A team of researchers in the Netherlands has developed the means to store data at the atomic level. This technique would allow 502 terabytes of data to fit into one square inch. According to the authors, "[t]ranslating the two-dimensional storage density presented here to three dimensions, would ... allow the storage of the entire US Library of Congress in a cube 100 µm wide." At the moment, the memory array can operate up to a temperature of 77 K (about -210 C), meaning that the technology would be restricted to data centres capable of maintaining such temperatures.

Classified as: Nanotechnology, data science in the news, storage, Kaiff et al.
Published on: 26 Jul 2016

As scientists continue to hunt for a material that will make it possible to pack more transistors on a chip, new research from McGill University and Université de Montréal adds to evidence that black phosphorus could emerge as a strong candidate.

Classified as: Nanotechnology, Research, science, nanoelectronics, NSERC, transistor, Guillaume Gervais, McGill News, black phosphorus, semiconductor, electronics, Szkopek, CIFAR, FRQ
Published on: 7 Jul 2015

Imagine taking strands of DNA – the material in our cells that determines how we look and function – and using it to build tiny structures that can deliver drugs to targets within the body or take electronic miniaturization to a whole new level.

Classified as: Nanotechnology, Research, DNA, chemistry, McGill News, Hanadi Sleiman, Graham Hamblin, Janane Rahbani
Published on: 6 May 2015

Researchers at McGill University have developed a new, low-cost method to build DNA nanotubes block by block – a breakthrough that could help pave the way for scaffolds made from DNA strands to be used in applications such as optical and electronic devices or smart drug-delivery systems.

Classified as: Nanotechnology, Research, DNA, chemistry, McGill News, Amani Hariri, DNA structures, fluorescence microscope, Gonzalo Cosa, Hanadi Sleiman, nanotubes, single-molecule microscopy
Published on: 23 Feb 2015

How would electrons behave if confined to a wire so slender they could pass through it only in single-file?

Classified as: Nanotechnology, Guillaume Gervais, Luttinger, quantum physics, Sandia
Published on: 23 Jan 2014

Nanoscale “cages” made from strands of DNA can encapsulate small-molecule drugs and release them in response to a specific stimulus, McGill University researchers report in a new study. 

The research, published online Sept. 1 in Nature Chemistry, marks a step toward the use of biological nanostructures to deliver drugs to diseased cells in patients. The findings could also open up new possibilities for designing DNA-based nanomaterials.

Classified as: DNA, nanostructures, structural biology, Sleiman, Lady Davis, chronic lymphocytic leukemia, prostate cancer, Nanotechnology
Published on: 3 Sep 2013

As demand for computing and communication capacity surges, the global communication infrastructure struggles to keep pace, since the light signals transmitted through fiber-optic lines must still be processed electronically, creating a bottleneck in telecommunications networks.

Classified as: Nanotechnology, Kambhampati, optical, quantum dots, telecommunications, transistor
Published on: 9 Apr 2013