# Host genetics of tuberculosis susceptibility

Erwin Schurr

McGill International TB Centre

Departments of Medicine and Human Genetics

McGill University, Montreal, Quebec, Canada

# But what exactly is a genetic disease?

Phenylketonuria (PKU) is a metabolic disease that is caused by phenylalanine:

No phenylalanine = No PKU!

Is PKU a genetic disease? YES!

Phenylalanine is an environmental factors that is NECESSARY but NOT SUFFICIENT for disease (PKU) expression

M. tuberculosis is necessary, but is it sufficient?

# **Tuberculosis Pathogenesis**



M. tuberculosis is not sufficient to cause TB

Three examples that support a role of genetic predisposition to clinical tuberculosis disease:

- (i) the Lübeck accident
- (ii) risk of tuberculosis recurrence
- (iii) twin studies

# The Lübeck Accident

| Virulence<br>level |        | Disease severity |                 |               |             |  |  |  |
|--------------------|--------|------------------|-----------------|---------------|-------------|--|--|--|
|                    | Number | death            | serious disease | mild symptoms | no symptoms |  |  |  |
| 1                  | 1      | -                | -               | -             | 1           |  |  |  |
| 2                  | 93     | 6 = 6.5%         | 9 = 9.7%        | 78 = 83.8%    | -           |  |  |  |
| 3                  | 83     | 18 = 21.7%       | 34 = 41.0%      | 31 = 37.3%    | -           |  |  |  |
| 4                  | 74     | 53 = 71,6%       | 18 = 24.3%      | 3 = 4.1%      | -           |  |  |  |
| Totals             | 251    | 77               | 61              | 112           | 1           |  |  |  |

## Risk of Recurrence of TB



TABLE 3. PROPORTION AND RATE OF RECURRENCES AND REINFECTION DISEASE IN ENROLLED PATIENTS BY OUTCOME OF FIRST DISEASE EPISODE

| Outcome of<br>First Episode<br>with DNA FP | No. Patients | PYRS<br>Follow-up | No.<br>Recurrences | Recurrence Rate/<br>100 PYRS | No. DNA FP in<br>Second Episode | No. Confirmed<br>Reinfections<br>(%) | Confirmed Reinfection<br>Disease Rate/100 PYRS<br>(95% CI) | Likely Reinfection<br>Disease Rate/100 PYRS†<br>(95% CI) |
|--------------------------------------------|--------------|-------------------|--------------------|------------------------------|---------------------------------|--------------------------------------|------------------------------------------------------------|----------------------------------------------------------|
| Cure*                                      | 358          | 1,794             | 48                 | 2.7                          | 21                              | 19 (90)                              | 1.1 (0.7-1.7)                                              | 2.4 (1.4-3.8)                                            |
| TC*                                        | 89           | 466               | 13                 | 2.8                          | 10                              | 5 (50)                               | 1.1 (0.3-2.5)                                              | 1.4 (0.5-3.3)                                            |
| Default                                    | 165          | 725               | 47                 | 6.5                          | 37                              | 4 (11)                               | 0.6 (0.2–1.4)                                              | 0.7 (0.2-1.6)                                            |

Definition of abbreviations: CI = confidence interval; FP = fingerprint; PYRS = person-years; TC = treatment completed.

Re-infection disease rate of 2.2/100 PYRS corresponds to 4 times the age-adjusted incidence

<sup>\*</sup> For successful treatment (either cure or TC) confirmed reinfections are 24 of 31 (77%), confirmed reinfection disease rate is 1.1 (0.7–1.6) per 100 PYRS, and likely reinfection disease rate is 2.2 (1.6–2.9) per 100 PYRS.

<sup>&</sup>lt;sup>†</sup> The likely reinfection disease rate is the recurrence rate multiplied with the proportion confirmed reinfections among recurrences with a DNA FP available.

### Twin studies

**DZ TWINS** 



2 fertilizations



Share 50% of genetic background

**MZ TWINS** 



1 fertilization

Share 100% of genetic background

## Twin studies



Significant excess of concordance among monozygous twins demonstrates the importance of host genetic factors

# Candidate gene approaches

Many examples - one selected gene: NRAMP1

## Candidate *NRAMP1*: TB outbreak



- Entire pedigree: 85 individuals
- Genotypes available from 65 individuals
- Majority of cases occurred within 6 months of diagnosis of index case
- Last case was diagnosed 2 years after index case
- Case criteria: clinical sign of active disease PLUS culture OR response to anti-TB therapy

## Candidate *NRAMP1*: TB outbreak

| Penet       | # individuals       |                                                                                                             |                                                                       |  |
|-------------|---------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Low risk al | llele               | High risk allele                                                                                            |                                                                       |  |
| RR=10       | RR=100              |                                                                                                             | <u></u>                                                               |  |
| 0.085       | 0.0085              | 0.85                                                                                                        | 42                                                                    |  |
| 0.037       | 0.0037              | 0.37                                                                                                        | 11                                                                    |  |
| 0.010       | 0.0010              | 0.10                                                                                                        | 7                                                                     |  |
| 0.425       | 0.2125              | 0.85                                                                                                        | 7                                                                     |  |
|             |                     |                                                                                                             | 14                                                                    |  |
|             | RR=10  0.085  0.037 | Low risk allele       RR=10     RR=100       0.085     0.0085       0.037     0.0037       0.010     0.0010 | RR=10 RR=100  0.085 0.0085 0.85  0.037 0.0037 0.37  0.010 0.0010 0.10 |  |

## Candidate *NRAMP1*: TB outbreak

With liability classes: Strong evidence for strong genetic effect (NRAMP1)

P = < 0.000001, RR=10

Without liability classes: NO evidence for any genetic effect

Greenwood et al. Am J Hum Genet 67:405, 2000

Environmental setting defines the playing field for genetic factor



Baghdadi et al. J Exp Med. 2006 Jul 10;203(7):1679-84.

Table 1. Genetic Association Results for Replicated SNPs rs 1568952 and rs 2726600 in the Primary Moro ccan Family-Based Study, the Moroccan Case-Control Replication Study, and Combined Analyses under the Recessive Model for the Minor Allele

| Stratum   | SNP       | Minor<br>Allele | Major<br>Allele | MAP  | Family-Based Study |                      | Case-Control Study |                      | Combined         |                        |
|-----------|-----------|-----------------|-----------------|------|--------------------|----------------------|--------------------|----------------------|------------------|------------------------|
|           |           |                 |                 |      | OR (95% CI)        | p Value <sup>b</sup> | OR (95% CI)        | p Value <sup>b</sup> | OR (95% CI)      | p Value <sup>b</sup>   |
| Full      | rs1568952 | A               | G               | 0.36 | 3.21 (1.41-7.35)   | 0.007                | 1.98 (1.33-2.94)   | 6 × 10 <sup>-4</sup> | 2.18 (1.53-3.10) | $1.1 \times 10^{-5}$   |
|           | rs2726600 | G               | A               | 0.40 | 2.65 (1.27-5.56)   | 0.0093               | 1.61 (1.12-2.31)   | 0.0092               | 1.81 (1.34-2.43) | 9.2 × 10 <sup>-5</sup> |
| <25 Years | rs1568952 | A               | G               | -    | 5.54 (1.97-15.53)  | 0.0003               | 2.86 (1.72-4.77)   | $2.9 \times 10^{-5}$ | 3.09 (1.99-4.78) | $4.4 \times 10^{-6}$   |
|           | rs2726600 | G               | A               | -    | 2.56 (1.37-4.80)   | 0.0025               | 2.00 (1.24-3.23)   | 0.0039               | 2.19 (1.52-3.14) | $3.2 \times 10^{-5}$   |
| ≥25 Years | rs1568952 | A               | G               | -    | 0.65 (0.12-3.66)   | 0.62                 | 1.52 (0.93-2.47)   | 0.094                | 1.42 (0.88-2.27) | 0.15                   |
|           | rs2726600 | G               | Α               | -    | 1.73 (0.56-5.33)   | 0.33                 | 1.38 (0.89-2.14)   | 0.15                 | 1.42 (0.95-2.13) | 0.09                   |

The following abbreviations are used: MAF, minor allele frequency; OR, odds ratio; and CI, confidence interval.

<sup>\*</sup>MAF was estimated from among 316 founders.

<sup>&</sup>lt;sup>b</sup>All p values are two sided.



# Genome-wide association studies (GWAS)

# **GWAS TB**



Thye et al. Nat Genet. 2010 Sep;42(9):739-41

Thye et al. Nat Genet. 2012 Feb 5;44(3):257-9

Chromosome 18 locus not replicated outside of West Africa

Chromosome 11 locus replicated outside of West Africa

# **Tuberculosis Pathogenesis**



## Latent M. tuberculosis infection

#### How do we measure infection?

No "gold standard"

Three types of assays

In vivo tuberculin skin test (TST)

In vitro production of antigen-specific IFNy production (ELISA)

In vitro determination of frequency/number of antigen-specific T-cells
(ELISpot/FACS)

# **Tuberculin Skin Test**



Detection of people infected by M. tuberculosis



**Intrinsically a quantitative measure** 

#### **Max Lurie's Rabbits**





Cavitary disease

Mean survival 9.2 months

S S

Disseminated disease

Mean survival 4.8 months

#### **Innate resistance**



20-40% no disease 85% Tuberculin test negative 11-19 months of exposure

Werneck-Barroso E. Int J Tuberc Lung Dis 1999;3:166-68

# Lurie's rabbits



Werneck-Barroso E. Int J Tuberc Lung Dis 1999;3:166-68

### **Genetics of LTBI: TST**

✓ **Familial correlation studies**: heritability between 30 à 90%

(Sepulveda et al., Am J Respir Crit Care Med, 1994 / Tuber Lung Dis, 1994) (Jepson et al., Infect Immun, 2001)

#### **✓ Molecular studies** :

• linkage study in Uganda (Stein et al., Plos One, 2008)

• Candidate gene *IL10* and binary Mantoux

(Thye et al., Plos One, 2009; Zembrzuski et al., Tuberculosis, 2010)

•*Il12RB1* and *TLR2* polymorphisms and persistent TST-negativity

Stein et al Poster X7 4020, Keystone Meeting, Host Response in Tuberculosis Whistler, March 13-18, 2013

# **Extent of TST reactivity**

Familial correlation compatible with a major gene effect?

**⇒** Complex Segregation Analysis (CSA)

## A major gene controls TST reactivity in Colombia

Codominant gene (p<10<sup>-6</sup>), MAF: 0.41 (predisposing to high reactivity)

35% (17%) predisposed to low (high) values

⇒ explains 72% of TST residual variability!



# A "what does it mean" example



**Mean TST** 

# Genetic linkage study of TST reactivity

**Location: Cape Town, South Africa** 



## TST distribution is bimodal



## Major locus for TST negativity per se (TST1) maps to 11p14



## **Household contact study in Paris**





## **ENDOPHENOTYPES**

134 nuclear families [2-6 sibs]; 390 children; whole blood assays

#### TNF production by whole blood after stimulation by:



Bivariate linkage analysis of TNF production 6 5 LOD score Information content 1 0 2 **Chromosomes Chromosome 11** 5 LOD score Information content 3 2 Cobat et al Clin Infect Dis. 2013 Oct;57(7):963-70 Mb 10 20 30

# Major pleiotropic locus for BCG-triggered TNF overlaps innate resistance to *Mtb* infection locus!





# Take-home message I

- Host genetic background is a major confounder of TST reactivity
- **A** major locus on chromosome 11p controls TST = 0

# How to interpret TST = 0?

- A false positive
- Anergy
- Lack of exposure
- Resistance to LTBI

# Take-home message II

Genetics suggests a connection between innate resistance to *Mtb* infection with innate efficiency to produce TNF









#### **McGill Center for the Study of Host Resistance**

C. Gallant, M. Orlova, L. Simkin, A. Cobat

McGill University, Montréal

**Human Genetics of Infectious Diseases** 

JL. Casanova, S. Dupuis

L. Abel, A. Alcaïs, A Cobat

Necker Branch, Paris



E. Hoal, G. Black, P. van Helden Stellenbosch University, Cape Town J. Hughes, B.Eley, W.Hanekom University of Cape Town, Cape Town