Program Requirements
Students who have done well in MATH 242 and MATH 235 at the end of their first term should consider, in consultation with their adviser and the instructors of the courses involved, the possibility of entering into an Honours program in Mathematics, in Applied Mathematics, in Probability and Statistics, or a Joint Honours program in Mathematics and another discipline.
Program Prerequisites
Students who have not completed the program prerequisite courses listed below or their equivalents will be required to make up any deficiencies in these courses over and above the 36 credits required for the program.

MATH 133 Linear Algebra and Geometry (3 credits)
Overview
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases. Linear transformations. Eigenvalues and diagonalization.
Terms: Fall 2022, Winter 2023, Summer 2023
Instructors: BélangerRioux, Rosalie; Mazakian, Hovsep; GerbelliGauthier, Mathilde; Alfieri, Antonio (Fall) Duchesne, Gabriel William (Winter)
3 hours lecture, 1 hour tutorial
Prerequisite: a course in functions
Restriction A: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction B: Not open to students who have taken or are taking MATH 123, except by permission of the Department of Mathematics and Statistics.
Restriction C: Not open to students who are taking or have taken MATH 134.

MATH 140 Calculus 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2022, Winter 2023, Summer 2023
Instructors: Trudeau, Sidney; Huang, Peiyuan; Mellick, Sam (Fall) CollinsWoodfin, Elizabeth (Winter)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited

MATH 141 Calculus 2 (4 credits)
Overview
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2022, Winter 2023, Summer 2023
Instructors: Macdonald, Jeremy; Xu, Peter (Fall) Trudeau, Sidney; Barill, Gavin; Mazakian, Hovsep (Winter)
Guidelines for Course Selection
Where appropriate, Honourslevel courses may be substituted for their Majorslevel counterparts. Students planning to undertake graduate studies in mathematics are urged to make such substitutions.
Students interested in computer science should consider the courses MATH 317, MATH 318, MATH 327, MATH 340, MATH 417, and take the Minor Concentration Computer Science.
Students interested in probability and statistics should consider either taking the Minor Concentration Statistics under option C, or else including some or all of the courses MATH 423, MATH 447, MATH 523, MATH 524, and MATH 525.
Students interested in applied mathematics should consider the courses MATH 317, MATH 319, MATH 324, MATH 326, MATH 327, and MATH 417.
Students interested in careers in business, industry or government should consider the courses MATH 317, MATH 319, MATH 327, MATH 417, MATH 423, MATH 447, MATH 523, and MATH 525.
Required Courses (21 credits)

MATH 222 Calculus 3 (3 credits)
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2022, Winter 2023, Summer 2023
Instructors: Paquette, Elliot; Wrobel, Konrad (Fall) Trudeau, Sidney (Winter)

MATH 235 Algebra 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Sets, functions and relations. Methods of proof. Complex numbers. Divisibility theory for integers and modular arithmetic. Divisibility theory for polynomials. Rings, ideals and quotient rings. Fields and construction of fields from polynomial rings. Groups, subgroups and cosets; group actions on sets.
Terms: Fall 2022
Instructors: Wise, Daniel (Fall)
Fall
3 hours lecture; 1 hour tutorial
Prerequisite: MATH 133 or equivalent

MATH 236 Algebra 2 (3 credits)
Overview
Mathematics & Statistics (Sci) : Linear equations over a field. Introduction to vector spaces. Linear mappings. Matrix representation of linear mappings. Determinants. Eigenvectors and eigenvalues. Diagonalizable operators. CayleyHamilton theorem. Bilinear and quadratic forms. Inner product spaces, orthogonal diagonalization of symmetric matrices. Canonical forms.
Terms: Winter 2023
Instructors: Sroka, Marcin (Winter)
Winter
Prerequisite: MATH 235

MATH 242 Analysis 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : A rigorous presentation of sequences and of real numbers and basic properties of continuous and differentiable functions on the real line.
Terms: Fall 2022
Instructors: Hundemer, Axel W (Fall)

MATH 243 Analysis 2 (3 credits)
Overview
Mathematics & Statistics (Sci) : Definition and properties of Riemann integral, Fundamental Theorem of Calculus, Taylor's theorem. Infinite series: alternating, telescoping series, rearrangements, conditional and absolute convergence, convergence tests. Power series and Taylor series. Elementary functions. Introduction to metric spaces.
Terms: Winter 2023
Instructors: Hundemer, Axel W (Winter)

MATH 314 Advanced Calculus (3 credits)
Overview
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.
Terms: Fall 2022, Winter 2023
Instructors: Roth, Charles (Fall) Fortier, Jérôme (Winter)

MATH 323 Probability (3 credits)
Overview
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2022, Winter 2023, Summer 2023
Instructors: Nadarajah, Tharshanna; Sajjad, Alia (Fall) Sajjad, Alia; Asgharian, Masoud (Winter)
Complementary Courses (15 credits)
15 credits selected as follows:
At least 9 credits from:
* Note: Either MATH 249 or MATH 316 may be taken but not both.

MATH 249 Honours Complex Variables (3 credits) *
Overview
Mathematics & Statistics (Sci) : Functions of a complex variable; CauchyRiemann equations; Cauchy's theorem and consequences. Taylor and Laurent expansions. Residue calculus; evaluation of real integrals; integral representation of special functions; the complex inversion integral. Conformal mapping; SchwarzChristoffel transformation; Poisson's integral formulas; applications.
Terms: Winter 2023
Instructors: Guan, Pengfei (Winter)

MATH 315 Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2022, Winter 2023, Summer 2023
Instructors: Berk, Aaron (Fall) BélangerRioux, Rosalie (Winter)

MATH 316 Complex Variables (3 credits) *
Overview
Mathematics & Statistics (Sci) : Algebra of complex numbers, CauchyRiemann equations, complex integral, Cauchy's theorems. Taylor and Laurent series, residue theory and applications.
Terms: Fall 2022
Instructors: Pym, Brent (Fall)

MATH 317 Numerical Analysis (3 credits)
Overview
Mathematics & Statistics (Sci) : Error analysis. Numerical solutions of equations by iteration. Interpolation. Numerical differentiation and integration. Introduction to numerical solutions of differential equations.
Terms: Fall 2022
Instructors: Lessard, JeanPhilippe (Fall)

MATH 324 Statistics (3 credits)
Overview
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2022, Winter 2023
Instructors: Nadarajah, Tharshanna (Fall) Nadarajah, Tharshanna (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.

MATH 340 Discrete
Mathematics (3 credits)
Overview
Mathematics & Statistics (Sci) : Discrete Mathematics and applications. Graph Theory: matchings, planarity, and colouring. Discrete probability. Combinatorics: enumeration, combinatorial techniques and proofs.
Terms: Winter 2023
Instructors: Norin, Sergey (Winter)

MATH 423 Applied Regression (3 credits)
Overview
Mathematics & Statistics (Sci) : Multiple regression estimators and their properties. Hypothesis tests and confidence intervals. Analysis of variance. Prediction and prediction intervals. Model diagnostics. Model selection. Introduction to weighted least squares. Basic contingency table analysis. Introduction to logistic and Poisson regression. Applications to experimental and observational data.
Terms: Fall 2022
Instructors: Nadarajah, Tharshanna (Fall)
Remaining credits from:

MATH 204 Principles of Statistics 2 (3 credits)
Overview
Mathematics & Statistics (Sci) : The concept of degrees of freedom and the analysis of variability. Planning of experiments. Experimental designs. Polynomial and multiple regressions. Statistical computer packages (no previous computing experience is needed). General statistical procedures requiring few assumptions about the probability model.
Terms: Winter 2023
Instructors: Correa, Jose Andres (Winter)
Winter
Prerequisite: MATH 203 or equivalent. No calculus prerequisites
Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.

MATH 208 Introduction to Statistical Computing (3 credits)
Overview
Mathematics & Statistics (Sci) : Basic data management. Data visualization. Exploratory data analysis and descriptive statistics. Writing functions. Simulation and parallel computing. Communication data and documenting code for reproducible research.
Terms: Fall 2022
Instructors: Steele, Russell (Fall)
Prerequisite(s): MATH 133

MATH 308 Fundamentals of Statistical Learning (3 credits)
Overview
Mathematics & Statistics (Sci) : Theory and application of various techniques for the exploration and analysis of multivariate data: principal component analysis, correspondence analysis, and other visualization and dimensionality reduction techniques; supervised and unsupervised learning; linear discriminant analysis, and clustering techniques. Data applications using appropriate software.
Terms: Winter 2023
Instructors: Alam, Shomoita (Winter)

MATH 318 Mathematical Logic (3 credits)
Overview
Mathematics & Statistics (Sci) : Propositional logic: truthtables, formal proof systems, completeness and compactness theorems, Boolean algebras; firstorder logic: formal proofs, Gödel's completeness theorem; axiomatic theories; set theory; Cantor's theorem, axiom of choice and Zorn's lemma, Peano arithmetic; Gödel's incompleteness theorem.
Terms: Fall 2022
Instructors: Sabok, Marcin (Fall)

MATH 319 Partial Differential
Equations
(3 credits)
Overview
Mathematics & Statistics (Sci) : First order equations, geometric theory; second order equations, classification; Laplace, wave and heat equations, SturmLiouville theory, Fourier series, boundary and initial value problems.
Terms: Winter 2023
Instructors: BélangerRioux, Rosalie (Winter)

MATH 326 Nonlinear Dynamics and Chaos (3 credits)
Overview
Mathematics & Statistics (Sci) : Linear systems of differential equations, linear stability theory. Nonlinear systems: existence and uniqueness, numerical methods, one and two dimensional flows, phase space, limit cycles, PoincareBendixson theorem, bifurcations, Hopf bifurcation, the Lorenz equations and chaos.
Terms: Fall 2022
Instructors: Nave, JeanChristophe (Fall)

MATH 327 Matrix Numerical Analysis (3 credits)
Overview
Mathematics & Statistics (Sci) : An overview of numerical methods for linear algebra applications and their analysis. Problem classes include linear systems, least squares problems and eigenvalue problems.
Terms: Winter 2023
Instructors: Panayotov, Ivo (Winter)

MATH 346 Number Theory (3 credits)
Overview
Mathematics & Statistics (Sci) : Divisibility. Congruences. Quadratic reciprocity. Diophantine equations. Arithmetical functions.
Terms: Winter 2023
Instructors: Love, Jonathan (Winter)

MATH 348 Euclidean Geometry (3 credits)
Overview
Mathematics & Statistics (Sci) : Points and lines in a triangle. Quadrilaterals. Angles in a circle. Circumscribed and inscribed circles. Congruent and similar triangles. Area. Power of a point with respect to a circle. Ceva’s theorem. Isometries. Homothety. Inversion.
Terms: Fall 2022
Instructors: Przytycki, Piotr (Fall)

MATH 352 Problem Seminar (1 credit)
Overview
Mathematics & Statistics (Sci) : Seminar in Mathematical Problem Solving. The problems considered will be of the type that occur in the Putnam competition and in other similar mathematical competitions.
Terms: Fall 2022
Instructors: Norin, Sergey (Fall)
Prerequisite: Enrolment in a math related program or permission of the instructor. Requires departmental approval.
Prerequisite: Enrolment in a math related program or permission of the instructor.

MATH 410 Majors Project (3 credits)
Overview
Mathematics & Statistics (Sci) : A supervised project.
Terms: Fall 2022, Winter 2023
Instructors: Kelome, Djivede; Khadra, Anmar; Stephens, David; Nave, JeanChristophe; Tan, Hongping; Yang, Archer Yi; Kolaczyk, Eric; Steele, Russell; Asgharian, Masoud; Ding, Yichuan Daniel (Fall) Kelome, Djivede (Winter)
Prerequisite: Students must have 21 completed credits of the required mathematics courses in their program, including all required 200 level mathematics courses.
Requires departmental approval.

MATH 417 Linear Optimization (3 credits)
Overview
Mathematics & Statistics (Sci) : An introduction to linear optimization and its applications: Duality theory, fundamental theorem, sensitivity analysis, convexity, simplex algorithm, interiorpoint methods, quadratic optimization, applications in game theory.
Terms: Fall 2022
Instructors: Paquette, Courtney (Fall)

MATH 427 Statistical Quality Control (3 credits)
Overview
Mathematics & Statistics (Sci) : Introduction to quality management; variability and productivity. Quality measurement: capability analysis, gauge capability studies. Process control: control charts for variables and attributes. Process improvement: factorial designs, fractional replications, response surface methodology, Taguchi methods. Acceptance sampling: operating characteristic curves; single, multiple and sequential acceptance sampling plans for variables and attributes.
Terms: This course is not scheduled for the 20222023 academic year.
Instructors: There are no professors associated with this course for the 20222023 academic year.

MATH 447 Introduction to Stochastic Processes (3 credits)
Overview
Mathematics & Statistics (Sci) : Conditional probability and conditional expectation, generating functions. Branching processes and random walk. Markov chains, transition matrices, classification of states, ergodic theorem, examples. Birth and death processes, queueing theory.
Terms: Winter 2023
Instructors: AddarioBerry, Louigi Dana (Winter)

MATH 478 Computational Methods in Applied Mathematics
(3 credits)
Overview
Mathematics & Statistics (Sci) : Solution to initial value problems: Linear, Nonlinear Finite Difference Methods: accuracy and stability, Lax equivalence theorem, CFL and von Neumann conditions, Fourier analysis: diffusion, dissipation, dispersion, and spectral methods. Solution of large sparse linear systems: iterative methods, preconditioning, incomplete LU, multigrid, Krylov subspaces, conjugate gradient method. Applications to, e.g., weighted least squares, duality, constrained minimization, calculus of variation, inverse problems, regularization, level set methods, NavierStokes equations
Terms: Winter 2023
Instructors: Nave, JeanChristophe (Winter)

MATH 523 Generalized Linear Models (4 credits)
Overview
Mathematics & Statistics (Sci) : Exponential families, link functions. Inference and parameter estimation for generalized linear models; model selection using analysis of deviance. Residuals. Contingency table analysis, logistic regression, multinomial regression, Poisson regression, loglinear models. Multinomial models. Overdispersion and Quasilikelihood. Applications to experimental and observational data.
Terms: Winter 2023
Instructors: Neslehova, Johanna (Winter)

MATH 524 Nonparametric Statistics (4 credits)
Overview
Mathematics & Statistics (Sci) : Distribution free procedures for 2sample problem: Wilcoxon rank sum, SiegelTukey, Smirnov tests. Shift model: power and estimation. Single sample procedures: Sign, Wilcoxon signed rank tests. Nonparametric ANOVA: KruskalWallis, Friedman tests. Association: Spearman's rank correlation, Kendall's tau. Goodness of fit: Pearson's chisquare, likelihood ratio, KolmogorovSmirnov tests. Statistical software packages used.
Terms: Fall 2022
Instructors: Neslehova, Johanna (Fall)

MATH 525 Sampling Theory and Applications (4 credits)
Overview
Mathematics & Statistics (Sci) : Simple random sampling, domains, ratio and regression estimators, superpopulation models, stratified sampling, optimal stratification, cluster sampling, sampling with unequal probabilities, multistage sampling, complex surveys, nonresponse.
Terms: Winter 2023
Instructors: Yang, Archer Yi (Winter)