequisite: PHYS 457 or PHYS 447 or permission of the instructor.
Restriction: Open to honours and majors physics students
Student who have taken PHYS 359 will conduct different experiments in this course.

PHYS 479 Physics Research Project (3 credits)
Overview
Physics : A supervised research project.
Terms: Fall 2024, Winter 2025
Instructors: Siwick, Bradley (Fall) Siwick, Bradley (Winter)
6 hours
Restriction: U2 or U3 students in a Physics program, or permission of the instructor.

PHYS 512 Computational Physics with Applications (3 credits)
Overview
Physics : Computational methods in Physics illustrated with realworld applications.
Terms: Fall 2024
Instructors: Sievers, Jonathan Le Roy (Fall)
U3 or graduate students in Physics, Chemistry, or Engineering, or permission of the instructor. Basic familiarity with computer programming highly recommended.

PHYS 519 Advanced Biophysics (3 credits)
Overview
Physics : An advanced biophysics course, with a special emphasis on stochastic and out of equilibrium physical processes in living matter.
Terms: Winter 2025
Instructors: Wiseman, Paul (Winter)

PHYS 521 Astrophysics (3 credits)
Overview
Physics : An advanced course in modern astrophysics, covering topics such as the basic tools of astronomy (statistics, mathematical methods, computational tools, and instrumentation); stellar astrophysics (properties, structure, atmospheres, binaries/exoplanets); the interstellar medium, star formation, stellar evolution and endpoints (white dwarfs, neutron stars, black holes); and the Milky Way, galaxies, and cosmology.
Terms: Fall 2024
Instructors: Raghoonundun, Ambrish (Fall)
Fall
3 hours
Restriction: U3 students and graduate students, or permission of the instructor
** NOTE: If chosen, PHYS 459D1 and PHYS 459D2 are taken together.
^ Note: A maximum of 6 credits of complementary courses may be from research courses PHYS 449, PHYS 479, and PHYS 459D1/459D2.
Note: It is possible for students to transfer from the Major to the Honours program after U1 year if they have passed all the 200level required courses listed above and MATH 314 and MATH 315 with a C or better, and obtained a cumulative GPA of 3.5 or better in these courses. The written permission of an adviser is required for this change of program. MATH 249 and PHYS 260 from the U1 Honours year should be taken in U2.