David Meger

Headshot of David Meger

Le professeur David Meger appartient à l'École d'informatique et est le directeur du laboratoire de robotique mobile du Centre de Recherche sur les Machines Intelligentes.

Profil

2023

S. Rezaei-Shoshtari, C. Morissette, F.R. Hogan, G. Dudek, D. Meger. “Hypernetworks for zero-shot transfer in reinforcement learning”. Proceedings of the AAAI Conference on Artificial Intelligence 37 (8), 9579-9587, 2023.

S. Fujimoto, W.D. Chang, E.J. Smith, S.S. Gu, D. Precup, D. Meger. “For SALE: State-Action Representation Learning for Deep Reinforcement Learning”. In Proceedings of the Conference for Neural Information Processing Systems (NeurIPS), 2023.

D. Rivkin, G. Dudek, N. Kakodkar, D. Meger, O. Limoyo, M. Jenkin, X. Liu, F. Hogan. “Ansel photobot: A robot event photographer with semantic intelligence”. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 8262-8268, 2023.

L. Berry, D. Meger. “Normalizing Flow Ensembles for Rich Aleatoric and Epistemic Uncertainty Modeling”. In Proceedings of AAAI 2023.

F. Lotfi, F. Faraji, T. Manderson, D. Meger, G. Dudek. “Constrained Robotic Navigation on Preferred Terrains Using Large Language Models and Speech Instruction: Exploiting the Power of Adverbs”. In Proceedings of the 18th International Symposium on Experimental Robotics, 2023.

W.D. Chang, F. Hogan, D. Meger, G. Dudek, “Generalizable Imitation Learning Through Pre-Trained Representations”. arXiv preprint arXiv:2311.09350.

W.D. Chang, S. Fujimoto, D. Meger, G. Dudek. “Imitation Learning from Observation through Optimal Transport”. arXiv preprint arXiv:2310.01632.

F. Lotfi, K. Virji, F. Faraji, L. Berry, A. Holliday, D. Meger, G. Dudek. “Uncertainty-aware hybrid paradigm of nonlinear MPC and model-based RL for offroad navigation: Exploration of transformers in the predictive model”. arXiv preprint arXiv:2310.00760.

Z. Wang, D. Meger. “Leveraging World Model Disentanglement in Value-Based Multi-Agent Reinforcement Learning”. arXiv preprint arXiv:2309.04615.

L. Berry, D. Meger. “Escaping the sample trap: Fast and accurate epistemic uncertainty estimation with pairwise-distance estimators. arXiv preprint arXiv:2308.13498.

P. Panangaden, S. Rezaei-Shoshtari, R. Zhao, D. Meger, D. Precup. “Policy Gradient Methods in the Presence of Symmetries and State Abstractions”. arXiv preprint arXiv:2305.05666.

L. Berry, D. Meger. “Normalizing Flow Ensembles for Rich Aleatoric and Epistemic Uncertainty Modeling”. arXiv preprint arXiv:2302.01312.