# Introduction to Genetic Epidemiology

Erwin Schurr

McGill International TB Centre

McGill University

## Methods of investigation in humans

| Phenotype  | Rare<br>(very severe forms) | Common (infection/affection status) |
|------------|-----------------------------|-------------------------------------|
| Sample     | Small                       | Large                               |
| Causality  | monogenic                   | complex                             |
| Main tools | Mendelian Genetics          | Genetic Epidemiology                |





#### Complex phenotypes

- In contrast to monogenic disease
- Complex trait :
  - Environmental factors
  - Genetic factors
    - major gene
    - other genes

gene\*environment interactions

gene\*gene interactions

- Examples:
  - Cancers
  - Cardiovascular diseases
  - Neurological diseases
  - Infectious diseases ...

#### Genetic epidemiology: objectives / tools

```
Do genetic factors play a role?
          ⇒ Epidemiological observations / Experimental model
What is their nature?
          ⇒ Segregation analysis
What is their chromosomal location?
          ⇒ Linkage analysis
Which allelic variant is implicated?
          \Rightarrow Association studies
What is its function?
          \Rightarrow Functional studies
```

# Genetic epidemiology: overview

|                      | Sample         | # affected sibs   | DNA | Markers           | Main goal         |
|----------------------|----------------|-------------------|-----|-------------------|-------------------|
| Segregation analysis | Families       | $0 \rightarrow n$ | No  | -                 | genetic model     |
| Linkage<br>analysis  | Families       | $2 \rightarrow n$ | Yes | Microsat/<br>SNPs | candidate regions |
| Association studies  | Families       | $1 \rightarrow n$ | Yes | SNPs              | candidate alleles |
|                      | Cases/controls | -                 | Yes | <b>SNPs</b>       | candidate alleles |

# Spectrum of genetic predisposition



# Interplay of age and genetics



# Do genetic factors play a role? **Epidemiological observations** What is their nature? **→ Segregation analysis** What is their chromosomal location? **→** Linkage analysis What is the causal variant?

→ Association studies

What is the function?

## **Family level – Twin studies**

#### **DZ TWINS**



2 fertilizations



Share 50% of genetic background

#### **MZ TWINS**



1 fertilization

Share 100% of genetic background

## **MZ Twins**

#### **DZ Twins**



Concordance Rate = 
$$2A/(2A + B + C)$$

Genetic contribution: C<sub>MZ</sub> vs. C<sub>DZ</sub>



Genetic contribution:  $C_{MZ} > C_{DZ}$ 

#### Do genetic factors play a role?

**Epidemiological observations** 

What is their nature?

→ Segregation analysis

What is their chromosomal location?

**→** Linkage analysis

What is the causal variant?

→ Association studies

What is the function?

#### Do genetic factors play a role?

**Epidemiological observations** 

What is their nature?

Segregation analysis

What is their chromosomal location?

→ Linkage analysis

What is the causal variant?

**Association studies** 

What is the function?

# Model-based linkage analysis

- Need to specify the relation between the phenotype and the genotype
  - frequency of the disease allele
  - probability to be affected given genotype and risk factors
- Most powerful method IF the genetic model is correct
- Estimation of the *recombination fraction*  $\theta$  between the 'phenotype' locus (to locate) and the marker locus (known location)
- Linkage test =  $\theta$  < 0.5 ?
- Example: schistosomiasis (infection intensities, severe hepatic fibrosis)

# Model-free linkage analysis



#### Linkage only look at few meiosis



Can we look at more ... can we see dead people ?



Yes ... by studying Linkage Disequilibrium



# Single Nucleotide Polymorphism

In a population the same building block (=nucleotide) of DNA can occur in two alternative forms – i.e. at a given DNA position two different nucleotides (=alleles) can occur. If in a population the less frequent allele occurs with >2% we call it common variation.

94% 
$$\longrightarrow$$
 CTTAGCTT 99.9%  $\longrightarrow$  CTTAGCTT
6%  $\longrightarrow$  CTTAGTTT  $\longrightarrow$  CTTAGTTT

 $\uparrow$   $\uparrow$  Rare SNP

## **Univariate analysis**

One binary phenotype

One candidate SNP in a candidate gene

One association study

#### **Genotypic analysis**

|    | cases          | controls       |
|----|----------------|----------------|
| AA | $\mathbf{c_0}$ | $\mathbf{t_0}$ |
| AB | $\mathbf{c_1}$ | $\mathbf{t_1}$ |
| BB | $\mathbf{c_2}$ | $\mathbf{t_2}$ |

Goodness-of-fit test = Chi-square 2 df

$$\chi^2 = \sum_{ij} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$$

#### Hypothesis testing – general strategy

- 1. Formulate null (H<sub>0</sub>) and alternative (H<sub>1</sub>) hypothesis
- 2. Build a test statistic according to the data to come
- 3. Identify distribution of the test statistic under H<sub>0</sub>
- 4. Define a decision rule (i.e. type I error)
- 5. Make the experiment and compute the test statistic
- 6. Conclude, i.e. reject or not H<sub>0</sub> and precise p-value
- 7. Interpret the conclusion

# Hypothesis testing – genetic association

1.  $H_0$ : cases = controls  $H_1$ : cases  $\neq$  controls

2. 
$$\chi^2 = \sum_{ij} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- 3. Under  $H_0$ ,  $\chi^2$  is distributed as a chi-square with 2 df
- 4. Type I error 5%  $\Leftrightarrow$  reject H<sub>0</sub> if  $\chi^2 > 5.99$
- $5. \chi^2 = 348$
- 6.  $\chi^2 > 5.99$  therefore we reject H<sub>0</sub> (p-value<0.001)
- 7. The genotypic distribution is significantly different in cases and in controls

#### **Genotypic analysis**

|    | cases      | controls |       |
|----|------------|----------|-------|
| AA | <b>200</b> | 500      | 700   |
| AB | 200        | 300      | 500   |
| BB | 600        | 200      | 200   |
|    | 1,000      | 1,000    | 2,000 |

Expected AA cases = 1,000\*700 / 2,000 = 350

Expected AB cases = 1,000\*500 / 2,000 = 250

Etc ...

#### Goodness-of-fit test = Chi-square 2 df

$$\chi^2 = \sum_{ij} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}}$$

 $X^2 = [(200-350)^2/350] + [(200-250)^2/250] + [(600-400)^2/400] + [(500-350)^2/350] + [(300-250)^2/250] + [(200-400)^2/400]$ 

 $X^2=348.5$  with 2 df

# **Genotypic analysis**

|    | cases          | controls       |
|----|----------------|----------------|
| AA | $\mathbf{c_0}$ | $\mathbf{t_0}$ |
| AB | $\mathbf{c_1}$ | $\mathbf{t_1}$ |
| BB | $\mathbf{c_2}$ | $\mathbf{t_2}$ |

Odds ratio AB vs.  $AA = c_1 * t_0 / c_0 * t_1$ 

#### **Genotypic analysis**

|    | cases | controls |
|----|-------|----------|
| AA | 200   | 500      |
| AB | 200   | 300      |
| BB | 600   | 200      |

Odds ratio AB vs. AA = 200\*500 / 200\*300=1.66

Odds ratio BB vs. AA = 600\*500 / 200\*200=7.5

#### **Genotypic analysis – general strategy**

|    | cases          | controls       |             |
|----|----------------|----------------|-------------|
| AA | $\mathbf{c_0}$ | $\mathbf{t_0}$ | Estimate OR |
| AB | $\mathbf{c_1}$ | $\mathbf{t_1}$ |             |
| BB | $\mathbf{c_2}$ | $\mathbf{t_2}$ | Estimate OR |

**Optimize coding scheme** 

#### **Genotypic analysis – dominance effect**

**B** dominant

**B** recessive

|          | cases                                         | controls       |
|----------|-----------------------------------------------|----------------|
| AA       | $\mathbf{c}_0$                                | $\mathbf{t_0}$ |
| AB or BB | <b>c</b> <sub>1</sub> + <b>c</b> <sub>2</sub> | $t_1 + t_2$    |

$$\begin{array}{cccc} & cases & controls \\ AA+AB & c_0+c_1 & t_0+t_1 \\ BB & c_2 & t_2 \end{array}$$

Goodness-of-fit test = chi-square 1 df

# Example

|                        | cases | controls | OR   | P-value |
|------------------------|-------|----------|------|---------|
| $\mathbf{A}\mathbf{A}$ | 100   | 200      | 1.00 |         |
| AB+BB                  | 200   | 100      | 4.00 | <0.001  |

#### **Interpretation?**

Type I error

Allele  $B \Rightarrow$  phenotype = B is the causal allele

Allele B is in *linkage disequilibrium* with the causal allele



Genetic linkage between disease locus and marker locus *PLUS* 

Allele B is preferentially associated with the causal allele

#### Linkage is a relation between loci



Linkage disequilibrium is a relation between alleles

## **Descriptors of Linkage Disequilibrium**

Linkage equilibrium (expected for distant loci)

Linkage disequilibrium (expected for nearby loci)

$$\begin{aligned} \mathbf{P}_{AB} &= \mathbf{P}_{A}\mathbf{P}_{B} &\neq \mathbf{P}_{A}\mathbf{P}_{B} \\ \mathbf{P}_{Ab} &= \mathbf{P}_{A}\mathbf{P}_{b} &\neq \mathbf{P}_{A}\mathbf{P}_{b} \\ \mathbf{P}_{aB} &= \mathbf{P}_{a}\mathbf{P}_{B} &\neq \mathbf{P}_{a}\mathbf{P}_{B} \\ \mathbf{P}_{ab} &= \mathbf{P}_{a}\mathbf{P}_{b} &\neq \mathbf{P}_{a}\mathbf{P}_{b} \end{aligned}$$

$$\mathbf{D}_{\mathbf{A}\mathbf{B}} = \mathbf{P}_{\mathbf{A}\mathbf{B}} - \mathbf{P}_{\mathbf{A}}\mathbf{P}_{\mathbf{B}}$$





sign is arbitrary range ∝allele frequencies

#### Hardly allows comparisons



Scaled version

$$\mathbf{D'}_{AB} = \mathbf{D}_{AB} / \mathbf{Dmax}$$

Dmax = min ( $P_AP_b$ ;  $P_aP_B$ )

$$\mathbf{r^2_{AB}} = \mathbf{D^2_{AB}} / \left( \mathbf{P_A P_B} \ \mathbf{P_a P_b} \right)$$

## **Inflated Type I Error: Stratification**

Replicate the results in an independent sample/population

Incorporate genomic information in the analysis genome records demography history use genome to discover hidden structure by looking at 'null' markers

**Use familial controls = family-based association studies** 

#### Allelic controls – TDT

#### Transmitted alleles vs. non-transmitted alleles



#### Transmitted alleles vs. non-transmitted alleles

|             | Non-Transmitted Allele |                 |                 |  |  |  |
|-------------|------------------------|-----------------|-----------------|--|--|--|
| Transmitted |                        | $M_1$           | $M_2$           |  |  |  |
|             | $M_1$                  | n <sub>11</sub> | n <sub>12</sub> |  |  |  |
|             | $M_2$                  | n <sub>21</sub> | n <sub>22</sub> |  |  |  |

TDT = 
$$\frac{(n_{12} - n_{21})^2}{(n_{12} + n_{21})} \sim \chi^2 (1 \text{ df})$$



|             |   | Non-transmitted alleles |              |  |
|-------------|---|-------------------------|--------------|--|
|             |   | 1                       | 0            |  |
| Transmitted | 1 | 10+15                   | <b>15</b> +5 |  |
| allele      | 0 | <b>10</b> +5            | 0            |  |

$$\square$$
 TDT statistic =  $X^2 = \frac{(15-20)^2}{15+20} = 0.71 < 3.84$ , so do not reject H<sub>0</sub>

 $\square$  **Comment:**  $n_{11}$  and  $n_{00}$  do not contribute

so homozygous parents do not provide information

#### **Genome-wide association studies (GWAS)**

"Study of the <u>common</u> genetic variation across the entire human genome designed to identify genetic association with observable traits"

**NIH 2006** 

# **GWAS** in leprosy



# **GWAS** in Infectious Diseases

| Disease        | Phenotype                                | Population                                | Sample<br>size* | Most significant<br>marker or markers | SNP location                                  | P value*              | Odds<br>ratio | Refs     |                       |      |    |
|----------------|------------------------------------------|-------------------------------------------|-----------------|---------------------------------------|-----------------------------------------------|-----------------------|---------------|----------|-----------------------|------|----|
| HIV-1 and AIDS | Viral load at set                        | European                                  | 2,554           | rs9264942                             | HLA-C                                         | 5.9×10 <sup>-32</sup> | NA            | 33,34    |                       |      |    |
|                | point*                                   |                                           |                 | rs2395029                             | HLA-B, HCP5                                   | 4.5×10 <sup>-35</sup> | NA            | 33,34    |                       |      |    |
|                | Viral load at set<br>point <sup>‡</sup>  | African American                          | 515             | ra2523608                             | HLA-B                                         | 5.6×10 <sup>-10</sup> | NA            | 38       |                       |      |    |
|                | HIV-1 control‡                           | European                                  | 1,712           | rs9264942                             | HLA-C                                         | 2.8×10 <sup>-35</sup> | 2.9           | 35       |                       |      |    |
|                |                                          |                                           |                 | rs4418214                             | MICA                                          | 1.4×10 <sup>-34</sup> | 4.4           |          |                       |      |    |
|                |                                          |                                           |                 | rs2395029                             | HLA-B, HCP5                                   | 9.7×10 <sup>-26</sup> | 5.3           |          |                       |      |    |
|                |                                          |                                           |                 | rs3131018                             | PSORS1C3                                      | 4.2×10 <sup>-16</sup> | 2.1           |          |                       |      |    |
|                |                                          | African American                          | 1,233           | rs2523608                             | HLA-B                                         | 8.9×10 <sup>-20</sup> | 2.6           |          |                       |      |    |
|                |                                          |                                           |                 | rs2255221                             | Intergenio                                    | 3.5×10 <sup>-14</sup> | 2.7           |          |                       |      |    |
|                |                                          |                                           |                 | rs2523590                             | HLA-B                                         | 1.7×10 <sup>-13</sup> | 2.4           |          |                       |      |    |
|                |                                          |                                           |                 | rs9262632                             | Intergenio                                    | 1.0×10-8              | 3.1           |          |                       |      |    |
|                | Disease<br>progression <sup>‡</sup>      | European                                  | 1,071           | ra9261174                             | ZNRD1, RNF39                                  | 1.8×10 <sup>-8</sup>  | NA            | 33,34    |                       |      |    |
|                | Progression to<br>AIDS 1987‡             | European<br>American                      | 755             | rs11884476                            | PARD3B                                        | 3.4×10 <sup>-9</sup>  | NA            | 41       |                       |      |    |
|                | Long-term<br>nonprogression <sup>‡</sup> | European                                  | 1,627           | r22395029                             | HLA-B, HCP5                                   | 6.8×10 <sup>-10</sup> | 3.47          | 42       |                       |      |    |
|                | Long-term<br>nonprogression‡             | European                                  | 1,911           | r22234358                             | CXCR6                                         | 9.7×10 <sup>-10</sup> | 1.85          | 43       |                       |      |    |
| Hepatitis C    | Spontaneous<br>clearance                 | European                                  | 1,362           | rs8099917                             | IL28B                                         | 6.1×10 <sup>-9</sup>  | 2.31          | 53       |                       |      |    |
| Hepatitis B    | Chronic infection                        |                                           |                 |                                       | Chronic infection Japanese, 6,387             | 6,387                 | rs3077        | HLA-DPA1 | 2.3×10 <sup>-36</sup> | 0.56 | 60 |
|                |                                          | laiwanese                                 |                 | rs9277535                             | HLA-DPB1                                      | 6.3×10 <sup>-39</sup> | 0.57          |          |                       |      |    |
| Dengue         | Dengue shook                             | Vietnamese                                | 8,697           | rs3132468                             | MICB                                          | 4.4×10 <sup>-11</sup> | 1.34          | 65       |                       |      |    |
|                | syndrome                                 |                                           |                 | rs3765524                             | PLCE1                                         | 3.1×10 <sup>-10</sup> | 0.80          |          |                       |      |    |
| Severe malaria | Susceptibility                           | African (Gambian)                         | 5,900           | rs11036238                            | HBB                                           | 3.7×10-11             | 0.63          | 70       |                       |      |    |
| Tuberculosis   | Susceptibility                           | African (Ghana,<br>The Gambia,<br>Malawi) | 11,425          | rs4334126                             | 18q11.2 (GATA6,<br>CTAGE1, RBBP8,<br>CABLES1) | 6.8×10 <sup>-9</sup>  | 1.19          | 72       |                       |      |    |
| Leprosy        | Susceptibility                           | Chinese                                   | 11,140          | rs3764147                             | LACC1                                         | 3.7×10 <sup>-54</sup> | 1.68          | 76       |                       |      |    |
|                |                                          |                                           |                 | rs9302752                             | NOD2                                          | 3.8×10 <sup>-40</sup> | 1.59          |          |                       |      |    |
|                |                                          |                                           |                 | rs3088362                             | CCDC122                                       | 1.4×10 <sup>-31</sup> | 1.52          |          |                       |      |    |
|                |                                          |                                           |                 | rs602875                              | HLA-DR-DQ                                     | 5.4×10 <sup>-27</sup> | 0.67          |          |                       |      |    |
|                |                                          |                                           |                 | rs6478108                             | TNFSF15                                       | 3.4×10 <sup>-21</sup> | 1.37          |          |                       |      |    |
|                |                                          |                                           |                 | rs42490                               | RIPK2                                         | 1.4×10 <sup>-16</sup> | 0.76          |          |                       |      |    |
| Meningococcal  | Protection                               | European                                  | 7,522           | rs1065489                             | CFH                                           | 2.2×10 <sup>-11</sup> | 0.64          | 85       |                       |      |    |
| disease        |                                          |                                           |                 | rs426736                              | CFHR3                                         | 4.6×10 <sup>-13</sup> | 0.63          |          |                       |      |    |
| Variant        | Susceptibility                           | European, Papua                           | 5.183           | rs1799990                             | PRNP                                          | 2.0×10 <sup>-27</sup> | NA            | 91       |                       |      |    |