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Plan 

 Review of hypothesis testing 
 Power and sample size  

 Basic concepts 
 Formulae for common study designs 

 Using the software 



When should you think about 
power & sample size? 

 You should start thinking about 
statistics when you are planning 
your study 

 Often helpful to consult a 
statistician at this stage… 

 You should also perform a power 
calculation at this stage 



REVIEW 



Basic concepts 

 Descriptive statistics 
 Raw data  graphs, averages, 

variances, categories 
 Inferential statistics 

 Raw data  Summary data  Draw 
conclusions about a population from a 
sample 



Suppose we are interested in the 
height of men... 
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Populations --- samples 
 Suppose, we are interested in the mean height of men.  

 we have a population "men" and a parameter of interest, 
their height 

 a hypothetical population that includes all men 
 it is impossible to survey/measure the entire population 
 Instead, take a subset of this population (“sample”)  

 use this sample to draw inferences about the population, 
given conditions  
 measure the mean height of men (“a statistic”) in the sample 
 draw inferences about the parameter of interest in the population  

 “inference” because there is uncertainty involved in drawing 
conclusions about the population based upon a sample  

 the sample we get is one of a large number of potential 
samples 
 the statistic in question (mean height) varies from sample to 

sample 
 it has a distribution called a sampling distribution 
 this distribution is used to understand the uncertainty in our 

estimate of the population parameter 
 



An example 

 Randomized trial 
 642 patients with TB + HIV 

randomized to: 
 TB therapy then HIV therapy 

(sequential group) 
 TB therapy and HIV therapy 

(concurrent group) 
 Primary endpoint: death 



Hypothesis Test…1 

 Setting up and testing hypotheses 
is an essential part of statistical 
inference 
 usually some theory has been put 

forward 
 e.g. claiming that a new drug is better 

than the current drug for treatment of the 
same illness 

 Does the concurrent group have less risk 
of death than the sequential group? 



Hypothesis Test… 2 

 The question of interest is simplified into 
two competing hypotheses between which 
we have a choice 
 H0: the null hypothesis 
 HA: the alternative hypotheis 

 These two competing hypotheses are not 
treated on an equal basis 
 special consideration is given to H0 
 if one of the hypotheses is 'simpler' we give it 

priority 
 a more 'complicated' theory is not adopted 

unless there is sufficient evidence against the 
simpler one 



Hypothesis Test… 3 

 The outcome of a hypothesis test: 
 final conclusion is given in terms of H0.  

 "Reject H0 in favour of HA” 
 "Do not reject H0";  
 we never conclude "Reject HA", or even 

"Accept HA" 
 If we conclude "Do not reject H0", this 

does not necessarily mean that H0 is 
true, it only suggests that there is not 
sufficient evidence against H0 in favour of 
HA.  
 Rejecting H0 suggests that HA may be true. 



TYPE I AND TYPE II ERRORS 



Type I and II errors 
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An example 

 Randomized trial 
 642 patients with TB + HIV randomized 

to: 
 TB therapy then HIV therapy (sequential 

group) 
 TB therapy and HIV therapy (concurrent 

group) 
 Primary endpoint: death 



Example 

 What was H0? 
 What was HA? 
 What was the outcome? 



Example 

 H0: the death rate is the same in 
the two groups 

 HA: the death rate is different in the 
two groups 

H0 is true HA is true 

Reject H0 

Do not 
reject H0 



α=Type I error 

 In repeated sampling, this test will 
commit a type I error 100*α% of 
the time. We control this by 
selecting the significance level of 
our test (α). 



Type I and Type II errors 

 more concerned about Type I error 
 concluding that there is a difference 

when there really is no difference than 
Type II errors  

 So... set Type I error at 0.05 
 then choose the procedure that 

minimizes Type II error (or 
equivalently, maximizes power) 



Type I and Type II errors 

 If we do not reject H0, we are in 
danger of committing a type II 
error.  
 i.e. The means are different, but we did 

not see it. 
 If we do reject H0, we are in danger 

of committing a type I error.  
 i.e. the means are not truly different, 

but we have declared them to be 
different. 



Going back to our example 

 What is a type I error? 
 Rejecting H0 when H0 is true 
 Concluding that the concurrent group 

has a different death rate than the 
sequential group, when there truly is 
no difference. 

 What is a type II error? 
 Not rejecting H0 when there really is a 

difference. 



Power 

 Power is the probability of rejecting 
the H0 when HA is true. 

 You should design your study to 
have enough subjects to detect 
important effects, but not too many 

 We usually aim for power > 80% 



Clinical significance 
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Statistical 
Significance 
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WHAT AFFECTS POWER? 

Credit for many slides: Juli 
Atherton, PhD 



Generic ideas about sample size 

For a two sided test with type I error=α to 
have at least 100*(1-β)% power against a 
nonzero difference ∆ then: 

Zα/2SEnull+ZβSEalt<∆ 
 
We can simplify this to: 

(Zα/2+Zβ)*SE<∆ 
 
Or more: 

(Zα/2+Zβ)2*Var(Parameter estimate)<∆2 



What info do we need to compute 
power? 

 Type I error rate (α) 
 The sample size 
 The detectable difference  
 The variance of the measure 

 will depend on the type of outcome 



What affects power? 



What happens if we increase the 
detectable difference? 



What happens if the sd decreases? 



What happens if n increases? 



What happens if we increase α? 



So, what affects power? 

 Size of the detectable effect  
 

 Number of subjects  
 

 Variance of the measure  
 

 Level of significance  
 

 http://bcs.whfreeman.com/ips4e/pages/bcs-
main.asp?v=category&s=00010&n=99000&i=99010.01&o= 

http://bcs.whfreeman.com/ips4e/pages/bcs-main.asp?v=category&s=00010&n=99000&i=99010.01&o=
http://bcs.whfreeman.com/ips4e/pages/bcs-main.asp?v=category&s=00010&n=99000&i=99010.01&o=
http://bcs.whfreeman.com/ips4e/pages/bcs-main.asp?v=category&s=00010&n=99000&i=99010.01&o=


SAMPLE SIZE CALCULATIONS  

Credit for many slides: Juli 
Atherton, PhD 



Binary outcomes 

 Objective: to determine if there is evidence of a 
statistical difference in the comparison of interest 
between two regimens (A and B) 
 

 H0: The two treatments are not different (πA=πB) 
 HA: The two treatmetns are different (πA≠πB) 



Sample size for binary, parallel arm 
superiority trial: 

 Equally sized arms: 
 
 

 90% power: 
 
 

 80% power: 
 

Stat Med 2012 for details 



Example 

 Objective: To compare the 
adherence to two different regimens 
for treatment of LTBI (3 months vs. 
6 months Rifampin) 

 π3M=proportion that adhered to 
treatment in the 3 month group 

 π6M=proportion that adhered in the 
6 month group 



 What info do we need to calculate 
sample size? 
 Desired power 
 Detectable difference 
 Proportion in the ‘control’ arm 
 Type I error 

This is 
terrible – 

what info is 
this 

missing?? 



 80% power: 
 nA =[(1.96+0.84)2*(0.6*0.4+0.7*0.3)]/[(0.1)2] 
  =353 
  =with 10% loss to follow up: 1.1*353=388 PER GROUP 

 
 To achieve 80% power, a sample of 388 

individuals for each study arm was considered 
necessary, assuming 10% loss to follow up and 
taking into account an estimated 60% adherence 
rate and a minimum difference of 10% to be 
detected between groups with alpha=.05. 
 



What about continuous data? 

 npergroup=[2*(Z1-α/2+Z1-β)2*Var(Y)]/∆2 
 

 So what info do we need? 
 Desired power 
 Type I error 
 Variance of outcome measure 
 Detectable difference 



Continuous Data example 

Our primary outcome was tuberculosis-related morbidity (graded 
using the TBscore and Karnofsky performance score  (see appendix 
for definitions) 

 



From the appendix: 

 We projected the difference in TBscore between 
arms to be 1 (the minimally important clinical 
difference).  

 We assumed, based on previous studies, that the 
within group standard deviation would be 2 points 
in each arm.  

 With an alpha value of 5% (two-sided) and a 
desired power of 80%, and assuming equal 
numbers in each arm, we required approximately 
63 culture-positive patients in each arm.  

 To account for deaths, loss to follow-up, 
withdrawals, and missing data, we inflated this by 
30% (~82 culture-positive).  



Example: Time to event (survival) 

 Primary endpoint: death, failure of TB 
treatment, recurrence TB at 12 months 

 Follow up time: 24 months 



“Rule of thumb” 

 
 
 

 n per group 
 θ0=death rate per unit time in control 

group 
 θ1=death rate per unit time in the 

experimental group 
 T=follow up time 
 With alpha=.05 and power=80% 



 θ0=death rate per unit time in 
control group=0.17/24 

 θ1=death rate per unit time in the 
experimental group=0.12/24 

 T=follow up time=24 months 
 



EXTENSIONS & THOUGHTS 
Power & Sample Size 



Accounting for losses to follow up 

 Whatever sample size you arrive at, 
inflate it to account for losses to 
follow up... 
 



Adjusting for confounders 

 ...will be necessary if the data come 
from observational study, or in 
some cases in clinical trials (more 
tomorrow) 

 Rough rule of thumb: need about 
10 observations or events per 
variable you want to include 



Accounting for confounders 

 If you want to be fancier: 



Adjusting for multiple testing 

 Lots of opinion about whether you 
should do this or not 

 Simplest case: Bonferroni 
adjustment 
 use α/n instead of α 
 over-conservative 
 reduces power a lot! 

 Many other alternatives – false 
discovery rate is a good one 
 



Non-independent samples 

 before-after measurements 
 multiple measurements from the same 

person over time 
 measurements from subjects from the 

same family/household 
 Geographic groupings 

 
 These measurements are likely to be 

correlated.  
 This correlation must be taken into 

account or inference may be wrong! 
 p-values may be too small, confidence 

intervals too tight 



Clustered data  

 Easy to account for this via “the 
design effect” 

 Use standard sample size then 
inflate by multiplying by the design 
effect: 

 Deff=1+(m-1)ρ 
 m=average cluster size 
 ρ=intraclass correlation coefficient 

 A measure of correlation between 
subjects in the same cluster 

 



Subgroups 

 If you want to detect effects in 
subgroups, then you should 
consider this in your sample size 
calculations. 



Where to get the information? 

 All calculations require some 
information 
 Literature 

 similar population? 
 same measure? 

 Pilot data 
 Often best to present a table with a 

range of plausible values and choose a 
combination that results in a 
conservative (i.e. big) sample size 

 



Wrapping up 

 You should specify all the 
ingredients as well as the sample 
size 

 We have focused here on estimating 
sample size for a desired power, but 
could also estimate power for a 
given sample size 
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