
Data Analysis 

Dr. Andrea Benedetti 



 Plan 
 General thoughts on data analysis 
 Data analysis  

 for RCTs 
 for Case Control studies 
 for Cohort studies 

 Issues 
 
 



Basic steps – Descriptive Stats 
 Start with univariable descriptive statistics for each variable 

 Understand the distribution of your variables 
 Histograms 

 Missing values? 
 Data quality checks (e.g. reasonable values for height, weight, 

etc.) 
 Mins, Maxes 
 Logical consistency 

 What units? 
 Bivariable descriptive statistics 

 cross tabulations 
 scatterplots 

 
 Descriptives should tell most of the story most of the time 



Basic steps -- Modelling 

 Modelling (regression) should be a 
small part of total time spent 

 Descriptives should tell you 
everything you need to know for 
models 

 Minimize total number of models 
run 
 Decreases false positives 
 Increases reproducibility 



RCTS 



RCTs 

 Randomization (usually) takes care of 
confounding  

 Two types of analyses: 
 Pre-specified in the protocol 

 Findings form the basis for guidelines, etc. 
 Generally: intention to treat, unadjusted, in 

the whole population 
 Secondary analyses  

 may or may not be prespecified 
 more exploratory in nature 



RCTs – Which participants should 
be analyzed? 

 Intention to treat  
 ITT: Analyze everyone as they were 

randomized, even if... 
 they did not comply with treatment 
 they were ineligible 
 they were lost to follow up 

 Maintains the benefits of randomization 
 most valid 

 May underestimate the treatment 
effect 
 Most conservative 

 



Per protocol analysis 

 definitions vary– make sure you 
specify! 

 subjects have now self selected into 
treatment groups 
 especially ‘as treated’ 
 must adjust for confounders!! 



RCTs – Adjust? 

 Confounding 
 Main analysis usually does not consider 

adjusting 
 Should consider adjusting 

 when there is imbalance on important 
confounders 

 as a sensitivity analysis 
 when using a per protocol analysis 
 if there is variable follow up time 

 When adjustment will be used, and for 
which variables should be pre-specified 



RCTs -- Subgroups 

 Subgroup analyses 
 Define which subgroups a priori 
 Use strict criterion 
 Interpret sceptically!! Especially for subgroup 

analyses not pre-specified 

 



RCT…Primary analysis 

What kind of outcome? 
 

 Binary outcome 
 Chi square or Fisher exact test 

 Continuous outcome 
 T-test 

 Survival 
 Log rank test 

 Counts 
 Test for counts 

 



The Logic is Always the Same: 

1. Assume nothing is going on (assume H0) 
2. Calculate a test statistic (Chi-square, t) 
3. How often would you get a value this large 

for the test statistic when H0 is true? (In 
other words, calculate p) 

4. If p <  .05, reject H0 and conclude that 
something is going on (HA) 

5. If p > .05, do not conclude anything. 
 



T-test for two means 

 Is the difference in means that we 
observe between two groups more 
than we’d expect to see based on 
chance alone? 

 H0: µ1=µ2 

 HA: µ1≠µ2 

 
 



 
T-test, independent samples, 
pooled variance 

If you assume that the standard deviation of the characteristic  
is the same in both groups, you can pool all the data to 
estimate a common standard deviation. This maximizes your 
degrees of freedom (and thus your power). 
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T-test, pooled variances 
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χ2 Test of Independence for 
Proportions 

 Does a relationship exist between 2 
categorical variables? 

 Assumptions 
 Multinomial experiment 
 All expected counts ≥ 5 

 Uses two-way contingency table 



χ2 Test of Independence  
Hypotheses & Statistic 

Hypotheses: 
H0: Variables Are Independent  
HA: Variables Are Related (Dependent) 

Test Statistic: 
 
 
 
 
Degrees of freedom: (r - 1)(c - 1) 
 
 

Observed count 

Expected 
count 
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Expected Count Calculation 

size Sample
tal)(Column to* total)(Rowcount Expected =



 HIV  
STDs Hx  No Yes Total 

 No   84   32 116 
 Yes   48 122 170 
Total 132 154 286 
 

 

 You randomly sample 286 sexually active 
individuals and collect information on their 
HIV status and History of STDs.  At the .05 
level, is there evidence of a relationship? 

χ2 Test of Independence  
Example on HIV 



χ2 Test of Independence Solution 

H0: No Relationship  
HA: Relationship  
α = .05 
df = (2 - 1)(2 - 1) = 

1  
Critical Value(s): 

Test Statistic:  

Decision: 
 
Conclusion: 
 

Reject at α = .05 

There is evidence of a 
relationship χ20 3.841

Reject
α = .05 

χ2 = 
54.29 



RCT… In secondary analysis 

 consider adjusting for confounders, 
especially if ‘Table 1’ shows 
imbalance 
 use linear, logistic, Poisson or Cox 

regression depending on outcome type 
 we will see as we move along 

 subgroups 
 per protocol analyses 



Example  

 
 
 
 
 
 
 

 “After adjustment for baseline WHO status of HIV 
infection (stage 4 vs. stage 3), CD4+ cell count, age, 
sex, history of TB, extrapulmonary TB, and baseline 
HIV RNA level, the hazard ratio was 0.43 (95% CI, 
0.25 to 0.77; P = 0.004).” 

 “There was no interaction between the CD4+ count and 
the study groups (P = 0.57).” 



OBSERVATIONAL STUDIES 



Observational Studies 

 Confounding!! 
 Use a regression approach which 

allows 
 adjustment for confounders 
 investigation of effect modifiers 



Linear regression: quick review 

 
Yi=β0+β1X1i+εi 

 
 attempt to fit a linear equation to 

observed data  
 One variable is considered to be an 

explanatory variable, and the other is 
considered to be a dependent variable 

 Can include more than one variable  
 Estimated via maximum likelihood 



Assumptions 

 Y|X ~Normal 
 X-Y association is linear 
 homoscedasticity 
 independence 

 



Interpreting parameters from simple 
linear regression 

Yi=β0+β1X1i+εi 

 Continuous X1 
 β1 is the expected change in Y for a 1 unit 

change in X1 
 β0 is the average Y when X1=0 

 may or may not be logical! 

 Binary X1 (e.g. gender) 
 β1 is the average difference in Y for subjects 

with X1=1 vs. X1=0 
 β0 is the average Y when X1=0 



Interpreting parameters from multiple 
linear regression 

Yi=β0+β1X1+β2X2i+εi 
 β1 is the expected change in Y for a 

1 unit change in X1 for subjects 
with the same value for X2 
 we might say β1 is the expected change 

in Y adjusting for X2 
 β0 is the average Y when X1=0 and 

X2=0 
 may or may not be logical! 



Adding an interaction term 

 Suppose we are interested in seeing 
whether there is effect modification by 
gender 

Yi=β0+β1X1+β2Malei+β3Malei*X1+εi 
 
 β1 is the expected change in Y for a 1 unit 

change in X1 among Females 
 β2 is the average difference in Y between Males 

and Females when X1=0 
 β1+ β3 is the expected change in Y for a 1 unit 

change in X1 among Males 
 



Adding an interaction term 

Yi=β0+β1X1+β2Malei+β3Malei*X1+εi 
 

 

E(
Y

) 

X 

Male
Female

Ε(Y)=β0+β2+(β1+ β 3)X 

Ε(Y)=β0+β1X 



ANALYZING DATA FROM 
CASE CONTROL STUDIES 



Case Control Studies 

 Sampling is based on disease status 
 Then exposure is ascertained 

 The usual parameter of interest is 
the odds ratio 
 OR=(odds of E+ in the D+)/(odds of E+ in the D-)  

      = (odds of D+ in the E+)/(odds of D= in the E-)  
        = (A/B)/(C/D)  
=AD/BC 

Disease 

+ - 

Exposure + A B 

- C D 



Case control studies 
 Typically use logistic regression 

 Extends linear regression to deal with a binary 
outcome variable 
 Outcome variable is binary Y~Binomial(p) 

 Adjust for important confounders 
 Consider pre-specified interactions 

 Logistic regression estimates the probability of an 
event occurring 
 
 
 
 

 logit(p)=loge(p/(1-p)) 
 logit(p)=β0+β1X1+β2X2… 
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Interpreting parameters from a logistic 
regression 

 Consider: 
 logit(Yexp)=β0+β1X1 

 Among the exposed 
 logit(Yexp)=β0+β1.........................(1) 

 Among the unexposed 
 logit(Yunexp)=β0 ...........................(2) 

 Subtract (2) from (1): 
 logit(Yexp)- logit(Yunexp)= β1 

 



So… 
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Example logistic regression 

 



Analyzing matched case-control 
studies 

 Advantage of matching: helps to 
control confounding at the design 
stage 

 What variables to match on? 
 Strong/hard to measure confounders 
 Not too many variable 



Conditional logistic regression 

 Must account for matching in the 
analysis 
 Matching induces a bias in the effect 

estimates 
 Otherwise effect estimates will be 

biased towards null 
 



Conditional logistic regression 

 Used when we have cases matched 
to controls 

 We are interested in the comparison 
WITHIN strata 

 Cannot estimate the effect of the 
matching factor 
 but can estimate the interaction 

between that factor and another 
variable 

 



Example 

 All cases with hepatotoxicity 
 3 age and sex matched controls 

 
 



General approach for case control 
studies 

 First, compare cases and controls 
on important covariates  

 Use logistic regression, to estimate 
the exposure effect adjusted for 
confounders  
 If matching was used use conditional 

logistic regression 
 Investigate effect modification 
 Check assumptions 



ANALYZING DATA FROM 
COHORT STUDIES 



Analyzing data from cohort studies 

 Subjects are recruited and followed 
over time to see if the outcome 
develops 

 Several different approaches are 
possible depending on the type of 
outcome 



 
b+d 

 

Frame work of Cohort studies 

c c+d 

a a+b 

Total Yes 

Disease Status 

Yes 

No 

Exposure  
Status 

  b  

  d 

a+c    N 

No 

Study 
cohort 

Comparison  
cohort 



Overview of statistical approaches for 
cohort studies 



Cox Proportional Hazards  

 The outcome of interest is time to 
event 
 



Characteristics of Cox Regression 

 Does not require that you choose some 
particular probability model to represent 
survival times.... robust 

 Semi-parametric  
 (Kaplan-Meier is non-parametric; 

exponential and Weibull are parametric) 
 Easy to incorporate time-dependent 

covariates—covariates that may change in 
value over the course of the observation 
period 
 



Main Assumptions of Cox 
Regression 

 Proportional hazards assumption: the 
hazard for any individual is a fixed 
proportion of the hazard for any other 
individual 

 Multiplicative risk 
 Independent events 
 Uninformative censoring 
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Recall: The Hazard function 

t
tTttTtPth

t ∆
≥∆+<≤

=
→∆

)/(lim)(
0

In words: the probability that if you survive to t, you will 
succumb to the event in the next instant. 
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The model 

ikki xx
i etth ββλ ++= ...

0
11)()(

Components: 

•A baseline hazard function that is left unspecified 

•A linear function of covariates that is exponentiated. (=the 
hazard ratio) 

ikkii xxtth ββλ +++= ...)(log)(log 110

Can take on any form! 
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The model: binary predictor 

smoking

smoking

agesmoking

agesmoking
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This is the hazard ratio for smoking adjusted for age. 



Example: Cox  

 
 
 
 
 
 
 

 “After adjustment for baseline WHO status of HIV 
infection (stage 4 vs. stage 3), CD4+ cell count, age, 
sex, history of TB, extrapulmonary TB, and baseline 
HIV RNA level, the hazard ratio was 0.43 (95% CI, 
0.25 to 0.77; P = 0.004).” 

 “There was no interaction between the CD4+ count and 
the study groups (P = 0.57).” 



 
 

 Covariate values for an individual may 
change over time  
 E.g. If you are evaluating the effect of weight 

on diabetes risk over a long study period, 
subjects may gain and lose large amounts of 
weight, making their baseline weight a less 
than ideal predictor. 

 Cox regression can handle these time-
dependent covariates! 

Time-dependent covariates 
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 Ways to look at drug use: 
 Not time-dependent 

 Ever/never during the study 
 Yes/no use at baseline 
 Total months use during the study 

 Time-dependent 
 Using drug use at event time t (yes/no) 
 Months of drug use up to time t 

 
 

Time-dependent covariates 



Overview of cohort study data 
analysis 

 First compare exposed and not 
exposed subjects on important 
covariates 

 Use a regression model to adjust the 
exposure effect for important 
covariates 
 Logistic, poisson, cox depending on 

interest/how study was conducted 
 Consider effect modification 
 Consider time dependent covariates 
 Check assumptions 



NO MATTER WHAT METHOD 
YOU USE… 



Your statistical methods.... 

 Should match your objectives 
 Should be appropriate for the type 

of outcome you have 
 Should be appropriate for the study 

design you have chosen 



Functional form 

 Think about what form the association 
between a continuous variable and the 
outcome has 
 Linear? 
 Nonlinear? 

 Categorize the variable 
 Equal sized categories? 
 Categories based on clinically relevant cutoffs? 
 NOT data driven cut offs 
 Less powerful? 

 Use a flexible modelling approach 
 Splines? 
 Fractional polynomial? 

 

This graph shows 
the expected 
prevalence of MTI 
by age. Age was 
modelled using a 
spline. 



Which variables are important? 
 

 Subject matter drives this to a large 
extent  
 Known confounders 
 Eliminate intermediates 

 a variable in the causal pathway between the 
exposure and the outcome 

 Directed acyclic graphs (DAGs)? 
 Statistical significance? 
 Data driven selection 

 e.g. stepwise selection 



Missing data 

 Think carefully about how to 
address it 
 Drop individuals? 
 Drop variables? 
 Multiple imputation? 

 Usually the best option. 



Outliers 

 Outliers can have a lot of influence on 
your statistical tests 

 Outliers may be mistakes, or could be 
true data 
 Should be examined to ensure they are true 

data 
 If erroneous, could be removed or corrected 

 
 



Example: interaction 

 Cohort study  
 Logistic regression assessed the 

association among test positivity, age, 
nutritional and HIV status, while 
controlling for M. tuberculosis exposure, 
bacille Calmette–Guérin vaccination and 
prior tuberculosis treatment. 



Logistic regression example 

 Logistic regression 
adjusted for age, prior 
BCG vaccination, prior 
TB treatment, chronic 
malnutrition status and 
HIV status, and 
included interaction for 
HIV status and age. 

 Significant interaction 
between age and HIV 
status (P = 0.0052, P = 
0.0404, respectively).  

 



Other complications 

 Clustered data 
 longitudinal data 
 families, households, etc 

 Observations are not independent 
 Must account for the correlation 

between observations on the same 
person/in the same family/etc. 

 Mixed models, or marginal models 
estimated via GEE 



Checking assumptions 

 Important, but rarely presented 
 Must check that the assumptions of 

the model are met! 
 Model fit (predicted vs. observed) 
 Outliers 
 Influential observations 

 Key – is any one observation “driving” the 
results? 

 
 



Wrapping up – Data analysis 

 Start with descriptives 
 should tell most of the story most of the time 
 should inform the next step (modelling) 

 For RCTs 
 Primary analysis is usually ITT, unadjusted, 

simple test of the outcome of interest 
 What test depends on the type of outcome 

 Secondary analyses may include adjusting for 
confounders, per protocol, subgroups 
 use regression appropriate for the type of 

outcome 



Wrapping up – Data analysis 2 

 For observational studies, the 
primary analysis will usually need to 
adjust for confounders 
 Use regression methods appropriate for 

the outcome and the study design 
 logistic regression for case control studies 
 conditional logistic regression for matched 

case control studies 
 Cox, Poisson, or logistic for cohort studies 



Wrapping up – Data analysis 3 

 In all cases, consider: 
 Functional form of exposure and 

covariates in regression 
 How to choose confounders to include 

in the regression 
 

 Missing data 
 Checking assumptions 



Software 

 R is available on the web 
 http://cran.r-project.org/ 
 Free 
 Flexible 
 Lots of online training resources 
 User friendly? 

 Stata, SAS 
 SPSS, others 



Binary or categorical outcomes 
(proportions) 

 
Outcome 
Variable 

Are the observations correlated? Alternative to the chi-
square test if sparse 
cells: independent correlated 

Binary or 
categorical 
(e.g. 
fracture, 
yes/no) 

Chi-square test: 
compares proportions between 
two or more groups  
 
Relative risks: odds ratios 
or risk ratios 
 
Logistic regression: 
multivariable technique used 
when outcome is binary; gives 
multivariable-adjusted odds 
ratios 

McNemar’s chi-square test: 
compares binary outcome between 
correlated groups (e.g., before and 
after) 
 
Conditional logistic 
regression: multivariable 
regression technique for a binary 
outcome when groups are 
correlated (e.g., matched data) 
 
Mixed models/GEE 
modeling: multivariate 
regression technique for a binary 
outcome when groups are 
correlated (e.g., repeated measures) 
 

Fisher’s exact test: compares 
proportions between independent 
groups when there are sparse data 
(some cells <5). 
 
McNemar’s exact test: 
compares proportions between 
correlated groups when there are 
sparse data (some cells <5). 
 



Continuous outcome (means)  
 
Outcome 
Variable 

Are the observations independent or correlated?  
Alternatives if the normality 
assumption is violated (and 
small sample size): 

independent correlated  

Continuous 
(e.g. pain 
scale, 
cognitive 
function) 

Ttest: compares means 
between two independent 
groups 
 
ANOVA: compares means 
between more than two 
independent groups 
 
Pearson’s correlation 
coefficient (linear 
correlation): shows linear 
correlation between two 
continuous variables 
 
Linear regression: 
multivariable regression 
technique used when the 
outcome is continuous; gives 
slopes 

Paired ttest: compares means 
between two related groups (e.g., 
the same subjects before and 
after) 
 
Repeated-measures 
ANOVA: compares changes 
over time in the means of two or 
more groups (repeated 
measurements) 
 
Mixed models/GEE 
modeling: multivariate 
regression techniques to compare 
changes over time between two 
or more groups; gives rate of 
change over time 

Non-parametric statistics 
Wilcoxon sign-rank test: 
non-parametric alternative to the 
paired ttest 
 
Wilcoxon sum-rank test 
(=Mann-Whitney U test): non-
parametric alternative to the ttest 
 
Kruskal-Wallis test: non-
parametric alternative to ANOVA 
 
Spearman rank correlation 
coefficient: non-parametric 
alternative to Pearson’s correlation 
coefficient  



EXTRAS 



Nonparametric vs. Parametric 

 Parametric tests –  
 make assumptions about the 

distributions of our variables that may 
or may not be true 

 Nonparametric tests avoid those 
assumptions 
 are usually based on ranking 
 are usually less powerful 



Poisson Regression 

 Appropriate when subjects are 
followed for varying lengths of time 

 Outcome is a count 
 Similar to logistic regression, 

however now Y~Poisson 
 The link function is log 
  log(Y)=β0+β1X1+β2X2+... 
  exp(β1)=RR 
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