Program Requirements
(6667 credits)
The B.Sc.; Major in Atmospheric Science and Physics provides a solid study in meteorology, atmospheric physics, or related fields.
The program is jointly offered by the Department of Physics and the Department of Atmospheric and Oceanic Sciences. Students should consult undergraduate advisers in both departments.
Required Courses (54 credits)

ATOC 214 Introduction: Physics of the Atmosphere (3 credits)
Overview
Atmospheric & Oceanic Sciences : An introduction to key physical processes operating in the atmosphere, designed for students in science and engineering. Topics typically include: composition of the atmosphere; vertical structure; heat transfer; solar and terrestrial radiation and Earth's energy balance; seasonal and daily temperature changes; humidity and the formation of clouds and precipitation; stability of tropospheric air layers; applications of adiabatic charts.
Terms: Fall 2024
Instructors: There are no professors associated with this course for the 20242025 academic year.

ATOC 215 Oceans, Weather and Climate (3 credits)
Overview
Atmospheric & Oceanic Sciences : An introduction to key physical and dynamical processes in the oceans and atmosphere. Topics typically include airseaice interactions, laws of motion, the geostrophic and thermal wind relations, general circulation of the atmosphere and oceans, weather, radiative balance, climate sensitivity and variability, role of the atmosphere and oceans in climate.
Terms: Winter 2025
Instructors: Fajber, Robert (Winter)
Winter
3 hours lecture
Prerequisite: MATH 141

ATOC 309 Weather Radars and Satellites (3 credits)
Overview
Atmospheric & Oceanic Sciences : Basic notions of radiative transfer and applications of satellite and radar data to mesoscale and synopticscale systems are discussed. Emphasis will be put on the contribution of remote sensing to atmospheric and oceanic sciences.
Terms: Winter 2025
Instructors: Tan, Ivy (Winter)
Winter
3 hours lecture
Prerequisite: ATOC 215

ATOC 312 Rotating Fluid Dynamics (3 credits)
Overview
Atmospheric & Oceanic Sciences : Fundamentals of fluid motion on a rotating sphere: Rotating coordinate systems, the Lagrangian time derivative, and equations of motion. The geostrophic approximation and thermal wind balance; departures from geostrophy, such as frictional Ekman layers, inertial oscillations, and the gradient wind balance. The shallow water equations, including potential vorticity conservation, quasigeostrophy, and simple wave solutions.
Terms: Fall 2024
Instructors: Kirshbaum, Daniel (Fall)

ATOC 315 Thermodynamics and Convection (3 credits)
Overview
Atmospheric & Oceanic Sciences : Buoyancy, stability, and vertical oscillations. Dry and moist adiabatic processes. Resulting dry and precipitating convective circulations from the small scale to the global scale. Mesoscale precipitation systems from the cell to convective complexes. Severe convection, downbursts, mesocyclones.
Terms: Fall 2024
Instructors: Tan, Ivy (Fall)

COMP 208 Computer Programming for Physical Sciences and
Engineering
(3 credits)
Overview
Computer Science (Sci) : Programming and problem solving in a high level computer language: variables, expressions, types, functions, conditionals, loops, objects and classes. Introduction to algorithms such as searching and sorting. Modular software design, libraries, file input and output, debugging. Emphasis on applications in Physical Sciences and Engineering, such as root finding, numerical integration, diffusion, Monte Carlo methods.
Terms: Fall 2024, Winter 2025
Instructors: Langer, Michael; PrémontSchwarz, Isabeau (Fall) PrémontSchwarz, Isabeau (Winter)
3 hours
Restrictions: Not open to students who have taken or are taking COMP 202, COMP 204, orGEOG 333; not open to students who have taken or are taking COMP 206 or COMP 250.
COMP 202 is intended as a general introductory course, while COMP 208 is intended for students with sufficient math background and in (nonlife) science or engineering fields.

MATH 222 Calculus 3 (3 credits)
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2024, Winter 2025
Instructors: Pym, Brent (Fall)

MATH 223 Linear Algebra (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2024, Winter 2025
Instructors: Macdonald, Jeremy (Winter)

MATH 314 Advanced Calculus (3 credits)
Overview
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.
Terms: Fall 2024, Winter 2025
Instructors: There are no professors associated with this course for the 20242025 academic year.

MATH 315 Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2024, Winter 2025
Instructors: Paquette, Courtney (Fall) Kamran, Niky (Winter)

PHYS 230 Dynamics of Simple Systems (3 credits)
Overview
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2024
Instructors: Guo, Hong (Fall)

PHYS 232 Heat and Waves (3 credits)
Overview
Physics : The laws of thermodynamics and their consequences. Thermodynamics of PVT systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2025
Instructors: Hilke, Michael (Winter)

PHYS 241 Signal Processing (3 credits)
Overview
Physics : Linear circuit elements, resonance, network theorems, diodes, transistors, amplifiers, feedback, integrated circuits.
Terms: Winter 2025
Instructors: Hessels, Jason (Winter)
Winter
2 hours lectures; 3 hours laboratory alternate weeks
Prerequisite: CEGEP physics or PHYS 142.

PHYS 257 Experimental Methods 1 (3 credits)
Overview
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2024
Instructors: Vachon, Brigitte (Fall)

PHYS 333 Thermal and Statistical Physics (3 credits)
Overview
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. FermiDirac and BoseEinstein distributions; applications.
Terms: Winter 2025
Instructors: Rutledge, Robert (Winter)

PHYS 340 Majors Electricity and Magnetism (3 credits)
Overview
Physics : The electrostatic field and scalar potential. Dielectric properties of matter. Energy in the electrostatic field. Methods for solving problems in electrostatics. The magnetic field. Induction and inductance. Energy in the magnetic field. Magnetic properties of matter. Maxwell's equations. The dipole approximation.
Terms: Fall 2024
Instructors: Liu, Adrian (Fall)

PHYS 342 Majors Electromagnetic Waves (3 credits)
Overview
Physics : Maxwell's equations. The wave equation. The electromagnetic wave, reflection, refraction, polarization. Guided waves. Transmission lines and wave guides. Vector potential. Radiation. The elemental dipole; the halfwave dipole; vertical dipole; folded dipoles; Yagi antennas. Accelerating charged particles.
Terms: Winter 2025
Instructors: Gervais, Guillaume (Winter)

PHYS 346 Majors Quantum Physics (3 credits)
Overview
Physics : De Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.
Terms: Fall 2024
Instructors: Vachon, Brigitte (Fall)
Complementary Courses (1213 credits)
3 credits selected from:

ATOC 357 Atmospheric and Oceanic Science Laboratory (3 credits)
Overview
Atmospheric & Oceanic Sciences : Students will gain handson experience in several fundamental atmospheric and oceanic science topics through practical experimentation. A diverse set of experiments will be conducted, ranging from in situ observations in Montreal, to remote sensing of clouds and radiation, to laboratory chemistry and watertank experiments. As a background for these experiments, students will receive training on sensor principles and measurement error analysis, as well as the fundamental physical processes of interest in each experiment. They will learn to operate, and physically interpret data from, various sensors for in situ and remote observation of meteorological variables. Their training will also extend to operational weather observations, analysis, and forecasting.
Terms: Winter 2025
Instructors: There are no professors associated with this course for the 20242025 academic year.
Prerequisite(s): ATOC 214 or permission of instructor.

PHYS 258 Experimental Methods 2 (3 credits)
Overview
Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.
Terms: Winter 2025
Instructors: Cooke, David (Winter)
Winter
6 hours of laboratory and classroom work
Prerequisite: PHYS 257
910 credits selected from:

ATOC 357 Atmospheric and Oceanic Science Laboratory (3 credits)
Overview
Atmospheric & Oceanic Sciences : Students will gain handson experience in several fundamental atmospheric and oceanic science topics through practical experimentation. A diverse set of experiments will be conducted, ranging from in situ observations in Montreal, to remote sensing of clouds and radiation, to laboratory chemistry and watertank experiments. As a background for these experiments, students will receive training on sensor principles and measurement error analysis, as well as the fundamental physical processes of interest in each experiment. They will learn to operate, and physically interpret data from, various sensors for in situ and remote observation of meteorological variables. Their training will also extend to operational weather observations, analysis, and forecasting.
Terms: Winter 2025
Instructors: There are no professors associated with this course for the 20242025 academic year.
Prerequisite(s): ATOC 214 or permission of instructor.

ATOC 404 Climate Physics (3 credits) *
Overview
Atmospheric & Oceanic Sciences : This course covers the essentials of climate physics through the lens of onedimensional, vertical atmospheric models. This includes shortwave and longwave radiative transfer, convection, phase changes, clouds, greenhouse gases, and atmospheric escape. This is an adequate level of detail for understanding Earth's climate, paleoclimate, anthropogenic climate change, or pursuing studies of Solar System planets and extrasolar planets.
Terms: Fall 2024
Instructors: There are no professors associated with this course for the 20242025 academic year.

ATOC 480 Honours Research Project (3 credits)
Overview
Atmospheric & Oceanic Sciences : The student will carry out a research project under the supervision of a member of the staff. The student will be expected to write a report and present a seminar on the work.
Terms: Fall 2024, Winter 2025
Instructors: There are no professors associated with this course for the 20242025 academic year.
Restriction: Open to U3 Honours and Major students

ATOC 512 Atmospheric and Oceanic Dynamics (3 credits)
Overview
Atmospheric & Oceanic Sciences : Equations of motion used to study waves, turbulence, and the general circulation of the atmosphere and oceans. Standard approximations to these equations, including the Boussinesq, primitive, quasigeostrohic, and rotating shallow water equations. Emphasis is on effects for which rotation and/or buoyancy play essential roles. Simple classes of flow, e.g., geostrophic, thermal wind, Ekman, and inertial oscillations.
Terms: Fall 2024
Instructors: Straub, David N (Fall)

ATOC 513 Waves and Stability (3 credits)
Overview
Atmospheric & Oceanic Sciences : Description of the principal wave types and instability mechanisms of geophysical fluid dynamics. Geostrophic adjustment, wave dispersion, the WKBJ approximation. Wave types considered include (internal) inertiagravity waves, planetary Rossby waves, and the equatorial and coastal wave guides. Instabilities considered include inertial, symmetric, barotropic, baroclinic, and KelvinHelmholtz instability.
Terms: Winter 2025
Instructors: Straub, David N (Winter)

ATOC 515 Turbulence in Atmosphere and Oceans (3 credits)
Overview
Atmospheric & Oceanic Sciences : Application of statistical and semiempirical methods to the study of geophysical turbulence. Reynolds' equations, dimensional analysis, and similarity. The surface and planetary boundary layers. Oceanic mixed layer. Theories of isotropic two and three dimensional turbulence: energy and enstrophy inertial ranges. Beta turbulence.
Terms: This course is not scheduled for the 20242025 academic year.
Instructors: There are no professors associated with this course for the 20242025 academic year.

ATOC 517 Boundary Layer Meteorology
(3 credits)
Overview
Atmospheric & Oceanic Sciences : Turbulence and turbulent fluxes, atmospheric stability, MoninObukhov similarity theory, surface roughness and surface fluxes, power law and logarithmic wind profiles including their application in wind energy and engineering sectors, convective and stably stratified boundary layers, internal boundary layer development, largeeddy simulations, fundamentals of boundarylayer parameterization in numerical models, and introduction to urban boundary layers.
Terms: This course is not scheduled for the 20242025 academic year.
Instructors: There are no professors associated with this course for the 20242025 academic year.

ATOC 521 Cloud Physics (3 credits)
Overview
Atmospheric & Oceanic Sciences : A detailed overview of the environmental factors and microphysical processes involved in the formation of clouds and precipitation. Topics typically include: cloud observations, atmospheric thermodynamics, environmental stability regimes, convection, the microphysics of the formation of cloud droplets and ice crystals, initiation of precipitation, aerosol–cloud interactions.
Terms: Winter 2025
Instructors: Zuend, Andreas (Winter)

ATOC 525 Atmospheric Radiation (3 credits)
Overview
Atmospheric & Oceanic Sciences : Solar and terrestrial radiation. Interactions of molecules, aerosols, clouds, and precipitation with radiation of various wavelengths. Radiative transfer through the clear and cloudy atmosphere. Radiation budgets. Satellite and groundbased measurements. Climate implications.
Terms: This course is not scheduled for the 20242025 academic year.
Instructors: There are no professors associated with this course for the 20242025 academic year.

ATOC 531 Dynamics of Current Climates (3 credits)
Overview
Atmospheric & Oceanic Sciences : A detailed overview of the climate and the global energy balance. Topics typically include: energy balance at top of the atmosphere and at the surface, poleward energy flux, the role of clouds, climate and atmospheric/oceanic general circulations, natural variability of the climate system, evolution of climate and climate change.
Terms: Fall 2024
Instructors: Fajber, Robert (Fall)

ATOC 540 Synoptic Meteorology 1 (3 credits)
Overview
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Description of a geostrophic, hydrostatic atmosphere. Ageostrophic circulations and hydrostatic instabilities. Kinematic and thermodynamic methods of computing vertical motions. Tropical and extratropical condensation rates. Barotropic and equivalent barotropic atmospheres.
Terms: Fall 2024
Instructors: Gyakum, John Richard (Fall)

ATOC 541 Synoptic Meteorology 2 (3 credits)
Overview
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Quasigeostrophic theory, including the omega equation, as it relates to extratropical cyclone and anticyclone development. Frontogenesis and frontal circulations in the lower and upper troposphere. Cumulus convection and its relationship to tropical and extratropical circulations. Diagnostic case study work.
Terms: This course is not scheduled for the 20242025 academic year.
Instructors: There are no professors associated with this course for the 20242025 academic year.

ATOC 548 Mesoscale Meteorology (3 credits)
Overview
Atmospheric & Oceanic Sciences : Theory of meteorologically important mesoscale phenomena including mesoscale instabilities, cumulus convection and its organization (including thunderstorms, squall lines, and other forms of severe weather), internal gravity waves, and topographically forced flows. Application of theory to the physical interpretation of observations and numerical simulations.
Terms: Winter 2025
Instructors: Romanic, Djordje (Winter)

ATOC 557 Research Methods: Atmospheric and Oceanic Science (3 credits)
Overview
Atmospheric & Oceanic Sciences : The analysis of observational and modeling data, and the advantages and limitations of different data. Different analysis methods including regression, linear stochastic processes autocovariance and spectral analysis, principle component analysis, inverse problems and data assimilation, commonly used in the atmospheric and oceanic sciences.
Terms: This course is not scheduled for the 20242025 academic year.
Instructors: There are no professors associated with this course for the 20242025 academic year.

ATOC 558 Numerical Methods and Laboratory (3 credits)
Overview
Atmospheric & Oceanic Sciences : Numerical simulation of atmospheric and oceanic processes. Finite difference, finite element, and spectral modelling techniques. Term project including computer modelling of convection or largescale flows in the atmosphere or ocean.
Terms: Winter 2025
Instructors: Kirshbaum, Daniel (Winter)

ATOC 568 Ocean Physics (3 credits)
Overview
Atmospheric & Oceanic Sciences : Major topics in physics and dynamics of the ocean including seawater properties, density and equation of state, sea ice, airseaice exchanges, mixing and stability in the ocean, winddriven and thermohaline circulations. Observational techniques and numerical models of the ocean, which include some data analysis and literature review.
Terms: Fall 2024
Instructors: Tremblay, Bruno (Fall)
Winter
3 hours lecture
Prerequisite (Undergraduate): ATOC 512 or permission of instructor

COMP 551 Applied Machine Learning (4 credits)
Overview
Computer Science (Sci) : Selected topics in machine learning and data mining, including clustering, neural networks, support vector machines, decision trees. Methods include feature selection and dimensionality reduction, error estimation and empirical validation, algorithm design and parallelization, and handling of large data sets. Emphasis on good methods and practices for deployment of real systems.
Terms: Fall 2024, Winter 2025
Instructors: PrémontSchwarz, Isabeau; Rabbany, Reihaneh (Fall) Li, Yue (Winter)

PHYS 331 Topics in Classical Mechanics (3 credits)
Overview
Physics : Forced and damped oscillators, Newtonian mechanics in three dimensions, rotational motion, Lagrangian and Hamiltonian mechanics, small vibrations, normal modes. Nonlinear dynamics and chaos.
Terms: Winter 2025
Instructors: Gervais, Guillaume (Winter)

PHYS 339 Measurements Laboratory in General Physics (3 credits)
Overview
Physics : Introduction to modern techniques of measurement. The use of computers in performing and analysing experiments. Data reduction, statistical methods, report writing. Extensive use of computers is made in this laboratory; therefore some familiarity with computers and computing is an advantage.
Terms: Winter 2025
Instructors: Ryan, Dominic (Winter)
Winter
6 hours
Prerequisite: PHYS 241 or permission of instructor

PHYS 404 Climate Physics (3 credits) *
Overview
Physics : This course covers the essentials of climate physics through the lens of onedimensional, vertical atmospheric models. This includes shortwave and longwave radiative transfer, convection, phase changes, clouds, greenhouse gases, and atmospheric escape. This is an adequate level of detail for understanding Earth's climate, paleoclimate, anthropogenic climate change, or pursing studies of Solar System planets and extrasolar planets.
Terms: Fall 2024
Instructors: Huang, Yi (Fall)

PHYS 432 Physics of Fluids (3 credits)
Overview
Physics : The physical properties of fluids. The kinematics and dynamics of flow. The effects of viscosity and turbulence. Applications of fluid mechanics in biophysics, geophysics and engineering.
Terms: Winter 2025
Instructors: Lee, Eve J (Winter)

PHYS 434 Optics (3 credits)
Overview
Physics : Fundamental concepts of optics, including applications and modern developments. Light propagation in media; geometric optics and optical instruments; polarization and coherence properties of light; interference and interferometry; diffraction theory and applications in spectrometry and imaging; Gaussian beams, Fourier optics and photonic band structure. A laboratory component provides handson experience in optical setup design, construction and testing of concepts introduced in lectures.
Terms: Fall 2024
Instructors: Wang, Kai (Fall)

PHYS 449 Majors Research Project (3 credits)
Overview
Physics : A supervised research project.
Terms: Fall 2024, Winter 2025
Instructors: Siwick, Bradley (Fall) Siwick, Bradley (Winter)
Winter or Summer
6 hours
Restrictions: U2 or U3 students in a Physics program, or permission of the instructor.

PHYS 512 Computational Physics with Applications (3 credits)
Overview
Physics : Computational methods in Physics illustrated with realworld applications.
Terms: Fall 2024
Instructors: Sievers, Jonathan Le Roy (Fall)
U3 or graduate students in Physics, Chemistry, or Engineering, or permission of the instructor. Basic familiarity with computer programming highly recommended.