Associate Professor; Departmental Chairmartina.stromvik [at] mcgill.ca (Email) | Raymond Building R2-019 |
Degrees
BA, MS (Stockholm)
PhD (Illinois)
Research interests
Cell-specific gene regulation and promoter discovery: Using techniques such as laser capture microdissection, RNA-Seq/transcriptomics, transgenics and computational de novo motif discovery, my group studies transcriptional gene regulation of agronomic traits in economically important plants such as soybean and potato.
Adaptation of plants to the Arctic: My research group studies the genomes of arctic plants, and has explored evolutionary adaptive aspects of several genes. These discoveries contribute to understanding the molecular mechanisms behind this remarkable plant adaptation to an incredibly harsh habitat, and to positioning potential sustainable crop improvement in a changing climate.
Bioinformatics software and database development: Plant genomes are in many ways very complex and challenging. Bioinformatics tools tailored for plants are needed. My group has developed several tools including Seeder – an open source de novo motif discovery tool, and SoyXpress – a database for soybean.
Whole-genome sequence analyses of complex polyploid genomes: Plant genomes are highly duplicated and often polyploid. My group analyzes complex whole genome sequences of soybean (diploidized tetraploid) and several potato relatives (diploids, triploids, tetraploids, pentaploids) for structural variations that are linked to the plant’s phenotype and success in adaptation.
Media coverage of the Stromvik lab research
Our Solanum section Petota super pangenome (Bozan, I., Achakkagari, S.R. et al 2023 PNAS) was noted in
The Globe and Mail
GenomeWeb
McGill News
__________
We are hiring!
Research Assistant (Bioinformatics)
The Stromvik lab is recruiting a bioinformatician/research assistant to work with plant genome and transcriptome sequence projects.
Position Summary:
Process sequence data, plant genome and transcriptome sequence analyses, generate reports including text and figures
Qualifications:
Two years experience with bioinformatics tools and processes, as well as genome sequence data, proficiency in unix/linux, python, R, statistics and familiarity with high performance computing.
Minimum education a BSc in a relevant field.
All interested candidates are encouraged to apply here: https://mcgill.wd3.myworkdayjobs.com/McGill_Careers/job/MacdonaldStewart...
__________
Current lab members
George Tarabian (Ph.D. student)
Juan Carlos Camargo Tavares (Ph.D. student)
Sai Reddy Achakkagari (Research Assistant - Bioinformatics)
Graduates
Zhe Xie (M.Sc. 2023 - Bioinformatics)
Ilayda Bozan (M.Sc. 2021 - Bioinformatics)
Zhengyuan Liu (M.Sc. 2020 - Bioinformatics)
Juan Carlos Camargo Tavares (M.Sc. 2020 - Molecular Biology)
Maria Kyriakidou (Ph.D. 2020 - Bioinformatics)
Héctor Gálvez (M.Sc. 2017 - Bioinformatics)
Prabha Munusamy (M.Sc. 2015 - Bioinformatics)
Yevgen Zolotarov (M.Sc. 2014 - Bioinformatics)
Nadia Chaidir (M.Sc. 2014 - Bioinformatics)
Annie Archambault (Ph.D. 2013 - Molecular Biology)
Haritika Majithia (M.Sc. 2013 - Bioinformatics)
Muhammad Chragh (M.Sc. 2012 - Molecular Biology)
Francois Fauteux (Ph.D. 2010 - Bioinformatics)
Julie Livingstone (M.Sc. 2009 - Bioinformatics)
Hanaa Saeed (M.Sc. 2008 - Molecular Biology)
Kei Chin Cheng (M.Sc. 2007 - Bioinformatics)
View a list of current publications on Google Scholar, Research Gate and PubMed
Selected Publications
Bozan, I., Achakkagari, S.R., Anglin, N., Ellis, D., Tai, H. and Strömvik, M.V. (2023) Pan-genome analyses reveal impact of transposable elements and ploidy on the evolution of potato species. Proceedings of the National Academy of Science PNAS, 120 (31) e2211117120, 2023 https://doi.org/10.1073/pnas.2211117120
Chen, W., Achakkagari, S.R., and Strömvik, M.V. (2022) Plastaumatic: Automating plastome assembly and annotation. Frontiers of Plant Science Nov. 3 https://doi.org/10.3389/fpls.2022.1011948
Achakkagari, S.R., Kyriakidou, M., Gardner, K.M., De Koeyer, D., De Jong, H, Strömvik, M. V., Tai H.H. (2022) Genome sequencing of adapted diploid potato clones. Frontiers in Plant Science vol 13 https://www.frontiersin.org/articles/10.3389/fpls.2022.954933 doi=10.3389/fpls.2022.954933
Camargo Tavares, J.C., Achakkagari, S., Archambault, A., and Strömvik, M.V. (2022) The plastome of the arctic Oxytropis arctobia (Fabaceae) has large differences compared with that of O. splendens and those of related species. Genome (Mar 4) https://cdnsciencepub.com/doi/10.1139/gen-2021-0059
Hoopes, G., Meng, X., Hamilton, J., Achakkagari, S.R., Alves Freitas Guesdes, F., Bolger, M.E., Coombs, J.J., Esselink, D., Kaiser, N.R., Kodde, L., Kyriakidou, M., Lavrijssen, B., van Lieshout, N., Shereda, R., Tuttle, H.K., Vaillancourt, B., Wood, J.C., de Boer, J.M., Bourke, P., Douches, D., Ellis, D., Feldman, M.J., Gardner, K.M., Hopman, J.C.P., De Jong, W.S., Kuhl, J.C., Novy, R.G., Oome, S., Sathuvalli, V., Tan, E.H., Vales, M.I., Vining, K., Visser, R.G.F., Vossen, J., Yencho, G.C., Anglin, N.L., Bachem, C.W.B., Endelman, J.B., Shannon, L.M., Strömvik, M.V., Tai, H.H., Usadel, B., Buell, C.R., and R. Finkers (2022) Phased, chromosome-scale genome assemblies of tetraploid potato reveals a complex genome, transcriptome, and proteome landscape that underpin phenotypic diversity. Molecular Plant https://www.cell.com/molecular-plant/fulltext/S1674-2052(22)00003-X#%20
Achakkagari, S.R., Tai, H.H., Davidson, C., De Jong, H., and Strömvik, M.V. (2021) The complete mitogenome assemblies of 10 diploid potato clones reveal recombination and overlapping variants, DNA Research, https://academic.oup.com/dnaresearch/article/28/4/dsab009/6319723 DOI: 10.1093/dnares/dsab009
Achakkagari, S.R., Bozan, I., Anglin, N., Ellis, D., Tai, H.H., and Strömvik, M.V. (2021) Complete mitogenome assemblies from a panel of 13 diverse potato taxa, Mitochondrial DNA Part B, 6:3, 894-897 https://www.tandfonline.com/doi/full/10.1080/23802359.2021.1886016 DOI: 10.1080/23802359.2021.1886016
Achakkagari, S.R., Tai, H.H., Davidson, C., De Jong, H., and Strömvik, M.V. (2021) The complete plastome sequences of nine diploid potato clones, Mitochondrial DNA Part B, 6:3, 811-813 https://www.tandfonline.com/doi/full/10.1080/23802359.2021.1883486
Parenteau, M.T., Gu, H., Zebarth, B.J., Cambouris, A.N., Lafond, J., Nelson, A., Nyiraneza, J., Davidson, C., Lagüe, M., Galvez, J.H., Strömvik, M.V., and Tai, H.H. (2020) Data Mining Nitrogen-Responsive Gene Expression for Source–Sink Relations and Indicators of N Status in Potato. Agronomy 2020, 10, 1617. https://doi.org/10.3390/agronomy10101617
Achakkagari, S., Kyriakidou, M., Tai, H.H., Anglin, N.L., Ellis, D., and Strömvik, M.V. (2020) Complete plastome assemblies from a panel of 13 diverse potato taxa. PLOS One 15(10): e0240124 (Oct 8 2020) https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240124
Kyriakidou, M., Anglin, N.L., Ellis, D., Tai, H.H., and Strömvik, M.V. (2020) Genome assembly of six polyploid genomes. Nature Scientific Data 7, 88(2020) https://www.nature.com/articles/s41597-020-0428-4
Kyriakidou, M., Achakkagari, S.R., Galvez, J.H., Zhu, X., Tang, K., Tai, H., Anglin, N., Ellis, D., Strömvik, MV. (2020) Structural genome analysis in potato taxa. Theoretical and Applied Genetics (TAG) Online first Dec 31, 2019 http://link.springer.com/article/10.1007/s00122-019-03519-6
Kyriakidou, M., Anglin, N., Tai, H., Ellis, D and Strömvik, M. (2018) "Current strategies of polyploid plant genome sequence assembly". Frontiers in Plant Science. Nov 21 doi: 10.3389/fpls.2018.01660
Munusamy, P., Zolotarov, Y., Meteignier, L-V., Moffet, P. and Strömvik, M.V. (2017) “De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome” Scientific Reports 7, 43861 doi: 10.1038/srep43861
Galvez Lopez, J.H., Tai, H., Barkley, N.A., Gardner, K., Ellis, D., and Strömvik, M.V. (2017) “Understanding potato with the help of genomics” AIMS Agriculture and Food, 2(1): 16-39 doi:10.3934/agrfood.2017.1.16
Galvez Lopez, J.H., Tai, H., Zebarth, B., Lagüe, M., and Strömvik, M.V. (2016) "The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs" Scientific Reports 6: 26090 doi:10.1038/srep26090
Rodrigues de Almeida, M. and Strömvik, M.V. (2016). Chapter 11: "Laser capture microdissection: Avoiding bias in analysis by selecting just what matters." In "Biotechnology of Plant Secondary Metabolism" Ed.: A.G Fett-Neto, Humana Press, Springer Protocols, Methods in Molecular Biology 1405
Goordial, J., Raymond-Bouchard, I., Zolotarov, Y., de Bethencourt, L., Ronholm, J., Shapiro, N., Woyke, T., Strömvik, M., Greer, C., Bakermans, C., Whyte, L. (2016) "Cold adaptive traits revealed by comparative genomic analysis of the eurypsychrophile Rhodococcus sp. JG3 isolated from high elevation McMurdo Dry Valley permafrost, Antarctica." FEMS Microbiology Ecology 92: fiv154 http://femsec.oxfordjournals.org/content/92/2/fiv154
Rodrigues de Almeida, M., de Bastiani, D., Letaif Gaeta, M., Ernesto de Araujo Mariath, J.E., de Costa, F., Retallick, J., Nolan, L., Tai, H., Strömvik, M.V., and Fett-Neto, A.G. (2015). “Comparative transcriptional analysis provides new insights in the molecular basis of adventitious rooting recalcitrance in Eucalyptus”. Plant Science 239: 155-165 DOI: 10.1016/j.plantsci.2015.07.022
Zolotarov, Y., and Strömvik, M.V. (2015). "De novo regulatory motif discovery identifies significant motifs in promoters of five classes of plant dehydrin genes" PLoS One, June 26, 2015 DOI: 10.1371/journal.pone.0129016.
Chragh, M., Zolotarov, Y., Saeed, H., and Strömvik, M.V. (2015). "Le4 is an epicotyl preferential homologue of the soybean seed specific Le1 lectin and the vegetative Le3 lectin genes" Plant Molecular Biology Reporter. 33: 1779-1789 (DOI) 10.1007/s11105-015-0873-y
Liseron-Monfils, C., Lewis, T., Ashlock, D., McNicholas, P., Fauteux, F., Strömvik, M., and Raizada, M. (2013). "Promzea: a pipline for discovery of co-regulatory motifs in maize and other plant species and its application to the anthocyanin and phlobaphene biosynthetic pathways and the Maize Development Atlas." BMC Plant Biology 13: 42.
Archambault, A. and Strömvik, M.V. (2012). "Evolutionary relationships in Oxytropis species, as estimated from the nuclear ribosomal internal transcribed spacer (ITS) sequences point to multiple expansions into the Arctic" Botany 90: 770-779.
Archambault, A. and Strömvik, M.V. (2012). "The Y-segment of novel cold dehydrin genes is conserved and codons in the PR-10 genes are under positive selection in Oxytropis (Fabaceae) from contrasting climates” Molecular Genetics and Genomics 287: 123-142.
Hunt, M., Kaur, N., Stromvik, M., and Vodkin, L. (2011). "Transcript Profiling Reveals Expression Differences In Wild-Type and Glabrous Soybean Lines". BMC Plant Biology 11: 145.
Livingstone, J.M., Zolotarov, Y., and Strömvik, M.V. (2011). "Transcripts of soybean isoflavone 7-O-glucosyltransferase and hydroxyisoflavanone dehydratase gene homologues are at least as abundant as transcripts of their well known counterparts". Plant Physiology and Biochemistry 49: 1071-1075.
Archambault, A. and Strömvik, M.V. (2011) "PR-10, defensin and cold dehydrin genes are among those over expressed in Oxytropis (Fabaceae) species adapted to the arctic". Functional and Integrative Genomics 11: 497-505.
Livingstone, J.M., Seguin, P., and Strömvik, M.V. (2010) "An in silico study of the genes for the isoflavonoid pathway enzymes in soybean reveals novel expressed homologues" Can. J. of Plant Science 90: 453-469.
Livingstone, J.M., Cheng, K.C., and Strömvik, M.V. (2010) Chapter 12: "Bioinformatics as a Tool" in Genetics, Genomics and Breeding in Soybean" Eds. K. Bilyeu, M.B. Ratnaparkhe, C. Kole, CRC Press, Science Publishers Enfield, New Hampshire (Bookchapter).