May 2023

Exercise and learning

How does exercise affect the brain?

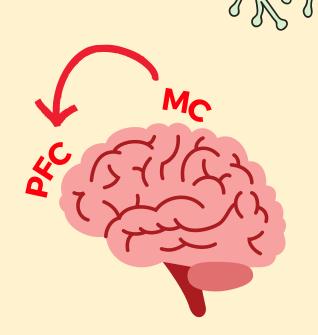
Exercise stimulates the brain to secrete chemicals called growth factors.

Growth factors are like a **fertilizer for learning**!

Growth factors support the **growth of neurons** and the **formation of new connections between neurons** - this is what underlies the creation of memories!

This neuronal growth:

- 1. Helps cognitive functioning.
- 2. Has been associated with the **growth of brain regions** related to memory.


Cognitive functions include **memory**, **attention**, and **executive functions**!

Important Brain Regions

Hippocampus →	Associated with memory
Prefrontal \rightarrow Cortex(PFC)	Associated with executive functioning
Motor Cortex \rightarrow (MC)	Directs movement

Exercise also **strengthens the connectivity between** different brain regions such as the hippocampus, motor cortex, and the prefrontal cortex.

This makes it easier for these brain regions to communicate with each other!

Benefits of exercise

Memory

Exercise improves both shortterm and long-term memory (Loprinzi et al., 2021).

Attention

Attention is heightened for up to **two hours** after exercise (Basso & Suzuki, 2017).

Executive function

Decision making skills and ability to self-regulate, plan, and juggle various ideas in working memory improve with exercise (Ferrer-Uris et al., 2022).

This work is licensed under a Creative Commons Attribution–Non-Commercial 4.0 International License. Teaching and Learning Services (2021), McGill University.

McGill

Teaching and Learning Services

Basso, J. C., & Suzuki, W. A. (2017, March 28). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A Review. Brain plasticity (Amsterdam, Netherlands). Retrieved February 17, 2023, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5928534/

Loprinzi, P. D., Roig, M., Etnier, J. L., Tomporowski, P. D., & Voss, M. (2021, October 20). Acute and chronic exercise effects on human memory: What we know and where to go from here. MDPI. Retrieved February 16, 2023, from https://www.mdpi.com/2077-0383/10/21/4812

Exercise intensity

Low intensity exercise

- Light walking, exercise at a casual pace
- 4 6 times a week
- 15 minutes

Moderate intensity exercise

- Speed walking, yoga
- 2 -3 times a week sufficient for inducing neuronal change
- 11 21 minutes in duration

High intensity exercise

- Weight lifting, running, cycling, interval training
- 2 3 times a week
- 10 30 minutes

Choosing the right intensity

For memory and attention

Memory formation and attention abilities benefit most from **higher intensity** exercise (Ferrer-Uris et al., 2022).

For executive function

Executive function may benefit more from **moderate intensity** exercise (Ferrer-Uris et al., 2022).

Caveat: too much exercise can result in **excess fatigue** and **dehydration** - diminishing cognition-enhancing effects.

It is important to make sure you do not over-exert yourself!

Low intensity exercise can also be beneficial for mood, cognitive function, and attention.

Incorporating any movement in your routine will make a positive difference.

Timing exercise with learning

Are you:

Looking to

A. improve consolidation of information

or

B. Low on energy and looking for a boost Try working out after a study session!

Increased concentration of growth factors will promote long-term information storage as growth factors help cement the neural connections holding information (Ferrer-Uris et al., 2022).

Try working out **before** your study session.

This will provide you with a surge of attention to get you through your studying (Ferrer-Uris et al., 2022).

More benefits of exercise

- Reduction of anxiety and depression symptoms
- Enhanced mood and happiness
- Strengthened immune system
- Increased focus and motivation
- Improved sleep quality

Check out the Student Wellness Hub's <u>Exercise for</u> <u>Wellness</u> Workshop!

Check out Teaching and Learning Services'<u>Sleep and</u> <u>learning</u>resource!

This work is licensed under a Creative Commons Attribution–Non-Commercial 4.0 International License. Teaching and Learning Services (2021), McGill University.

Teaching and Learning Services

Ferrer-Uris, B., Ramos, M. A., Busquets, A., & Angulo-Barroso, R. (2022, April 2). Can exercise shape your brain? A review of aerobic exercise effects on cognitive function and neuro-physiological underpinning mechanisms. AIMS Neuroscience. Retrieved February 16, 2023, from http://www.aimspress.com/article/doi/10.3934/Neuroscience.2022009