MATH 378 Nonlinear Optimization (3 credits)

Offered by: Mathematics and Statistics (Faculty of Science)


Mathematics & Statistics (Sci) : Optimization terminology. Convexity. First- and second-order optimality conditions for unconstrained problems. Numerical methods for unconstrained optimization: Gradient methods, Newton-type methods, conjugate gradient methods, trust-region methods. Least squares problems (linear + nonlinear). Optimality conditions for smooth constrained optimization problems (KKT theory). Lagrangian duality. Augmented Lagrangian methods. Active-set method for quadratic programming. SQP methods.

Terms: This course is not scheduled for the 2024-2025 academic year.

Instructors: There are no professors associated with this course for the 2024-2025 academic year.

Back to top