Mehran Dastmalchi

Mehran Dastmalchi

Assistant Professor

T: 514-398-7858 |  mehran.dastmalchi [at] (Email) | Raymond Building R2-021A  |  Lab website  |  Twitter  |  LinkedIn

Discover MSc/PhD positions available for Fall 2024


BSc Biology (University of Toronto)
PhD Biology (Western University)

Short Bio

Mehran Dastmalchi joined McGill University as an Assistant Professor in the Department of Plant Science in Fall 2020. He is setting up a research program to study metabolism in legume species (Fabaceae), with interest in pathways producing defence and signalling compounds. Mehran began his research career in the lab of Dr. Dhaubhadel at Western University (2010-2015), with work culminating in the discovery of a metabolon (enzyme complex) in the isoflavonoid pathway. From there, he joined Dr. Facchini at the University of Calgary as a postdoctoral fellow and later as a research assistant (2015-2018) to investigate morphine biosynthesis in opium poppy. He was part of a team that found novel biosynthetic and transport genes involved in the pathway. The discoveries potentiated the modular assembly of natural and semi-synthetic opioid production in engineered microbes. Subsequently, he worked with Dr. De Luca at Brock (2019-2020), tackling specialized metabolism in the medicinal plant Madagascar periwinkle. The Dastmalchi lab will be exploring the function of biosynthetic, regulatory, and auxiliary genes in the production of isoflavonoids in legume species, including red clover. The lab will translate this knowledge into metabolic engineering of plants and creating biobased production systems for high-value compounds.

Awards and Recognitions

The Plant Journal & Phytochemical Society of North America Early Career Award

Active Affiliations

Canadian Society of Plant Biologists – EDI committee
Plant Physiology – Assistant Features Editor
Member, Centre SÈVE

Research Interests

Our primary research interest is in the lineage-specific chemistry of plants or specialized metabolism. Plants have evolved a diverse library of chemical signals that play roles in their physiology, performance, and interactions, formulated for their ecological niche.

From the rich tapestry of plant specialized metabolism, we have plucked at a thread, a class of phenolic compounds known as isoflavonoids. They are derived from the flavanone backbone and are known to accumulate in legumes (e.g., soybean). Isoflavonoids can function to attract and deter. They act as signalling molecules for the symbiosis between legumes and nitrogen-fixing bacteria in the soil. Conversely, many isoflavonoid derivatives protect against pathogens in the soil or above ground. Isoflavonoids are also noted for their health benefits in the human diet.

Our lab focuses on isoflavonoid biosynthesis in forage legumes, including red clover, Trifolium pratense. Red clover is a versatile crop in Québec, used as a source of high-protein feedstock for farm animals, a cover-crop (to reduce erosion), and green manure (enhancing levels of nitrogen and nutrients in the soil). These are vital strategies for sustainable farming. From a bioengineering perspective, red clover is an excellent candidate with an annotated genome and tools for functional manipulation.

We employ a molecular genetics and biochemistry toolkit to study isoflavonoid biosynthesis in red clover and other relevant species. Our methodology includes metabolic profiling (LC-MS), overlayed with a host of ‘omics data to triage gene candidates. Gene targets involved in the biosynthesis, regulation, and transport of isoflavonoids, are functionally characterized in planta, in vitro, and in heterologous hosts. We are particularly interested in the formation of metabolic complexes that guide carbon flux towards isoflavonoid production.

In the long run, intimate knowledge of isoflavonoid biosynthesis will allow metabolic engineering of forage legumes for robustness, better feedstock, or the production of nutraceuticals. In parallel, we are engineering heterologous hosts, such as yeast, to produce high-value metabolites. This synthetic biology approach can address growing concerns around chemical waste in agriculture through plant-based green pesticides created by engineered microorganisms.


AEBI 210 Organisms 1 3 Credits
    Offered in the:
  • Fall
  • Winter
  • Summer


View publications on Google Scholar
View publications on ResearchGate
View publications on PubMed

Back to top