Chemical Constituents and Antimicrobial and Antioxidant Activities of Essential Oil from Dried Seeds of <em>Xylopia aethiopica</em>

The study aimed to investigate the chemical composition and antimicrobial and antioxidant activities of the essential oil from dried seeds of Xylopia aethiopica. The essential oil was obtained by hydrodistillation and analyzed by GC/FID and GC/MS. The essential oil yield was 1.35%. Forty-nine compounds were identified in the essential oil with 1,8-cineole (16.3%), β-pinene (14.8%), trans-pinocarveol (9.1%), myrtenol (8.3%), α-pinene (5.9%), and terpinen-4-ol (5.6%) as major components. The...

Web-based multi-omics integration using the Analyst software suite

The growing number of multi-omics studies demands clear conceptual workflows coupled with easy-to-use software tools to facilitate data analysis and interpretation. This protocol covers three key components involved in multi-omics analysis, including single-omics data analysis, knowledge-driven integration using biological networks and data-driven integration through joint dimensionality reduction. Using the dataset from a recent multi-omics study of human pancreatic islet tissue and plasma...

Beyond schistosomiasis: unraveling co-infections and altered immunity

SUMMARYSchistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma...

Functional domain annotation by structural similarity

Traditional automated in silico functional annotation uses tools like Pfam that rely on sequence similarities for domain annotation. However, structural conservation often exceeds sequence conservation, suggesting an untapped potential for improved annotation through structural similarity. This approach was previously overlooked before the AlphaFold2 introduction due to the need for more high-quality protein structures. Leveraging structural information especially holds significant promise to...

Prioritization of Trypanosoma brucei editosome protein interactions interfaces at residue resolution through proteome-scale network analysis

CONCLUSION: RNA editing offers promise for target-based drug discovery, particularly with proteins and interfaces that play central roles in the pathogen's life cycle. This study introduces an integrative drug target identification workflow combining information from the PPI network, PPI 3D structure, and reside-level information of their interface which can be applicable to diverse pathogens. In the case of T. brucei, via this pipeline, the present study suggested potential drug targets with...

Intestinal protozoa in returning travellers: a GeoSentinel analysis from 2007 to 2019

CONCLUSIONS: This analysis provides new insights into the epidemiology and clinical significance of 4 intestinal protozoa that can cause morbidity in international travellers. These data might help optimize pretravel advice and post-travel management of patients with travel-associated prolonged gastrointestinal illnesses. This analysis reinforces the importance of international travel-related surveillance to identify sentinel cases and areas where protozoal infections might be undetected or...

Chikungunya infection in returned travellers: results from the GEOSENTINEL network, 2005-2020

CONCLUSIONS: Chikungunya was acquired by international travellers in almost 100 destinations globally. Vector precautions and vaccination where recommended should be integrated into pretravel visits for travellers going to areas with chikungunya or areas with the potential for transmission.Continued surveillance of travel-related chikungunya may help public health officials and clinicians limit the transmission of this potentially debilitating disease by defining regions where protective...

Multimodal vaccination targeting the receptor binding domains of <em>Clostridioides difficile</em> toxins A and B with an attenuated <em>Salmonella</em> Typhimurium vector (YS1646) protects mice from lethal challenge

Clostridioides difficile remains a major public health threat, and new approaches are needed to develop an effective vaccine. To date, the industry has focused on intramuscular vaccination targeting the C. difficile toxins. Multiple disappointing results in phase III trials have largely confirmed that this may not be the best strategy. As C. difficile is a pathogen that remains in the intestine, we believe that targeting mucosal immune responses in the gut will be a more successful strategy. We...

Identifying Antigenic Switching by Clonal Cell Barcoding and Nanopore Sequencing in <em>Trypanosoma brucei</em>

Many organisms alternate the expression of genes from large gene sets or gene families to adapt to environmental cues or immune pressure. The single-celled protozoan pathogen Trypanosoma brucei spp. periodically changes its homogeneous surface coat of variant surface glycoproteins (VSGs) to evade host antibodies during infection. This pathogen expresses one out of ~2,500 VSG genes at a time from telomeric expression sites (ESs) and periodically changes their expression by transcriptional...

Hepatic Transcriptomic Responses to Ethinylestradiol in Embryonic Japanese Quail and Double-crested Cormorant

Understanding species differences in sensitivity to toxicants is a critical issue in ecotoxicology. We recently established that double-crested cormorant (DCCO) embryos are more sensitive than Japanese quail (JQ) to the developmental effects of ethinylestradiol (EE2). Here, we explore how this difference in sensitivity between species is reflected at a transcriptomic level. EE2 was dissolved in dimethyl sulfoxide and injected into the air cell of eggs prior to incubation at nominal...

Comparing Transcriptomic Responses to Chemicals Across Six Species using the EcoToxChip RNASeq database

The EcoToxChip project includes RNA-sequencing data from experiments involving model (Japanese quail, fathead minnow, African clawed frog) and ecological (double-crested cormorant, rainbow trout, northern leopard frog) species, at multiple life stages (whole embryo and adult), exposed to eight chemicals of environmental concern known to perturb a wide range of biological systems (ethinyl estradiol, hexabromocyclododecane, lead, selenomethionine, 17β trenbolone, chlorpyrifos, fluoxetine, and...

PI(3,4,5)P3 allosteric regulation of repressor activator protein 1 controls antigenic variation in trypanosomes

African trypanosomes evade host immune clearance by antigenic variation, causing persistent infections in humans and animals. These parasites express a homogeneous surface coat of variant surface glycoproteins (VSGs). They transcribe one out of hundreds of VSG genes at a time from telomeric expression sites (ESs) and periodically change the VSG expressed by transcriptional switching or recombination. The mechanisms underlying the control of VSG switching and its developmental silencing remain...

High-throughput screening of compounds targeting RNA editing in Trypanosoma brucei: Novel molecular scaffolds with broad trypanocidal effects

Mitochondrial uridine insertion/deletion RNA editing, catalyzed by a multiprotein complex (editosome), is essential for gene expression in trypanosomes and Leishmania parasites. As this process is absent in the human host, a drug targeting this mechanism promises high selectivity and reduced toxicity. Here, we successfully miniaturized our FRET-based full-round RNA editing assay, which replicates the complete RNA editing process, adapting it into a 1536-well format. Leveraging this assay, we...
Back to top