Introduction to transmission dynamic models of infectious diseases

Ted Cohen (theodore.cohen@yale.edu) Department of Epidemiology of Infectious Diseases

Yale school of public health

Models – what are they?

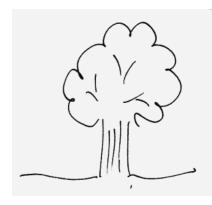
A model is a simplified description of a complex entity or process

Why might we want a model?

- To improve our fundamental understanding of how a system works
- To predict or project how the system will change over time (and possibly in response to manipulation)

Desirable properties of models

Simplicity (understanding)



Realism (prediction)

Why do we use models for infectious diseases?

- The dynamics of infectious diseases are complex
- Non-linearities
 - Small changes in input can produce large changes in output
- Emergent properties
 More is different

Overview

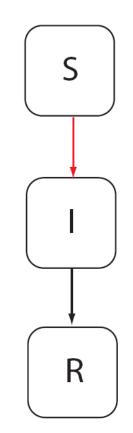
Simplicity (understanding)

1. Compartmental Models

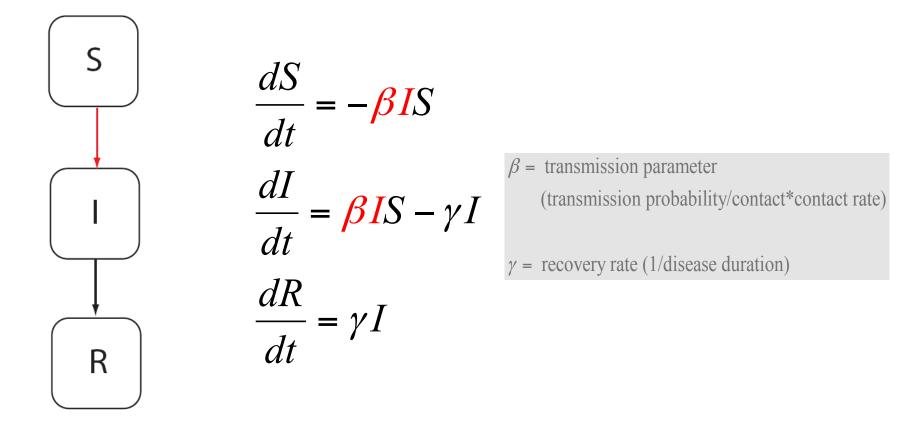
Realism (prediction) 2. Other model types: Metapopulation Individual-based Spatial Network

1. Compartmental models

- Population divided into categories defined by health/disease status
- SIR model as a prototype



SIR model (no demography)



Closed system: no births/deaths S, I, R are proportions: S+I+R=1 Disease is approximated by SIR: no latency, immunity is complete

*R*₀: Basic reproductive number

 Expected number of secondary cases of disease produced directly by an average infectious individual entering an entirely susceptible population

 $R_0 > 1$ Epidemic occurs $R_0 < 1$ No epidemic occurs

Threshold phenomenon

- Kermack & McKendrick 1927
- Minimum fraction of population that is susceptible necessary for an epidemic to occur.

$$\frac{dI}{dt} = \beta IS - \gamma I$$

$$I(\beta S - \gamma) > 0 \qquad \text{(if epidemic occurs, } \frac{dI}{dt} > 0\text{)}$$

$$\beta S - \gamma > 0$$

$$S > \frac{\gamma}{\beta} \qquad (\frac{\gamma}{\beta} \text{ is the relative removal rate)}$$

Threshold phenomenon & R_0

$$S > \frac{\gamma}{\beta}$$
$$1 > \frac{\gamma}{\beta}$$

(Basic reproductive number defined when S=1)

 $\frac{\beta}{\gamma} > 1$

 $\frac{\beta}{\gamma} = R_0$

Threshold phenomenon & critical proportion to vaccinate

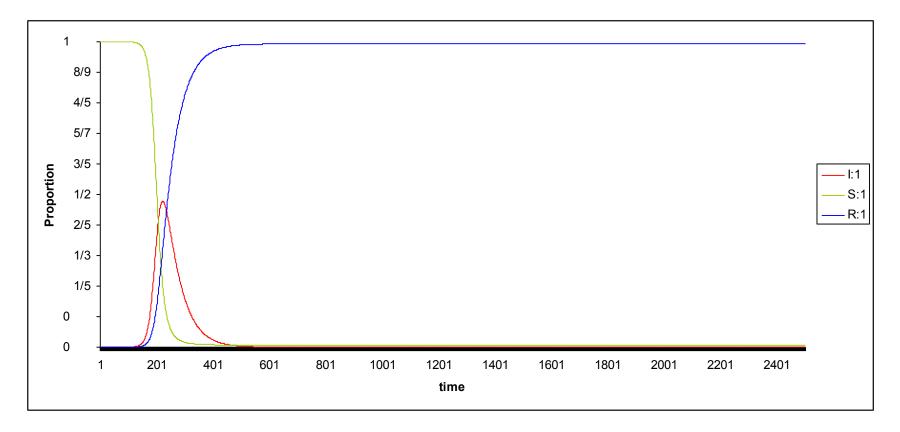
$$S > \frac{\gamma}{\beta}$$

(threshold proportion of susceptibles necessary for an epidemic)

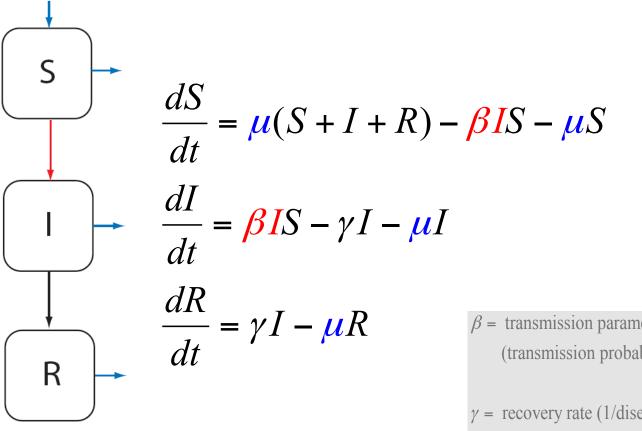
(therefore, we must vaccinate at least
$$1 - \frac{1}{R_0}$$
 of the population to prevent an epidemic)

 $S > \frac{1}{R}$

Epidemic curve (SIR, no demography)



SIR model (with demography)



Fixed population size (deaths=births) No disease induced mortality

 β = transmission parameter

(transmission probability/contact*contact rate)

 γ = recovery rate (1/disease duration)

```
\mu = mortality/fertility (1/life expectancy)
```

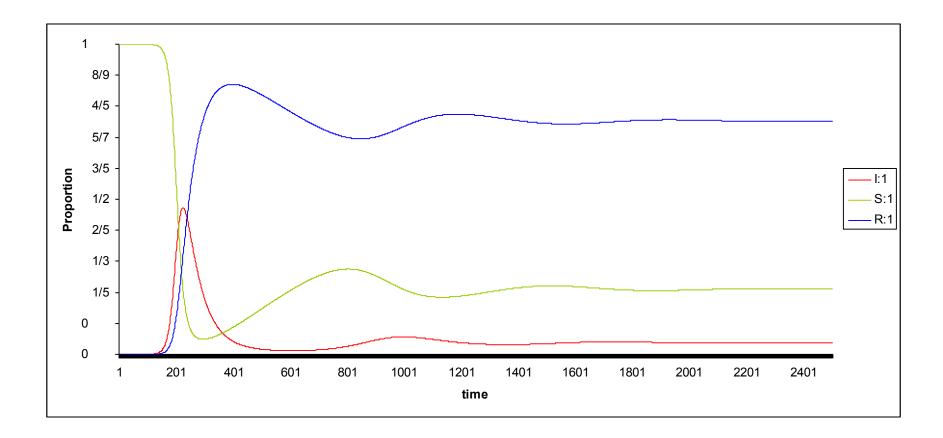
R_0 in an SIR model with demography $\frac{dI}{dt} = \beta IS - \gamma I - \mu I$

(When is I increasing?: When the above equation is +.)

$$I(\beta S - \gamma - \mu) > 0$$
$$\beta > \gamma + \mu$$
$$\frac{\beta}{\gamma + \mu} > 1$$

$$\frac{\beta}{\gamma + \mu} = R_0$$

Epidemic curve (SIR, with demography)



Equilibrium condition: S

$$\frac{dI}{dt} = \beta I S - \gamma I - \mu I$$

(At equilibrium the above equation = 0.) $I^*(\beta S^* - \gamma - \mu) = 0$

(Let's examine the non-trivial case when $I^* \neq 0$)

$$\beta S^* = \gamma + \mu$$
$$S^* = \frac{\gamma + \mu}{\beta}$$

$$S^* = \frac{1}{R_0}$$

Equilibrium condition: I

$$\frac{dS}{dt} = \mu - \beta IS - \mu S$$

at equilibrium:

$$\mu - \beta I * S * - \mu S * = 0$$

substituting for
$$S^* = \frac{1}{R_0}$$

$$I^* = \frac{\mu(R_0 - 1)}{\beta}$$

Average age of infection
(at equilibrium)?
$$\frac{dS}{dt} = \mu(S + I + R) - \beta IS - \mu S$$

(Ignoring small rates of mortality/fertility)

$$\frac{dS}{dt} \approx -\beta IS$$

rate of leaving $S = \beta I$

mean duration of staying in S at equilibium = Average age of infection (A)

$$A \approx \frac{1}{\beta I^*}$$

substituting for I* = $\frac{\mu(R_0 - 1)}{\beta}$:
$$A \approx \frac{1}{\mu(R_0 - 1)} = \frac{L}{(R_0 - 1)} \text{ (where L = average lifespan)}$$
$$\frac{L}{A} = (R_0 - 1)$$

R_0 and the average age of infection

Type II mortality: constant hazard, exponentially distributed lifespans

 $\frac{L}{A} = (R_0 - 1)$

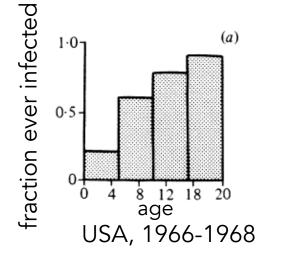
Type I mortality: uniformly distributed lifespans

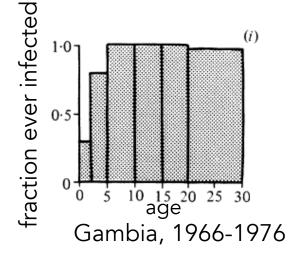
 $\frac{L}{A} = R_0$

Infectious diseases with higher R_0 have lower average ages of infection

Rubella: a case study

- Pathogen: rubella virus (RNA virus); infection confers immunity
- Transmission:
 - respiratory (aerosol)
- Clincal symptoms:
 - generally mild (fever, rash, arthralgia/arthritis)
 - rarely more serious complications (encephalitis, hemorrhagic manifestations)
- Vertical transmission → Congenital Rubella Syndrome (CRS)
 - Infection of mother earlier in first trimester >85% babies will be affected
 - All organ systems involved (deafness, eye abnormalities, CV and neurological defects)
 - Indicates that fraction of women of child-bearing age who are susceptible is very important





Anderson and May, J Hyg 1983

Rubella intervention

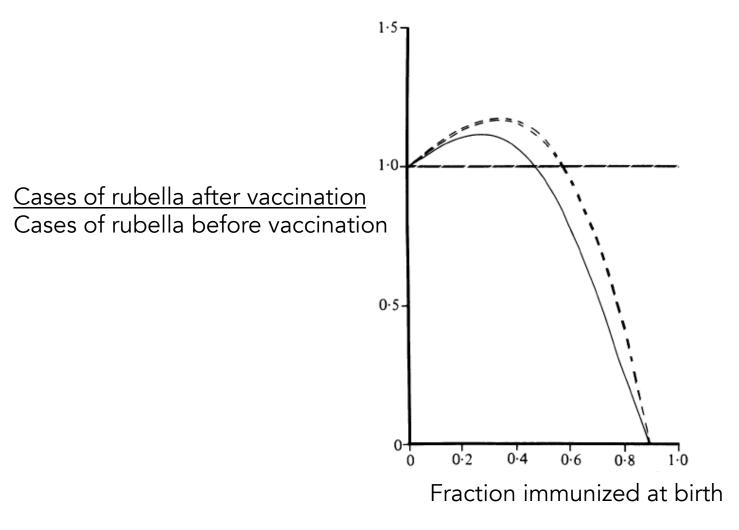
- Vaccination
 - Goal is to reduce cases of CRS
- Expected to have both individual-level and populationlevel benefits
 - Individual-level: protect those who have been vaccinated
 - Population-level: indirectly protect those who have not been vaccinated
- Critical proportion of the population to vaccinate: $-1-(1/R_0)$

Possible perverse effects of a vaccination program?

- What if we do not achieve herd immunity?
 - Transmission persists (but lower force of infection)
 - Effect on the average age at infection?
 - Effect on expected number of CRS cases?

• Effects explored in compartmental models by Knox (1980), Anderson and May (1983)

Among women 16-40 years old



Anderson and May, J Hyg 1983

Greece

- MMR vaccine introduced for 1 year old (girls and boys) ~1975
- No formal policies for achieving high coverage
 - Rubella vaccination classified as "optional" by MOH
 - Rubella vaccination given only on request to girls
 10-14 yo in public sector
 - 1980s: vaccine coverage for rubella consistently below 50%

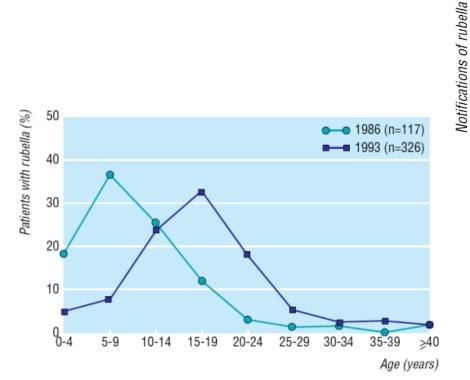


Fig 2 Age distribution of patients with rubella attending outpatient departments of general hospital in greater Athens, 1986 and 1993. Source: Panagiotopoulos et al 1996²⁰

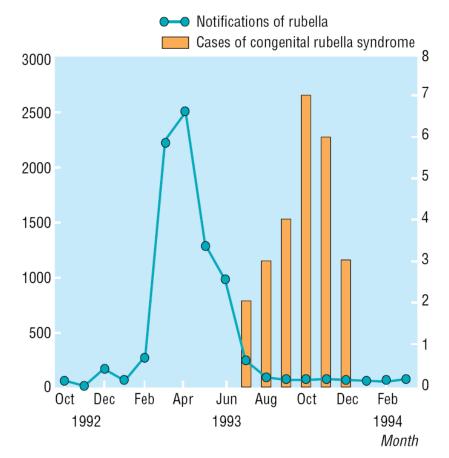
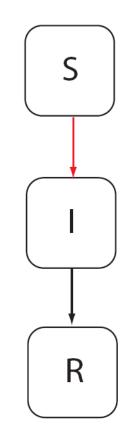


Fig 3 Notifications of rubella by month of diagnosis, and cases of congenital rubella by month of birth in epidemic in Greece, 1993. Source: National Statistical Service of Greece¹⁸ (notifications of rubella) and Panagiotopoulos et al²² (cases of congenital rubella syndrome)

Panagiotopoulos BMJ 1999

SIR models: What assumptions?

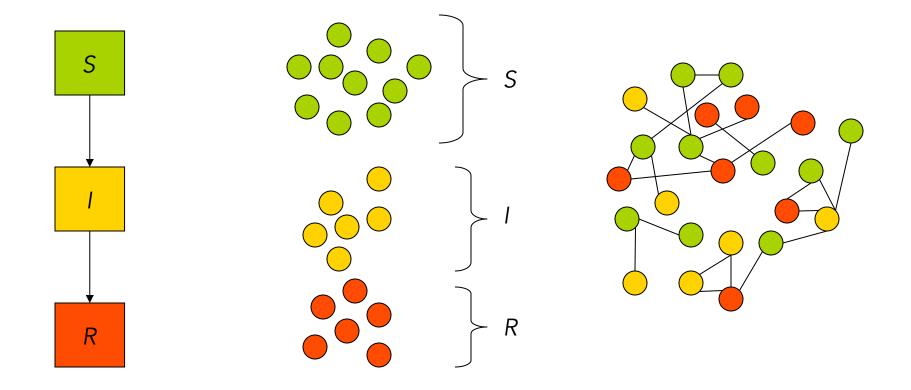
- SIR states effectively summarize categories of people
- Usually deterministic (but can include stochasticity)
- Homogenous mixing
- Exponentially distributed waiting times
- In summary, heterogeneity is largely ignored



Can we include more "realism"?

- Within compartmental model approach:
 - Represent different natural history (SIS, SI, SEIR)
 - Demographic characteristics (age, sex)
 - Behavioral categories (high/low activity groups)
- But, the number of compartments increases quickly
 - SEIR with 5 age groups, sex, and 2 activity groups
 - 4*5*2*2=80 compartments!

2. We can increase complexity with other modeling approaches

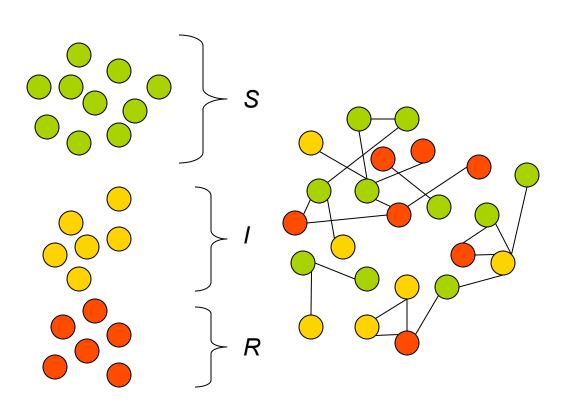


Compartmental

Individual-based

Network

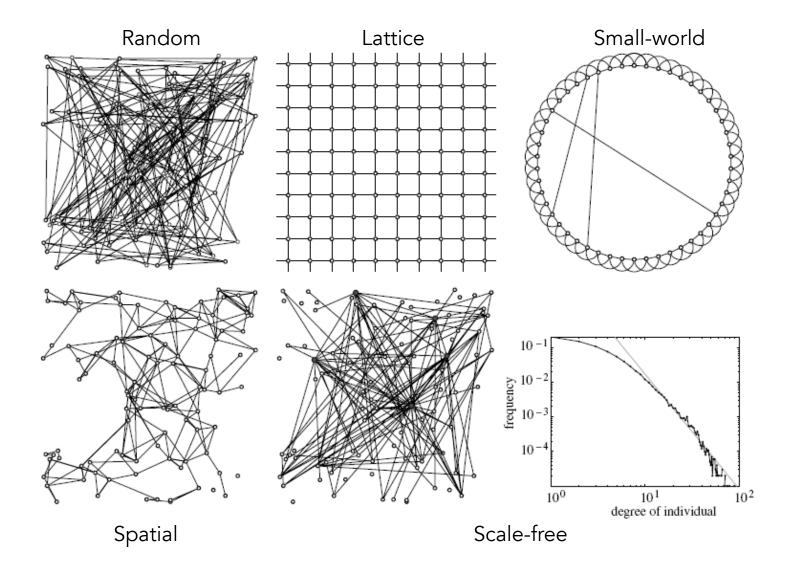
- Stochasticity easily included and heterogeneity more naturally expressed in these types of models
- Focus is on experience of individuals, rather than on "classes" of individuals.



Questions/situations that often warrant other approaches*

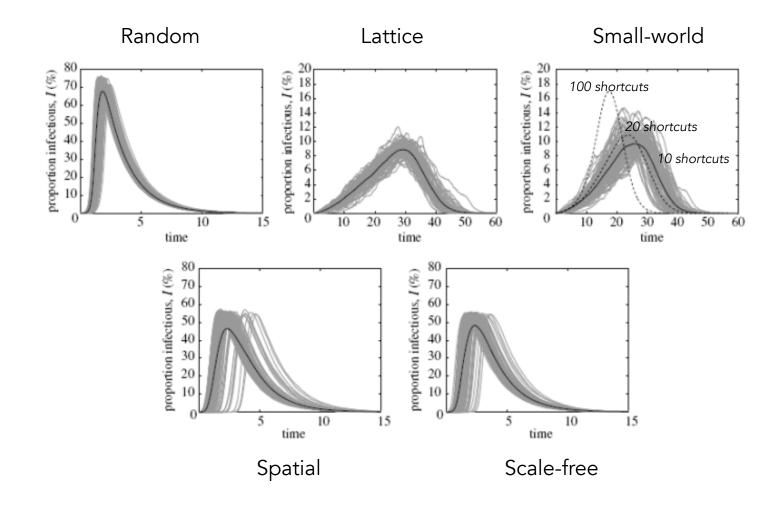
- Spatial spread of disease
- Explicit and detailed contact patterns between individuals
- Modeling complex interventions (e.g. targeting individuals via contact tracing)
- Elimination of pathogens
- Emergence of new pathogens in populations
- Nosocomial transmission
- Plus many others

*many of these issues can also be approximated using variations of compartmental models



N=100 Average degree = 4

Keeling J Roy Soc Interface 2005



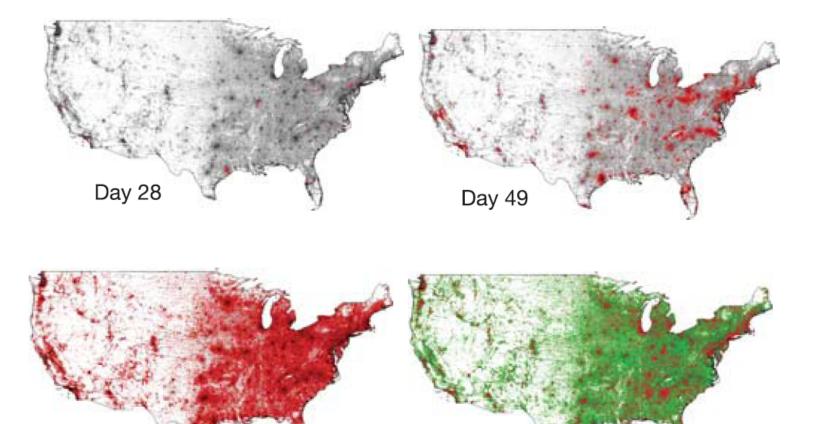
N=10,000 100 epidemics; black is mean

Keeling J Roy Soc Interface 2005

For policy-making, more complex models are sometimes required

- "Predictive" models
- Comparing the performance of alternative "realistic" interventions
- Coupling with economic considerations to generate cost-effectiveness comparisons of different control strategies

Projection for pandemic influenza



Individual-based model: UK and US populations; international travel (seeding); air travel within US; transmission within households, schools, workplaces, and in the community

Day 112

Day 70

Ferguson et al, Nature 2006

Summary

- Models of infectious diseases may be of various forms
- The structure and approach should be dictated by the research question and availability of data
- Both simple and more complex models have proven to be useful tools for understanding disease dynamics, projecting disease trends, and informing control policy