Application of Implementation Science to TB Evaluation: A Case Study from Uganda

Adithya Cattamanchi, MD, MAS
acattamanchi@medsfgh.ucsf.edu
Advanced TB Diagnostics Research Course
July 9, 2014
Implementation Science

- The **study of methods or strategies** to promote uptake of research findings into routine clinical practice

- NOT simply the validation of evidence-based practices or interventions in “real world” settings

- Implementation depends on behavior of key stakeholders
 - Improving uptake requires changing behavior
 - To change behavior, it helps to understand determinants of current behavior and how behavior changes.
Reasons for Low TB Case Detection

• Cases are being diagnosed but not reported

• Cases are not presenting to TB diagnostic centers

• Cases seek care but are not diagnosed
 – Low sensitivity of microscopy (30-70%)
 – Poor quality of TB evaluation
TB Evaluation Guidelines

- **Standard 2**: All persons with unexplained cough of at least 2 weeks’ duration should be evaluated for TB

- **Standard 3**: All persons who require TB evaluation should be referred for sputum-based microbiologic testing

- **Standard 3**: All persons referred for sputum microscopy should have at least 2 smears examined

- **Standard 8**: Smear-positive patients should be prescribed anti-TB therapy
TB GOAL study

TB Guideline Observation and Adherence in Low-income countries

Study Objectives

• To assess the quality of TB evaluation

• To identify modifiable barriers to TB evaluation

• To develop and test a theory-driven intervention to improve TB evaluation
Study setting

- Network of 6 government health centers
- Partners
 - Uganda Ministry of Health
 - Makerere University
 - UCSF
- Electronic data collection (>100,000 patients/year)
Patient Record Form

<table>
<thead>
<tr>
<th>Date</th>
<th>OPD Number</th>
<th>Patient's Last Name</th>
<th>First Name</th>
<th>New admission C/D</th>
<th>CNI No</th>
</tr>
</thead>
</table>

History & Exam Findings

- Date: [__] / [__] / [__]
- Cough History: [__] (Yes) [__] (No)
- Weight: [__] kg
- Age: [__]
- Gender: [__] (Male) [__] (Female)
- [__] (Unknown)

Test Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV Test</td>
<td>[__]</td>
</tr>
<tr>
<td>CD4 Count</td>
<td>[__]</td>
</tr>
</tbody>
</table>

TB Exams

- Chest X-ray: [__] (Positive) [__] (Negative)
- TB PPD: [__] (Positive) [__] (Negative)
- TB Test: [__] (Positive) [__] (Negative)

TB Diagnoses

- Tuberculosis: [__] (Yes) [__] (No)
- HIV: [__] (Positive) [__] (Negative)
- Other Infectious Diseases: [__] (Yes) [__] (No)

TB Medications

- [__] Category: [__] (Yes) [__] (No)
- [__] Drug: [__] (Yes) [__] (No)
- [__] Other: [__] (Yes) [__] (No)

Note: The form contains sections for patient demographics, cough history, TB exams, TB diagnoses, and TB medications. Each section includes various input fields for medical information.
ISTC Quality Indicators

TB Evaluation Flow Diagram with Quality Indicators

Total Episodes of Care

Cough >= 2 weeks?

Sputum AFB Ordered?

Sputum AFB Completed?

>= 1 Positive

>= 2 Negatives

AFB Smear-Positive

TB Treatment?

Indicator Number

1

2

3

Summary

ISTC-adherent care
Objective 1: “Define quality gap”

<table>
<thead>
<tr>
<th>Q1 2009 (14,852 patients → 365 with cough >2 weeks)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1: Referred for TB testing</td>
<td>21%</td>
</tr>
<tr>
<td>Standard 2: Completed TB testing (if referred)</td>
<td>71%</td>
</tr>
<tr>
<td>Standard 3: Treated for TB (if smear-positive)</td>
<td>73%</td>
</tr>
<tr>
<td>ISTC-adherent care</td>
<td>11%</td>
</tr>
</tbody>
</table>

ISTC, International Standards for TB Care

Davis JL, AJRCCM 2011
Objective 2: “Understand quality gap”

- Conceptual Model: Theory of Planned Behavior

- Knowledge/skills
- Attitudes
- Social Norms
- Self-efficacy

\[\text{Intention to Follow ISTC} \rightarrow \text{ISTC Adherence} \rightarrow \text{Case Detection and Treatment} \]

Health System Factors
- Physical Resources
- Material Resources

- Data collection
 - Key informant interviews
 - Field Observation

- Analysis
 - Transcribe interviews and field notes
 - Apply standard coding scheme to identify recurring themes
Health system barriers to TB evaluation

Clinic-level
- Poor infection control
- Limited private space
- Variable leadership

NTP-level
- Inconsistent oversight
- Stock-outs of reagents and drugs
Provider-level barriers to TB evaluation

<table>
<thead>
<tr>
<th>PRECEDE framework</th>
<th>Recurring themes</th>
</tr>
</thead>
</table>
| **Predisposing factors** | - Low motivation of staff
- Inconsistent training of staff

Some of us are trained, but some new staff are not trained. |
| **Enabling Factors** | - Workload faced by lab staff
- Multi-day sputum collection and evaluation

When they have a cough for more than 2 weeks they are sent to the lab. But the problem is they get the first sample and sometimes, actually most times they don’t bring the second sample. |
| **Reinforcing Factors** | - Limited capacity for patient follow-up
- Lack of communication and coordination between staff

...actually at times we have met but we don’t meet [regularly], only when we realize there is a problem that’s when we communicate and say why is this happening, then we try to rectify. |
Objective 3: “Improve quality gap”: Theory-informed intervention

- Evidence review
- Stakeholder consultation
- Feasibility

Predisposing factors
- ISTC training
- Refresher microscopy training

Enabling factors
- Same-day LED FM

Reinforcing factors
- Performance feedback

Flowchart

- Intention to Follow ISTC
- ISTC Adherence
- Case Detection and Treatment

Factors
- Knowledge
- Skills
- Attitudes
- Social Norms
- Self-efficacy
Intervention details: Performance feedback

• Goals
 – Facilitate training/continuous quality improvement

• Report card provided to each site monthly
 – PLAN: Identify plans to improve performance
 – DO: Implement plans
 – STUDY: Review updated report card
 – ACT: Refine or change performance improvement plans
Intervention details: Same-day LED FM

• Goals
 – Facilitate same-day TB evaluation and treatment
 – Reduce laboratory workload/patient waiting time

• 5-day training at each health center
 – FM staining
 – Use of LED fluorescence microscope (PrimoStar iLED)
 – Identification of AFB: practice and proficiency testing
 – Re-organization of work flow
Evaluation of intervention components

• ISTC/Refresher Microscopy training
 • Before-and-after study assessing trend over time

• Same-day LED FM and Performance feedback
 • Interrupted time series study
Impact of ISTC/Microscopy training - 1

ISTC-adherent care

- Indicator 1: Referred for TB exams
 - p=0.005
- Indicator 2: Completed TB exams
 - p=0.85
- Indicator 3: Treated if AFB-positive
 - p=0.02

Impact of ISTC/Microscopy training

- Indicator 1: Referred for TB exams
 - p=0.01
- Indicator 2: Completed TB exams
 - p=0.85
- Indicator 3: Treated if AFB-positive
 - p=0.02
Impact of ISTC/Microscopy training - 2

• High yield of smear examination (13-21%)

• Modest improvements → 3.5-fold increase in TB case detection (7 to 25 cases/quarter)
Impact of performance feedback - 1

Proportion receiving ISTC-adherent care

![Graph showing the proportion of ISTC-adherent care over months since intervention introduction. The graph indicates an increase in the adjusted probability of ISTC-adherent care after the introduction of the intervention.](image)
Impact of performance feedback - 2

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Performance Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre N=838</td>
</tr>
<tr>
<td>Received ISTC-adherent care</td>
<td>52%</td>
</tr>
<tr>
<td></td>
<td>(+8 to +23)</td>
</tr>
<tr>
<td>Referred for sputum examination</td>
<td>72%</td>
</tr>
<tr>
<td></td>
<td>(-7 to +27)</td>
</tr>
<tr>
<td>Completed sputum examination</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td>(-8 to +27)</td>
</tr>
<tr>
<td>Initiated treatment if smear-positive</td>
<td>72%</td>
</tr>
<tr>
<td></td>
<td>(-3 to +30)</td>
</tr>
</tbody>
</table>
Impact of same-day LED FM

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pre N=907</th>
<th>Post N=1043</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received ISTC-adherent care</td>
<td>58%</td>
<td>75%</td>
<td>+17% (+1 to +33)</td>
</tr>
<tr>
<td>Referred for sputum examination</td>
<td>78%</td>
<td>78%</td>
<td>+0.3% (-1 to +7)</td>
</tr>
<tr>
<td>Completed sputum examination</td>
<td>75%</td>
<td>96%</td>
<td>+21% (+4 to +38%)</td>
</tr>
<tr>
<td>Initiated treatment if smear-positive</td>
<td>86%</td>
<td>98%</td>
<td>+12% (-2 to +28%)</td>
</tr>
</tbody>
</table>
Summary

• Guideline implementation requires changing provider behavior

• A behavioral perspective may be helpful to inform barrier assessment and intervention choice

• Same-day microscopy and performance feedback are feasible and complement ISTC training

• Improving the quality of TB evaluation has a large impact on case detection
Acknowledgements

UCSF/Curry International TB Center
Phil Hopewell
Luke Davis
Grant Dorsey
Cecily Miller
Lelia Chaisson

UCSF/Dept. of Epi and Biostatistics
Margaret Handley
Eric Vittinghoff

Makerere University
Achilles Katamba
Moses Kamya
Geoff Lavoy
Irene Ayakaka
Priscilla Haguma
Emma Ochom
Irene Kinera

Uganda MoH/NTLP
Francis Adatu
Frank Mugabe
Moses Joloba
Level IV HC staff

Funding: NIH/NIAID; UCSF Nina Ireland Program in Lung Health