Note: This is the 2011–2012 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
This program provides a firm foundation in physics, mathematics, and physiology. It is appropriate for students interested in applying methods of the physical sciences to problems in physiology and allied biological sciences.U1 Required Courses (17 credits)
* The corequisite BIOL 200, BIOL 201 is waived for this program.

MATH 222 Calculus 3 (3 credits)
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: James G Loveys, Mathew Donald Rogers (Fall) James G Loveys (Winter) Nicolás Fraiman (Summer)

PHGY 212 Introductory Physiology Laboratory 1 (1 credit) *
Overview
Physiology : Exercises illustrating fundamental principles in physiology: Biological Signals Acquisitions, Blood, Immunology, Neurophysiology, Neuromuscular Physiology.
Terms: Fall 2011
Instructors: Julio Martinez Trujillo, Mladen I Glavinovic, Kresimir Krnjevic, Riaz Farookhi, Nicole F Bernard (Fall)
(One 3hour lab and one 1hour lecture every second week.)
Corequisite: PHGY 209.
Restrictions: Required for Physiology students enrolled in PHGY 209. Open to BA &Sc. students and to others by permission of the instructor. Not open to students who have taken PHGY 212D1/D2.
Note: For students in a Physiology program, PHGY 212 should be taken concurrently with PHGY 209.

PHGY 213 Introductory Physiology Laboratory 2 (1 credit) *
Overview
Physiology : Exercises illustrating fundamental principles in physiology: Central Nervous System, Cardiovascular, Respiration, Exercise Physiology, Molecular Endocrinology.
Terms: Winter 2012
Instructors: Michael R Guevara, Mladen I Glavinovic, Kresimir Krnjevic, Douglas Watt, Jacopo Mortola (Winter)
(One 3hour lab and one 1hour lecture every second week.)
Prerequisite: PHGY 212
Corequisite: PHGY 210.
Restrictions: Required for Physiology students enrolled in PHGY 210. Open to BA &Sc. students and to others by permission of the instructor. Not open to students who have taken PHGY 212D1/D2.
Note: For students in a Physiology program, PHGY 213 should be taken concurrently with PHGY 210.

PHYS 230 Dynamics of Simple Systems (3 credits)
Overview
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2011
Instructors: Tracy Webb (Fall)

PHYS 232 Heat and Waves (3 credits)
Overview
Physics : The laws of thermodynamics and their consequences. Thermodynamics of PVT systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2012
Instructors: Dominic Ryan (Winter)

PHYS 257 Experimental Methods 1 (3 credits)
Overview
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2011
Instructors: Bradley Siwick, Edith M Engelberg (Fall)

PHYS 258 Experimental Methods 2 (3 credits)
Overview
Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.
Terms: Winter 2012
Instructors: Dominic Ryan, Edith M Engelberg (Winter)
Winter
6 hours of laboratory and classroom work
Prerequisite: PHYS 257
U2 Required Courses (21 credits)

MATH 326 Nonlinear Dynamics and Chaos (3 credits)
Overview
Mathematics & Statistics (Sci) : Linear systems of differential equations, linear stability theory. Nonlinear systems: existence and uniqueness, numerical methods, one and two dimensional flows, phase space, limit cycles, PoincareBendixson theorem, bifurcations, Hopf bifurcation, the Lorenz equations and chaos.
Terms: Fall 2011
Instructors: Renato Calleja Castillo (Fall)

PHGY 311 Channels, Synapses & Hormones (3 credits)
Overview
Physiology : Indepth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2011
Instructors: Ellis Cooper, Riaz Farookhi, Ali Haghighi (Fall)
Fall
3 hours of lectures per week; 13 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term
Prerequisite: PHGY 209 or permission of the instructor.

PHGY 312 Respiratory, Renal, & Cardiovascular Physiology (3 credits)
Overview
Physiology : Indepth presentation of experimental results and hypotheses underlying our current understanding of topics in renal, respiratory and cardiovascular functions explored beyond the introductory level.
Terms: Winter 2012
Instructors: John W Hanrahan, Jacopo Mortola, Alvin Shrier (Winter)

PHGY 313 Blood, Gastrointestinal, & Immune Systems Physiology (3 credits)
Overview
Physiology : Indepth presentation of experimental results and hypotheses underlying our current understanding of topics in immunology, blood and fluids, and gastrointestinal physiology.
Terms: Winter 2012
Instructors: Julio Martinez Trujillo, Volker Manfred Blank, Premysl Ponka (Winter)

PHGY 314 Integrative Neuroscience (3 credits)
Overview
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2011
Instructors: Kathleen E Cullen, Julio Martinez Trujillo, Christopher Pack (Fall)
Fall
3 hours of lectures per week
Prerequisites: PHGY 209

PHYS 328 Electronics (3 credits)
Overview
Physics : Semiconductor devices, basic transistor circuits, operational amplifiers, combinatorial and sequential logic, integrated circuits, analogue to digital converters. The laboratory component covers design, construction and testing of basic electronic circuits.
Terms: Fall 2011
Instructors: David Hanna (Fall)
Fall
2 hours lectures; 3 hours laboratory
Prerequisite: PHYS 241 or permission of instructor

PHYS 339 Measurements Laboratory in General Physics (3 credits)
Overview
Physics : Introduction to modern techniques of measurement. The use of computers in performing and analysing experiments. Data reduction, statistical methods, report writing. Extensive use of computers is made in this laboratory; therefore some familiarity with computers and computing is an advantage.
Terms: Winter 2012
Instructors: Michael Hilke (Winter)
Winter
6 hours
Prerequisite: PHYS 241 or permission of instructor
U2 or U3 Required Courses (6 credits)

MATH 437 Mathematical Methods in Biology (3 credits)
Overview
Mathematics & Statistics (Sci) : The formulation and treatment of realistic mathematical models describing biological phenomena through qualitative and quantitative mathematical techniques (e.g. local and global stability theory, bifurcation analysis and phase plane analysis) and numerical simulation. Concrete and detailed examples will be drawn from molecular and cellular biology and mammalian physiology.
Terms: This course is not scheduled for the 20112012 academic year.
Instructors: There are no professors associated with this course for the 20112012 academic year.

PHYS 413 Physical Basis of Physiology (3 credits)
Overview
Physics : Analytic and computer simulation techniques are used to examine the role of nonlinearities and time delays in determining the dynamic behaviour of physiological control systems and their relation to normal and pathophysiological states. Examples drawn from the control of respiration, cellular proliferation and differentiation, biochemical feedback networks, thermoregulatory mechanisms, and neural feedback.
Terms: Fall 2011
Instructors: Michael C Mackey (Fall)
U3 Required Courses (21 credits)

BMDE 519 Biomedical Signals and Systems (3 credits)
Overview
Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequencydomain descriptions of systems.
Terms: Fall 2011
Instructors: Robert E Kearney (Fall)
(306)
Prerequisites: Satisfactory standing in U3 Honours Physiology; or U3 Major in PhysicsPhysiology; or U3 Major PhysiologyMathematics; or permission of instructor

PHGY 461D1 Experimental Physiology (4.5 credits)
Overview
Physiology : Individual project work under the supervision of Departmental Staff members.
Terms: Fall 2011
Instructors: Ann Wechsler, Linda H Cooper (Fall)
Fall
Restriction: Departmental approval required
Restriction: This course is a requirement for U3 students in the Honours Physiology program, the Major Program in Physiology and Mathematics, and the Major program in Physiology and Physics, and is open to a limited number of other U3 Physiology students
Students must register for both PHGY 461D1 and PHGY 461D2.
No credit will be given for this course unless both PHGY 461D1 and PHGY 461D2 are successfully completed in consecutive terms

PHGY 461D2 Experimental Physiology (4.5 credits)
Overview
Physiology : See PHGY 461D1 for course description.
Terms: Winter 2012
Instructors: Ann Wechsler (Winter)
Winter
Prerequisite: PHGY 461D1
No credit will be given for this course unless both PHGY 461D1 and PHGY 461D2 are successfully completed in consecutive terms

PHYS 333 Thermal and Statistical Physics (3 credits)
Overview
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. FermiDirac and BoseEinstein distributions; applications.
Terms: Winter 2012
Instructors: Paul Francois (Winter)

PHYS 340 Majors Electricity and Magnetism (3 credits)
Overview
Physics : The electrostatic field and scalar potential. Dielectric properties of matter. Energy in the electrostatic field. Methods for solving problems in electrostatics. The magnetic field. Induction and inductance. Energy in the magnetic field. Magnetic properties of matter. Maxwell's equations. The dipole approximation.
Terms: Fall 2011
Instructors: Keshav Dasgupta (Fall)

PHYS 446 Majors Quantum Physics (3 credits)
Overview
Physics : de Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.
Terms: Fall 2011
Instructors: Walter Reisner (Fall)
U1 Complementary Courses (9 credits)
3 credits, one of:

MATH 223 Linear Algebra (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2011, Winter 2012
Instructors: Wilbur Jonsson (Fall) Wilbur Jonsson (Winter)

MATH 247 Honours Applied Linear Algebra (3 credits)
Overview
Mathematics & Statistics (Sci) : Matrix algebra, determinants, systems of linear equations. Abstract vector spaces, inner product spaces, Fourier series. Linear transformations and their matrix representations. Eigenvalues and eigenvectors, diagonalizable and defective matrices, positive definite and semidefinite matrices. Quadratic and Hermitian forms, generalized eigenvalue problems, simultaneous reduction of quadratic forms. Applications.
Terms: Winter 2012
Instructors: Axel W Hundemer (Winter)
6 credits selected as follows:
* Advising Note: PHGY 201 and PHGY 202 will not be offered in 20112012.
** The corequisite BIOL 200, BIOL 201 is waived for this program.

PHGY 201 Human Physiology: Control Systems (3 credits) *
Overview
Physiology : Physiology of body fluids, blood, nerve and muscle, peripheral nerves, central nervous system, special senses, autonomic nervous system, defense mechanisms.
Terms: This course is not scheduled for the 20112012 academic year.
Instructors: There are no professors associated with this course for the 20112012 academic year.
 Fall
 3 hours lecture weekly
 Prerequisites: collegial courses in biology or anatomy, and in chemistry and physics; with CHEM 212 or equivalent, as a pre/corequisite
 Restriction: For students in Physical and Occupational Therapy, Nursing, and others with permission of the course coordinator
 Restriction: Not open to students who have taken PHGY 209

PHGY 202 Human Physiology: Body Functions (3 credits) *
Overview
Physiology : Physiology of the cardiovascular, respiratory, excretory, endocrine, and digestive systems; organic and energy metabolism; nutrition; exercise and environmental stress.
Terms: This course is not scheduled for the 20112012 academic year.
Instructors: There are no professors associated with this course for the 20112012 academic year.
 Winter
 3 hours lecture weekly
 Prerequisites: collegial courses in biology or anatomy and in chemistry and physics; with CHEM 212 or equivalent, as a pre/corequisite
 Restriction: For students in Physical and Occupational Therapy, Nursing, Education, and others with permission of the course coordinator
 Restriction: Not open to students who took 552201 in 197677 or earlier, or PHGY 210

PHGY 209 Mammalian Physiology 1 (3 credits)
Overview
Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.
Terms: Fall 2011
Instructors: Ann Wechsler, Phil Gold, David S Ragsdale (Fall)
Fall
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre/corequisites: BIOL 200, CHEM 212 or equivalent.
Restriction: Not open to students who have taken PHGY 211 or PHGY 201 or students who are taking and who have taken NSCI 200.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor

PHGY 210 Mammalian Physiology 2 (3 credits) **
Overview
Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.
Terms: Winter 2012
Instructors: John H White, Ann Wechsler, Tomoko Takano (Winter)
Winter
3 hours lectures weekly
Prerequisites: BIOL 112, CHEM 110, CHEM 120, PHYS 101 or PHYS 131, and PHYS 102 or PHYS 142. Pre/corequisite: BIOL 200, BIOL 201, BIOC 212, CHEM 212 or equivalent.
Restriction: Not open to students who have taken PHGY 202.
Restriction: For students in the Faculty of Science, and other students by permission of the instructor
Although PHGY 210 may be taken without the prior passing of PHGY 209, students should note that they may have some initial difficulties because of lack of familiarity with some basic concepts introduced in PHGY 209
U2 Complementary Courses (6 credits)
3 credits, one of:

MATH 315 Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: JianJun Xu (Fall) JianJun Xu (Winter) Suresh Eswarathasan (Summer)

MATH 325 Honours Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First and second order equations, linear equations, series solutions, Frobenius method, introduction to numerical methods and to linear systems, Laplace transforms, applications.
Terms: Fall 2011, Winter 2012
Instructors: Charles Roth (Fall) Antony Raymond Humphries (Winter)
3 credits, one of:

MATH 248 Honours Advanced Calculus (3 credits)
Overview
Mathematics & Statistics (Sci) : Partial derivatives; implicit functions; Jacobians; maxima and minima; Lagrange multipliers. Scalar and vector fields; orthogonal curvilinear coordinates. Multiple integrals; arc length, volume and surface area. Line integrals; Green's theorem; the divergence theorem. Stokes' theorem; irrotational and solenoidal fields; applications.
Terms: Fall 2011
Instructors: Pengfei Guan (Fall)

MATH 314 Advanced Calculus (3 credits)
Overview
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Wilbur Jonsson (Fall) Ivo Klemes (Winter) Charles Roth (Summer)