Dastmalchi, Mehran

Academic title(s): 

Assistant Professor

Dastmalchi, Mehran
Contact Information
Email address: 
mehran.dastmalchi [at] mcgill.ca
Phone: 
514-398-7858
Address: 

Raymond Building R2-021A 

Quote: 

"The Dastmalchi lab studies the rich tapestry of plant specialized metabolism—molecules the plant produces to communicate and protect itself from the environment. We take on a variety of plant species, including members of the Fabaceae (legume) and Apocynaceae families. Our interest lies in gene discovery, enzyme function, and regulation of biosynthetic pathways. Simply—how does the plant produce such incredible biochemical diversity? "

Research areas: 
Biotechnology and molecular genetics
Cell biology, development and imaging
Biography: 

Mehran Dastmalchi joined McGill University as an Assistant Professor in the Department of Plant Science in Fall 2020. He is setting up a research program to study metabolism in legume species (Fabaceae), with interest in pathways producing defence and signalling compounds. Mehran began his research career in the lab of Dr. Dhaubhadel at Western University (2010-2015), with work culminating in the discovery of a metabolon (enzyme complex) in the isoflavonoid pathway. From there, he joined Dr. Facchini at the University of Calgary as a postdoctoral fellow and later as a research assistant (2015-2018) to investigate morphine biosynthesis in opium poppy. He was part of a team that found novel biosynthetic and transport genes involved in the pathway. The discoveries potentiated the modular assembly of natural and semi-synthetic opioid production in engineered microbes. Subsequently, he worked with Dr. De Luca at Brock (2019-2020), tackling specialized metabolism in the medicinal plant Madagascar periwinkle. The Dastmalchi lab will be exploring the function of biosynthetic, regulatory, and auxiliary genes in the production of isoflavonoids in legume species, including red clover. The lab will translate this knowledge into metabolic engineering of plants and creating biobased production systems for high-value compounds.

Active Affiliations:

  • Canadian Society of Plant Biologists – EDI committee
  • Plant Physiology – Assistant Features Editor
  • Member, Centre SÈVE
Degree(s): 
  • B.Sc. Biology (University of Toronto)
  • Ph.D. Biology (Western University)
Awards, honours, and fellowships: 

The Plant Journal & Phytochemical Society of North America Early Career Award

Areas of interest: 

Our primary research interest is in the lineage-specific chemistry of plants or specialized metabolism. Plants have evolved a diverse library of chemical signals that play roles in their physiology, performance, and interactions, formulated for their ecological niche.

From the rich tapestry of plant specialized metabolism, we have plucked at a thread, a class of phenolic compounds known as isoflavonoids. They are derived from the flavanone backbone and are known to accumulate in legumes (e.g., soybean). Isoflavonoids can function to attract and deter. They act as signalling molecules for the symbiosis between legumes and nitrogen-fixing bacteria in the soil. Conversely, many isoflavonoid derivatives protect against pathogens in the soil or above ground. Isoflavonoids are also noted for their health benefits in the human diet.

Our lab focuses on isoflavonoid biosynthesis in forage legumes, including red clover, Trifolium pratense. Red clover is a versatile crop in Québec, used as a source of high-protein feedstock for farm animals, a cover-crop (to reduce erosion), and green manure (enhancing levels of nitrogen and nutrients in the soil). These are vital strategies for sustainable farming. From a bioengineering perspective, red clover is an excellent candidate with an annotated genome and tools for functional manipulation.

We employ a molecular genetics and biochemistry toolkit to study isoflavonoid biosynthesis in red clover and other relevant species. Our methodology includes metabolic profiling (LC-MS), overlayed with a host of ‘omics data to triage gene candidates. Gene targets involved in the biosynthesis, regulation, and transport of isoflavonoids, are functionally characterized in plantain vitro, and in heterologous hosts. We are particularly interested in the formation of metabolic complexes that guide carbon flux towards isoflavonoid production.

In the long run, intimate knowledge of isoflavonoid biosynthesis will allow metabolic engineering of forage legumes for robustness, better feedstock, or the production of nutraceuticals. In parallel, we are engineering heterologous hosts, such as yeast, to produce high-value metabolites. This synthetic biology approach can address growing concerns around chemical waste in agriculture through plant-based green pesticides created by engineered microorganisms.

Current research: 
Courses: 

AEBI 210. Organisms 1.

Note: For information about Fall 2025 and Winter 2026 course offerings, please check back on May 8, 2025. Until then, the "Terms offered" field will appear blank for most courses while the class schedule is being finalized.

Credits: 3
Offered by: Plant Science (Faculty of Agric Environ Sci)
Terms Offered: Fall 2025
View offerings for Fall 2025 in Visual Schedule Builder.

Description

The biology of plants and plant-based systems in managed and natural terrestrial environments. The interactions between autotrophs and soil organisms and selected groups of animals with close ecological and evolutionary connections with plants (e.g., herbivores and pollinators) will be explored in lecture and laboratory.
  • 2 hour lecture and 3 hour lab
  • 3 hours of lecture and 2 hours of lab, per week.

Most students use Visual Schedule Builder (VSB) to organize their schedules. VSB helps you plan class schedules, travel time, and more.

Launch Visual Schedule Builder

Laboratory: 
Currently accepting graduate students

Currently hiring PhD students for Fall 2025

Back to top