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1,25-dihydroxyvitamin D3 (1,25D) regulates gene expression by
signaling through the nuclear vitamin D receptor (VDR) transcrip-
tion factor and exhibits calcium homeostatic, anticancer, and im-
munomodulatory properties. Histone deacetylase inhibitors
(HDACis) alter nuclear and cytoplasmic protein acetylation, modify
gene expression, and have potential for treatment of cancer and
other indications. The function of nuclear receptor ligands, includ-
ing 1,25D, can be enhanced in combination with HDACi. We
designed triciferol, a hybrid molecule in which the 1,25D side chain
was replaced with the dienyl hydroxamic acid of HDACi trichosta-
tin A. Triciferol binds directly to the VDR, and functions as an
agonist with 1,25D-like potency on several 1,25D target genes.
Moreover, unlike 1,25D, triciferol induces marked tubulin hyper-
acetylation, and augments histone acetylation at concentrations
that largely overlap those where VDR agonism is observed. Tric-
iferol also exhibits more efficacious antiproliferative and cytotoxic
activities than 1,25D in four cancer cell models in vitro. The
bifunctionality of triciferol is notable because (i) the HDACi activity
is generated by modifying the 1,25D side chain without resorting
to linker technology and (ii) 1,25D and HDACi have sympathetic,
but very distinct biochemical targets; the hydrophobic VDR ligand
binding domain and the active sites of HDACs, which are zinc
metalloenzymes. These studies demonstrate the feasibility of com-
bining HDAC inhibition with nuclear receptor agonism to enhance
their therapeutic potential.

HDAC inhibitors � multiple ligands � vitamin D

The biologically active metabolite of vitamin D3, 1�,25-
dihydroxyvitamin D3 (1,25D, 1) (Fig. 1), is best known as a

primary regulator of calcium homeostasis (1, 2). However, 1,25D
also controls cell differentiation and proliferation through bind-
ing to the nuclear vitamin D receptor (VDR) (NR1I1), which
regulates histone acetylation, chromatin remodelling and re-
cruitment of RNA polymerase II and ancillary factors required
for target gene transcription (2). In addition to their calcium
homeostatic properties, 1,25D analogs have therapeutic poten-
tial in treatment of hyperproliferative disorders, such as cancer
and psoriasis (2, 3). 1,25D analogs may also be effective in
treatment of a range of disorders with autoimmune components
such as multiple sclerosis, type 1 diabetes and Crohn’s disease,
an inflammatory bowel disorder (2, 4). Moreover, 1,25D is also
a direct inducer of antimicrobial innate immunity (5–7), a finding
that has provided a molecular genetic basis for its activity against
Mycobacterium tuberculosis infections (8).

Recent studies demonstrated combinatorial effects of tricho-
statin A (TSA, 2; Fig. 1), a histone deacetylase inhibitor
(HDACi), and 1,25D on the proliferation of 1,25D-resistant
cancer cells (ref. 9 and L.E.T.-M., B.D., and J.H.W. unpublished
results). HDACis, including TSA and suberoylanilide hydrox-
amic acid (SAHA, 5) (Fig. 1), regulate the acetylation state of
histones and other nuclear and nonnuclear proteins. Like VDR
agonists, HDACis modulate gene expression and induce cell
cycle arrest, cellular differentiation, and/or apoptosis (10–12),

and so they have been investigated as treatments for cancer. The
potential of HDACis as therapeutics is underscored by the
recent approval of SAHA, under the trade name Zolinza, for
treatment of cutaneous T cell lymphoma (13).

In developing therapies against human disease, it is often
advantageous to target two or more sympathetic biological
targets. The potential advantages of this approach include
targeting sympathetic biochemical pathways involved in a dis-
ease, limiting the development of resistance and reducing dos-
ages of more toxic drugs. Classical examples include combining
reverse transcriptase inhibitors with protease inhibitors in the
treatment of AIDS (14) or coadministration of niacin with a
statin in the treatment of hypercholesterolemia (15). Although
many examples exist where combination therapy involves ad-
ministration of multiple drugs, there is growing interest in
developing ‘‘multiple ligands,’’ single chemical entities that
interact with multiple biological targets (16). Although achieving
appropriate dosing against individual targets is more readily
achieved with separate chemical agents, a multiple ligand may
have significant advantages. Development of a multiple ligand
simplifies analysis of dose/toxicity relationships and pharmaco-
kinetic profiles, holds the potential to localize activity against
one target based on affinity for a second target (17), and can
improve adherence to a treatment regimen.

Based on the observed synergy between 1,25D and TSA, we
sought to combine VDR agonist activity and HDAC inhibition
within a single molecule. This presented a significant design
challenge. Although many multiple ligands have been designed
to interact with two related biological targets [e.g., vasopeptidase
inhibitors, which are dual inhibitors of zinc metallopeptidases
neprilysin and angiotensin converting enzyme (18)], few have
been rationally designed to interact with two markedly different
biological targets. In the case of targeting of both the VDR and
HDACs, metalloenzyme inhibition would need to be incorpo-
rated into the structure of a lipophilic nuclear receptor agonist
(19). Further increasing the challenge, 1,25D is fully enclosed
within the VDR binding pocket and thus a fully merged structure
with overlapping pharmacophores would be necessary. In this
article, we describe the design, synthesis, and biochemical char-
acterization of triciferol, a multiple ligand agent that combines
VDR agonism and HDAC inhibition to enhance the cytostatic
and cytotoxic activities of 1,25D.
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Results
Design of Triciferol. Triciferol (3) (Fig. 1) was designed with the
aid of structure/activity data for both 1,25D and its analogs, and
HDACis TSA and SAHA. Numerous 1,25D analogs, including
seocalcitol (EB1089, 4) (Fig. 1), have revealed that the VDR can
accommodate structures with alterations in side chain substitu-
tion and length (19–21), as long as critical hydrogen bonds are
maintained at all three hydroxyl groups. HDACis, such as TSA
and SAHA, are composed of highly variable ‘‘cap’’ structures
that bind at the surfaces of HDACs, coupled via a linking chain
to hydroxamic acids (22, 23) or other groups (24) that chelate
active site zinc ions. Triciferol combines the secosteroidal back-
bone of 1,25D with the dienyl hydroxamic acid of TSA. It was
expected that the hydroxamic acid would act as a surrogate for
the 25OH group and establish hydrogen bonds to His-305 and/or
His-397 in the VDR ligand binding pocket, an essential element
of 1,25D binding to the receptor (19). Indeed, optimal docking
solutions (AutoDock 3.0, FITTED 2.0) indicated that triciferol
should bind to the VDR in an orientation roughly similar to
1,25D (25, 26), with the side chain hydroxamic acid rotated

relative to the 25-hydroxyl of 1,25D, but still forming a strong
hydrogen bond between the hydroxamate OH and His-397 (Fig.
1B). The secosteroidal core overlays almost exactly that of
VDR-bound 1,25D, maintaining hydrogen bonds to the 1- and
3-OH groups (27). The computational models predicted that the
affinity of triciferol for VDR should be similar to that of 1,25D
and EB1089. No preliminary modeling was conducted on the
HDAC binding site because of poor handling of zinc-hydroxamic
acid interactions in all modeling methods. However, given the
breadth of HDACi cap group structures reported (22–24), it was
reasonable to expect that the secosteroidal core of triciferol
could serve effectively in this capacity when combined with the
known affinity of the dienyl hydroxamic acid for HDACs.

Synthesis and Bifunctional Activity of Triciferol. Triciferol was syn-
thesized in 10 steps (Fig. 2) from vitamin D2 (6) and A-ring
phosphine oxide 8 (28), after a general sequence of ozonolytic
degradation of vitamin D2, installation of the A-ring via Horner
coupling, extension of the side chain by sequential Wittig
olefination and hydroxamic acid formation via the acid chloride
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[Fig. 2; see supporting information (SI) Materials and Methods
for complete details]. Direct binding of triciferol to the VDR was
assessed by using a fluorescence polarization competition (FPC)
assay, which revealed that triciferol competed for tracer binding
with an apparent IC50 of 87 nM or �3-fold higher than that of
1,25D (32 nM) (Fig. 3A). VDR agonism of triciferol was tested
initially by using a 1,25D-sensitive reporter gene assay, which
revealed agonist activity comparable to that of 1,25D at 100 nM
(Fig. S1). VDR agonism was also assessed in human squamous
carcinoma SCC4 cells (29, 30) by analyzing induction of the gene
encoding CYP24 (Fig. 3B), the enzyme that initiates 1,25D
catabolism (1, 2). Triciferol induced strong cyp24 expression and
was within a factor of �10 as potent as 1,25D, in good agreement
with the results of the FPC assay.

We compared further the capacity of triciferol and a combi-
nation of 1,25D and TSA to regulate the expression of a series
of 1,25D3 target genes (31, 32) in SCC4 cells over 48 h. This
revealed profiles of gene regulation by triciferol that are more
similar to those of 1,25D and TSA in combination than 1,25D
alone (Fig. 3C). Cyp24 was completely unresponsive to TSA, and
its induction by 1,25D, 1,25D and TSA or triciferol did not differ
substantially. However, in many cases, the magnitude of gene
expression observed in the presence of triciferol differed mark-
edly from that of 1,25D under conditions where TSA was active
on its own or where it substantially enhanced 1,25D3-dependent
gene regulation (cdkn1c/kip2, alox12, and pex). Notably, unlike
1,25D, triciferol induced a marked up-regulation of the gene

encoding cyclin-dependent kinase inhibitor p57KIP2 (cdkn1c/
kip2), whose expression is lost during oral SCC progression (33).
Induction of cyp24 and alox5 by triciferol was markedly inhibited
by the VDR antagonist ZK159222 (Fig. 3D), consistent with a
VDR-driven mechanism of gene regulation. Furthermore, treat-
ment with either 1,25D or triciferol markedly enhanced VDR
binding to the promoter-proximal VDRE region (34) of the
cyp24 promoter, as assessed by chromatin immunoprecipitation
(ChIP) assay (Fig. 3E), consistent with their similar effects on
cyp24 induction. In other ChIP assays, triciferol also induced
VDR binding to the VDRE (32) in the col13a1 gene (data not
shown). Moreover, re-ChIP experiments revealed that triciferol
induced recruitment of the p160 coactivator AIB1 (35) to
VDR-bound target genes (Fig. 3F ). Taken together, the results
above show that triciferol is a VDR agonist with a gene
regulatory profile that is distinct from that of 1,25D.

In preliminary assays with an acetylated colorimetric substrate
(36), triciferol showed clear inhibitory activity (Fig. S2). In
control experiments in SCC4 squamous carcinoma cells, 1,25D
alone at concentrations as high as 1 �M did not alter tubulin or
histone acetylation and had no substantial effect on hyperacety-
lation induced by TSA (Fig. S3). In contrast, treatment of SCC4
cells with triciferol induced a marked dose-dependent increase
in levels of acetylated �-tubulin (Fig. 3G) and enhanced acety-
lation of histone H4 (Fig. 3H). Tubulin hyperacetylation (Fig.
3G) was visible after 8 h of incubation with triciferol concen-
trations as low as 50 nM, and plateaued at a concentration of
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�200 nM, concentrations that largely overlap those where VDR
agonism is observed (Fig. 3B).

Triciferol Exhibits Enhanced Cytostatic and Cytotoxic Activities. We
compared further the capacity of triciferol and 1,25D to control
proliferation and viability of cancer cell lines. Triciferol was
significantly more efficacious in suppressing the proliferation of
estrogen receptor-negative human MDA-MB231 breast cancer
cells (Fig. 4A). Similar results were obtained in human SCC4
cells (data not shown). 1,25D treatment decreased the numbers
of SCC4 cells in S phase of the cell cycle, and induced a partial
accumulation in G0/G1. In contrast, triciferol reduced the num-
ber of cells in S, but induced an accumulation in G2/M, effects
that were similar to those induced by 1,25D and TSA together
(Fig. S4).

Given the marked effect of triciferol on tubulin acetylation and
the association of tubulin acetylation with microtubule stabilization,
we analyzed the effects of various treatments on tubulin morphol-
ogy in SCC4 cells to determine whether treatment with triciferol
disrupted microtubule dynamics. Treatment with 1,25D or TSA
alone did not induce distinct morphological changes (Fig. 4B),
whereas treatment with 1,25D and TSA together produced a range
of effects, including large variations in cell size and shape, asym-
metric cell divisions and occasional multinucleated cells (Fig. 4B,
arrowheads, and data not shown). Unlike 1,25D, triciferol also
induced the formation of multinucleated cells (Fig. 4B, arrow-
heads). Moreover, 1,25D and TSA in combination or triciferol
alone induced formation of numerous intercellular tubulin
‘‘bridges’’ (Fig. 4B, asterisks), reminiscent of collapsed telophase
mitotic spindles (Fig. 4B, arrow). In contrast, although triciferol or
1,25D and TSA in combination induced frequent multinucleation
in well differentiated SCC25 head and neck squamous carcinoma
cells (Fig. 4C), we found no evidence for formation of intercellular
tubulin bridges. The observations of partial G2/M arrest, formation
of multinucleated cells, and collapsed mitotic spindles in the
presence of triciferol are consistent with death by mitotic failure in
SCC4 cells. Note that none of the treatments markedly induced the
expression of markers of apoptosis, such as annexin V, although
triciferol markedly enhanced the capacity of UV light, which
induces apoptosis in SCC4 cells, to induce annexin V expression
(Fig. S5).

The cytotoxic properties of triciferol were further analyzed in
the human MCF-7 breast cancer cell model. MCF-7 cells are
estrogen receptor �-positive and are sensitive to autophagic cell
death induced by a number of agents including antiestrogens and
EB1089 (37, 38). Treatment of MCF-7 cells with triciferol
induced �2.5-fold higher rates of cell death than equimolar
amounts of 1,25D (Fig. 5A). Staining for annexin V indicated
that the elevated cell death was not due to apoptosis (Fig. S6).
Rather, 1,25D and TSA combined, or triciferol induced mark-
edly enhanced formation of autophagosomes in MCF-7 cells, as
judged by lysotracker red staining (Fig. 5B), consistent with
autophagy.

Discussion
Nuclear receptor ligands, such as 1,25D, have attracted intensive
interest in the pharmaceutical industry because of their diverse
physiological functions, clinical relevance, and synthetic acces-
sibility. HDACis have therapeutic potential on their own and
enhance the function of other therapeutics, including nuclear
receptor ligands, in both experimental cancer models and in the
clinic (39, 40). For example, HDACis augment the therapeutic
effects of retinoids in retinoid-resistant promyelocytic leukemia
(39) and have been shown to enhance the sensitivity of breast
cancers cells to antiestrogens (41, 42). Our results demonstrate
that triciferol functions as a multiple ligand with combined VDR
agonist and HDAC antagonist activities. As a VDR agonist, it
acts on several target genes with a potency within an order of
magnitude of that of 1,25D, but with a gene regulatory profile
closer to that of 1,25D and TSA in combination than to 1,25D
alone. These studies also underline the flexibility in design of
potential HDACi, because the secosteroidal backbone of tricif-
erol is capable of playing the role of the HDACi ‘‘cap’’ structure.
Intriguingly, fusion of the dienyl hydroxamic acid of TSA to the
secosteroidal backbone of vitamin D alters HDACi specificity as
triciferol appears to be more selective for inducing tubulin
hyperacetylation than TSA, and future experiments will be
needed to establish activity of triciferol against specific HDAC
isozymes.

A significant concern when designing multiple ligands is the
difficulty in matching potency for individual targets. Impor-
tantly, we found that triciferol induces protein hyperacetylation
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in a concentration range largely overlapping that where VDR
agonism is observed, and that this hyperacetylation is sustained
over at least 24 h. Thus, it might be expected that it would
function as an effective multiple ligand in vivo. Indeed, triciferol
exhibited enhanced cytostatic properties relative to 1,25D in

poorly differentiated breast and squamous carcinoma lines and
displayed enhanced cytotoxic properties in the MCF-7 breast
cancer line. Moreover, although treatment with 1,25D or TSA
alone did not have marked effects on SCC4 cell morphology,
triciferol induced morphological changes that were very similar
to those seen with combined treatment with 1,25D and TSA.
Taken together, these data show that triciferol acts as a multiple
ligand with significantly enhanced properties relative to either
1,25D or TSA alone in the models tested. The data also suggest
that triciferol may exhibit enhanced therapeutic potential rela-
tive to 1,25D or other analogues.

Although we have focused here on cancer models, compounds
like triciferol may have enhanced activities against other indi-
cations targeted by 1,25D or its analogs, such as psoriasis (2),
microbial infections (5–8), or autoimmune conditions, such as
inflammatory bowel diseases (4). An important next step is to
compare the therapeutic index of triciferol with that of 1,25D in
animal models of disease and, in particular, determine whether
triciferol, like other 1,25D analogs (43), lacks the undesirable
calcemic properties of 1,25D.

In conclusion, the above studies demonstrate the synthetic
feasibility of combining HDAC inhibition with VDR agonism in
1,25D analogs to enhance their therapeutic potential. Triciferol
is unique in that it is a fully merged structure targeting two
radically different and biochemically distinct proteins (a metal-
loenzyme and a nuclear receptor ligand binding domain), and
provides proof-of-principle that a second biochemical activity
can be incorporated into the agonist structure of a nuclear
receptor ligand.

Materials and Methods
Synthesis of Triciferol. See SI Materials and Methods for a detailed protocol
describing the synthesis of triciferol, including spectroscopic analysis of
intermediates.

Molecular and Cell Biology. All cells used in this study were purchased from the
American Type Culture Collection and cultured under recommended condi-
tions. See SI Materials and Methods, Cell and Molecular Biology for details of
all molecular and cell biology protocols, including tissue culture, cell viability
assays, and microscopy, RT/PCR analysis, chromatin immunoprecipitation as-
says, Western blot analysis, and HDAC colorimetric assays.
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