Lefsrud, Mark
Ph.D., P.Eng. | Associate Professor; William Dawson Scholar
Biomass Production Lab

Dr. Lefsrud is an Associate Professor at McGill University and leads the Biomass Production Laboratory. His upbringing on a farm and work in the oil fields of Alberta, Canada combined with his B.Sc. and M.Sc. in Agricultural and Bioresource Engineering and a Ph.D. in Plant Physiology gives him a very strong background in the fields of agriculture, biology, and engineering. His research program deals with the development of bioprocesses and improvements in plant growth environmental energy usage.
The laboratory is focused on four areas: 1) The development and improvement of new sources of biomass (food, fibre and/or fuel); 2) The improvement of energy efficiency of greenhouses and plant growth environments (light (LEDs) and heating systems); 3) The development quality practices for cannabis production; and 4) Development of monitoring techniques for plants and microorganisms using machine vision, nutrient monitoring, proteomics and metabolomics. His overall research philosophy is a holistic one in which focus on individual facets of an issue leads to a solution to the problem as a whole.
Active Affiliations
- Associate Member, McGill School of the Environment. Jan 2011 – current
- Associate Member, McGill Trottier Institute for Sustainability in Engineering and Design (TISED). Feb 2015 – current
- Professional Engineer with APEGA (Association of Professional Engineers and Geoscientists of Alberta)
- Professional Agrologist with AIA (Alberta Institute of Agrologists)
- ASHS/CSHS (American/Canadian Society of Horticultural Scientists)
- ASABE/CSBE (American Society of Agricultural and Biological Engineers)
- PAFS 30 Plant Systems Group, ASABE
- NCERA 101 Committee on Controlled Environment Technology and Use
B.Sc. (Sask)
M.Sc. (Rutgers)
Ph.D. (Tenn)
The Biomass Production Laboratory focus is developing methods to improve monitoring and production of living organisms. This laboratory's primary goal is the improvement of plants for human consumption (food security), and energy (biofuels). Within this focus of food security we are investigating methods for Urban Agriculture including: greenhouse heating using wood pellets (with direct combustion and gasification), light emitting diodes for increased production, and using proteomics and metabolomics to provide a novel method to monitor plant development.
Food security has become an increasing concern in Canada and around the world. Many individuals and families do not have access to fresh, nutritional food either because it is too costly, the food is not fresh anymore or it is not available at that time of year. The cost of most food is greatly increased due to the fact that food is transported by truck or plane over long distances to reach the consumer, with most fresh produce coming from Florida or California. These transported fresh foods such as fruits and vegetables can be damaged and lose some of their nutritional value during the transport making the purchase of these products even less appealing. The alternative choice to fresh food is highly processed foods, low in nutritional value. The constant consumption of these highly processed foods are impacting and causing severe consequences to the northern population’s health. Our solution is to move the production of these fresh fruits and vegetables closer to the consumer, specifically into the towns and cities and developing a technology known as Urban Agriculture or vertical farming.
What is Urban Agriculture? Urban Agriculture is the idea of food production in an urban agricultural setting and has been proposed by a number of companies using a range of technologies. The major focus of our researched are: energy reduction (light and heat), selection of species and cultivars for this specific growing environment and determining the nutritional improvement of plants grown within the system. A major focus of our laboratory is improving lighting methods using LEDs within the building and developing methods to use renewable energy sources for heating and carbon dioxide production.
- Light emitting diode evaluation for plant production in greenhouses
- Plant growth response in controlled environments
- Urban and vertical agriculture design
- Biocompatible concrete
- Medicinal cannabis (QAQCC)
- Oil and lipid Improvements in field pea, a non-traditional oilseed crop