Host genetics of tuberculosis susceptibility

Erwin Schurr
McGill International TB Centre
Departments of Medicine and Human Genetics
McGill University, Montreal, Quebec, Canada
But what exactly is a genetic disease?

Phenylketonuria (PKU) is a metabolic disease that is caused by phenylalanine:

No phenylalanine = No PKU!

Is PKU a genetic disease? YES!

Phenylalanine is an environmental factor that is NECESSARY but NOT SUFFICIENT for disease (PKU) expression.

M. tuberculosis is necessary, but is it sufficient?
Tuberculosis Pathogenesis

1. 20-50%
 - RESISTANCE to infection (No entry into latency)

2. 5%
 - PRIMARY TB
 - Clinical TB without latency

3. 5%
 - LATENT TB INFECTION (LTBI)
 - No overt clinical symptoms
 - 90%
 - REACTIVATION TB
 - Pulmonary symptoms

M. tuberculosis is not sufficient to cause TB
Three examples that support a role of genetic predisposition to clinical tuberculosis disease:

(i) the Lübeck accident
(ii) risk of tuberculosis recurrence
(iii) twin studies
The Lübeck Accident

<table>
<thead>
<tr>
<th>Virulence level</th>
<th>Number</th>
<th>Disease severity</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>death</td>
<td>serious disease</td>
<td>mild symptoms</td>
<td>no symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>93</td>
<td>6 = 6.5%</td>
<td>9 = 9.7%</td>
<td>78 = 83.8%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>83</td>
<td>18 = 21.7%</td>
<td>34 = 41.0%</td>
<td>31 = 37.3%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>53 = 71.6%</td>
<td>18 = 24.3%</td>
<td>3 = 4.1%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>251</td>
<td>77</td>
<td>61</td>
<td>112</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk of Recurrence of TB

Re-infection disease rate of 2.2/100 PYRS corresponds to 4 times the age-adjusted incidence

Verver et al AJRCCM 171: 1430, 2005
Twin studies

DZ TWINS

2 fertilizations

Share 50% of genetic background

MZ TWINS

1 fertilization

Share 100% of genetic background
Twin studies

<table>
<thead>
<tr>
<th>Concordance</th>
<th>Monozygous twins</th>
<th>Dizygous twins</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65%</td>
<td>25%</td>
<td>Diehl and Von Verschuer, Beitr. Klin Kunsch 92: 275, 1936</td>
</tr>
<tr>
<td></td>
<td>62%</td>
<td>18%</td>
<td>Kallmann and Reisner, Am Rev Respir Dis 47, 549, 1942</td>
</tr>
<tr>
<td></td>
<td>32%</td>
<td>14%</td>
<td>Comstock, Am Rev Respir Dis 117, 621, 1978</td>
</tr>
</tbody>
</table>

Significant excess of concordance among monozygous twins demonstrates the importance of host genetic factors.
Candidate gene approaches

Many examples - one selected gene: NRAMP1
Candidate NRAMP1: TB outbreak

- Entire pedigree: 85 individuals
- Genotypes available from 65 individuals
- Majority of cases occurred within 6 months of diagnosis of index case
- Last case was diagnosed 2 years after index case
- Case criteria: clinical sign of active disease PLUS culture OR response to anti-TB therapy

Greenwood et al AJHG 67:405,2000
Candidate *NRAMP1*: TB outbreak

<table>
<thead>
<tr>
<th>Liability class</th>
<th>Penetrance of homozygous</th>
<th># individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low risk allele</td>
<td>High risk allele</td>
</tr>
<tr>
<td></td>
<td>RR=10</td>
<td>RR=100</td>
</tr>
<tr>
<td>Previously unexposed</td>
<td>0.085</td>
<td>0.0085</td>
</tr>
<tr>
<td>Previously exposed or vaccinated</td>
<td>0.037</td>
<td>0.0037</td>
</tr>
<tr>
<td>PPD negative during epidemic</td>
<td>0.010</td>
<td>0.0010</td>
</tr>
<tr>
<td>Age <2 yrs, >65yrs</td>
<td>0.425</td>
<td>0.2125</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Greenwood et al AJHG 2000
Candidate *NRAMP1*: TB outbreak

With liability classes: Strong evidence for strong genetic effect (NRAMP1)

\[P = < 0.000001, \text{RR}=10 \]

Without liability classes: NO evidence for any genetic effect

Environmental setting defines the playing field for genetic factor
Positional cloning approaches: *TOX* gene
Positional cloning approaches: *TOX* gene

Positional cloning approaches: *TOX* gene

<table>
<thead>
<tr>
<th>Stratum</th>
<th>SNP</th>
<th>Minor Allele</th>
<th>Major Allele</th>
<th>MAP</th>
<th>Family-Based Study</th>
<th>Case-Control Study</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>p Value</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>rs1568952</td>
<td>A</td>
<td>G</td>
<td>0.36</td>
<td>3.21 (1.41–7.35)</td>
<td>0.007</td>
<td>1.98 (1.33–2.94)</td>
</tr>
<tr>
<td></td>
<td>rs2726600</td>
<td>G</td>
<td>A</td>
<td>0.40</td>
<td>2.65 (1.27–5.56)</td>
<td>0.0093</td>
<td>1.61 (1.12–2.31)</td>
</tr>
<tr>
<td><25 Years</td>
<td>rs1568952</td>
<td>A</td>
<td>G</td>
<td>-</td>
<td>5.54 (1.97–15.53)</td>
<td>0.0003</td>
<td>2.86 (1.72–4.77)</td>
</tr>
<tr>
<td></td>
<td>rs2726600</td>
<td>G</td>
<td>A</td>
<td>-</td>
<td>2.56 (1.37–4.80)</td>
<td>0.0025</td>
<td>2.00 (1.24–3.23)</td>
</tr>
<tr>
<td>≥25 Years</td>
<td>rs1568952</td>
<td>A</td>
<td>G</td>
<td>-</td>
<td>0.65 (0.12–3.66)</td>
<td>0.62</td>
<td>1.52 (0.93–2.47)</td>
</tr>
<tr>
<td></td>
<td>rs2726600</td>
<td>G</td>
<td>A</td>
<td>-</td>
<td>1.73 (0.56–5.33)</td>
<td>0.33</td>
<td>1.38 (0.89–2.14)</td>
</tr>
</tbody>
</table>

The following abbreviations are used: MAF, minor allele frequency; OR, odds ratio; and CI, confidence interval.

*MAF was estimated from among 316 founders.

All p values are two sided.

Positional cloning approaches: *TOX* gene
Genome-wide association studies (GWAS)
Chromosome 18 locus not replicated outside of West Africa

Chromosome 11 locus replicated outside of West Africa

Thye et al. Nat Genet. 2010 Sep;42(9):739-41

Tuberculosis Pathogenesis

1. Exposure to *M. tuberculosis*
 - Susceptibility to infection
 - Resistance to infection
 (No entry into latency)

2. Primary TB
 - Clinical TB without latency

3. Latent TB Infection (LTBI)
 - No overt clinical symptoms

 Reversion to clinical disease
 - Reactivation TB
 - Pulmonary symptoms
Latent *M. tuberculosis* infection

How do we measure infection?

No “gold standard”

Three types of assays

In vivo tuberculin skin test (TST)

In vitro production of antigen-specific IFN\(\gamma\) production (ELISA)

In vitro determination of frequency/number of antigen-specific T-cells
 (ELISpot/FACS)
Tuberculin Skin Test

Detection of people infected by *M. tuberculosis*

Public Health
- ≥ 5 mm (Immuno-)
- ≥ 10 mm (no BCG)
- ≥ 15 mm (BCG)

Infection

Intrinsically a **quantitative measure**
Max Lurie’s Rabbits

Healthy

Infected

Cavitary disease
Mean survival 9.2 months

Disseminated disease
Mean survival 4.8 months

Innate resistance

20-40% no disease
85% Tuberculin test negative
11-19 months of exposure

Lurie M B. *Am Rev Tuberc* 1941; 44 (suppl): 1–125

Lurie’s rabbits

Werneck-Barroso E. Int J Tuberc Lung Dis 1999;3:166-68
Genetics of LTBI: TST

✓ **Familial correlation studies**: heritability between 30 à 90%
 (Jepson et al., *Infect Immun*, 2001)

✓ **Molecular studies**:
 • linkage study in Uganda
 (Stein et al., *Plos One*, 2008)
 • Candidate gene *IL10* and binary Mantoux
 • *Il12RB1* and *TLR2* polymorphisms and persistent TST-negativity
 Stein et al Poster X7 4020, Keystone Meeting, Host Response in Tuberculosis
 Whistler, March 13-18, 2013
Extent of TST reactivity

Familial correlation compatible with a major gene effect?

⇒ Complex Segregation Analysis (CSA)
A major gene controls TST reactivity in Colombia

Codominant gene ($p<10^{-6}$), MAF: 0.41 (predisposing to high reactivity)

35% (17%) predisposed to low (high) values

⇒ explains 72% of TST residual variability!

Cobat et al. CID 54:968, 2012
A “what does it mean” example

Mean TST

16 years
BCG+

AA aA aa

3mm 12mm 22mm
Genetic linkage study of TST reactivity

Location: Cape Town, South Africa

- 128 nuclear families ≥ 2 sibs
- 186 parents
- 350 children
- DNA
- Immune phenotypes
- Covariates
- 6,000 SNPs genotyped for linkage analysis
TST distribution is bimodal

TST = 0 vs. Non 0

TST-BIN

Pearson residuals

TST in mm

Major locus for TST negativity *per se* (*TST1*) maps to 11p14
Household contact study in Paris

Chromosomes

Information content

LOD score

significant

suggestive

Cobat et al submitted
ENDOPHENOTYPES

134 nuclear families [2-6 sibs]; 390 children; whole blood assays

TNF production by whole blood after stimulation by:

- BCG
- BCG + IFN-\(\gamma\)
Bivariate linkage analysis of TNF production

Cobat et al Clin Infect Dis. 2013 Oct;57(7):963-70
Major pleiotropic locus for BCG-triggered TNF overlaps innate resistance to *Mtb* infection locus!

Cobat et al submitted 2014
Take-home message I

- Host genetic background is a major confounder of TST reactivity
- A major locus on chromosome 11p controls TST = 0
How to interpret TST = 0?

- A false positive
- Anergy
- Lack of exposure
- Resistance to LTBI
Genetics suggests a connection between innate resistance to *Mtb* infection with innate efficiency to produce TNF
McGill Center for the Study of Host Resistance

C. Gallant, M. Orlova, L. Simkin, A. Cobat

McGill University, Montréal

Human Genetics of Infectious Diseases

JL. Casanova, S. Dupuis

Rockefeller Branch, NYC

L. Abel, A. Alcaïs, A Cobat

Necker Branch, Paris

C. Delacourt, N. Remus

Necker Hospital, Paris

Luis F. Garcia, Luis F. Barrera

Universidad de Antioquia, Medellín, Colombia

E. Hoal, G. Black, P. van Helden

Stellenbosch University, Cape Town

J. Hughes, B.Eley, W.Hanekom

University of Cape Town, Cape Town