Faculty of Engineering, including Peter Guo-hua Fu School of Architecture and School of Urban Planning

Programs, Courses and University Regulations

2018-2019
This PDF excerpt of *Programs, Courses and University Regulations* is an archived snapshot of the web content on the date that appears in the footer of the PDF. Archival copies are available at www.mcgill.ca/study.

This publication provides guidance to prospects, applicants, students, faculty and staff.

1. McGill University reserves the right to make changes to the information contained in this online publication - including correcting errors, altering fees, schedules of admission, and credit requirements, and revising or cancelling particular courses or programs - without prior notice.

2. In the interpretation of academic regulations, the Senate is the final authority.

3. Students are responsible for informing themselves of the University's procedures, policies and regulations, and the specific requirements associated with the degree, diploma, or certificate sought.

4. All students registered at McGill University are considered to have agreed to act in accordance with the University procedures, policies and regulations.

5. Although advice is readily available on request, the responsibility of selecting the appropriate courses for graduation must ultimately rest with the student.

6. Not all courses are offered every year and changes can be made after publication. Always check the Minerva Class Schedule link at https://horizon.mcgill.ca/pban1/bwckschd.p_disp_dyn_sched for the most up-to-date information on whether a course is offered.

7. The academic publication year begins at the start of the Fall semester and extends through to the end of the Winter semester of any given year. Students who begin study at any point within this period are governed by the regulations in the publication which came into effect at the start of the Fall semester.

8. Notwithstanding any other provision of the publication, it is expressly understood by all students that McGill University accepts no responsibility to provide any course of instruction, program or class, residential or other services including the normal range of academic, residential and/or other services in circumstances of utility interruptions, fire, flood, strikes, work stoppages, labour disputes, war, insurrection, the operation of law or acts of God or any other cause (whether similar or dissimilar to those enumerated) which reasonably prevent their provision.

Note: Throughout this publication, "you" refers to students newly admitted, readmitted or returning to McGill.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>About the Faculty of Engineering, page 9</td>
</tr>
<tr>
<td>2</td>
<td>History of the Faculty, page 9</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Microcomputing Facility, page 10</td>
</tr>
<tr>
<td>4</td>
<td>Schulich Library of Physical Sciences, Life Sciences, and Engineering, page 10</td>
</tr>
<tr>
<td>5</td>
<td>About Engineering (Undergraduate), page 10</td>
</tr>
<tr>
<td>5.1</td>
<td>Location, page 10</td>
</tr>
<tr>
<td>5.2</td>
<td>About the Faculty of Engineering, page 11</td>
</tr>
<tr>
<td>5.3</td>
<td>Administrative Officers, page 11</td>
</tr>
<tr>
<td>6</td>
<td>Degrees and Requirements for Professional Registration, page 12</td>
</tr>
<tr>
<td>7</td>
<td>Admission Requirements, page 13</td>
</tr>
<tr>
<td>8</td>
<td>Student Progress, page 13</td>
</tr>
<tr>
<td>9</td>
<td>Student Activities, page 13</td>
</tr>
<tr>
<td>10</td>
<td>Degrees and Programs Offered, page 13</td>
</tr>
<tr>
<td>11</td>
<td>Engineering Internship Program, page 14</td>
</tr>
<tr>
<td>11.1</td>
<td>Student Eligibility, page 14</td>
</tr>
<tr>
<td>12</td>
<td>Browse Academic Units & Programs, page 15</td>
</tr>
<tr>
<td>12.1</td>
<td>Architecture, page 15</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Location, page 15</td>
</tr>
<tr>
<td>12.1.2</td>
<td>About the Peter Guo-hua Fu School of Architecture, page 15</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Architectural Certification in Canada, page 16</td>
</tr>
<tr>
<td>12.1.4</td>
<td>Programs of Study, page 16</td>
</tr>
<tr>
<td>12.1.4.1</td>
<td>Student Exchanges, page 16</td>
</tr>
<tr>
<td>12.1.5</td>
<td>Ancillary Academic Facilities, page 16</td>
</tr>
<tr>
<td>12.1.6</td>
<td>Architecture Faculty, page 16</td>
</tr>
<tr>
<td>12.1.7</td>
<td>Bachelor of Science (B.Sc.) (Architecture) - Architecture (126 credits), page 18</td>
</tr>
<tr>
<td>12.2</td>
<td>Bioengineering, page 20</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Location, page 20</td>
</tr>
<tr>
<td>12.2.2</td>
<td>About the Department of Bioengineering, page 20</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Bioengineering Faculty, page 20</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Bachelor of Engineering (B.Eng.) - Bioengineering (142 credits), page 21</td>
</tr>
<tr>
<td>12.3</td>
<td>Chemical Engineering, page 25</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Location, page 25</td>
</tr>
<tr>
<td>12.3.2</td>
<td>About the Department of Chemical Engineering, page 25</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Academic Programs, page 25</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Canadian Society for Chemical Engineering, page 26</td>
</tr>
<tr>
<td>12.3.5</td>
<td>Chemical Engineering Faculty, page 26</td>
</tr>
<tr>
<td>12.3.6</td>
<td>Bachelor of Engineering (B.Eng.) - Chemical Engineering (143 credits), page 26</td>
</tr>
<tr>
<td>12.3.6.1</td>
<td>More about B.Eng. Degree in Chemical Engineering, page 31</td>
</tr>
<tr>
<td>12.4</td>
<td>Civil Engineering and Applied Mechanics, page 31</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Location, page 31</td>
</tr>
</tbody>
</table>
12.4.2 About the Department of Civil Engineering and Applied Mechanics, page 32
12.4.3 Academic Programs, page 32
12.4.4 Civil Engineering and Applied Mechanics Faculty, page 32
12.4.5 Bachelor of Engineering (B.Eng.) - Civil Engineering (139 credits), page 33

12.5 Electrical and Computer Engineering, page 37
12.5.1 Location, page 37
12.5.2 About the Department of Electrical and Computer Engineering, page 37
12.5.3 Electrical and Computer Engineering Faculty, page 38
12.5.4 Bachelor of Engineering (B.Eng.) - Electrical Engineering (134 credits), page 40
12.5.5 Bachelor of Engineering (B.Eng.) - Honours Electrical Engineering (138 credits), page 45
12.5.6 Bachelor of Engineering (B.Eng.) - Computer Engineering (133 credits), page 49
12.5.7 Bachelor of Software Engineering (B.S.E.) - Software Engineering (137 credits), page 53

12.6 Mechanical Engineering, page 56
12.6.1 Location, page 56
12.6.2 About the Department of Mechanical Engineering, page 57
12.6.3 Mechanical Engineering Faculty, page 57
12.6.4 Bachelor of Engineering (B.Eng.) - Mechanical Engineering (142 credits), page 59
12.6.5 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering (142 credits), page 63
12.6.6 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Aeronautical Engineering (15 credits), page 67
12.6.7 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Aeronautical Engineering (15 credits), page 68
12.6.8 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Design (15 credits), page 68
12.6.9 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Design (15 credits), page 69

12.7 Mining and Materials Engineering, page 70
12.7.1 Location, page 70
12.7.2 About the Department of Mining and Materials Engineering, page 70
 12.7.2.1 Scholarships, page 70
12.7.3 Mining and Materials Engineering Faculty, page 70
12.7.4 About Materials Engineering, page 72
 12.7.4.1 Materials Engineering (Co-op), page 72
 12.7.4.2 Student Advising, page 72
 12.7.4.3 Bachelor of Engineering (B.Eng.) - Materials Engineering (148 credits), page 72
 12.7.4.4 Bachelor of Engineering (B.Eng.) - Materials Engineering CO-OP (148 credits), page 76
12.7.5 About Mining Engineering, page 80
 12.7.5.1 Mining Engineering (Co-op), page 80
 12.7.5.2 Student Advising, page 80
 12.7.5.3 Bachelor of Engineering (B.Eng.) - Mining Engineering (144 credits), page 80
 12.7.5.4 Bachelor of Engineering (B.Eng.) - Co-op in Mining Engineering (150 credits), page 84

12.8 Urban Planning, page 88
12.8.1 Location, page 88
12.8.2 About the School of Urban Planning, page 88
12.8.3 Undergraduate Courses in Urban Planning, page 89
12.8.4 Urban Planning Faculty, page 90
12.9 Other Engineering Related Programs, page 91
12.9.1 Bioresource Engineering, page 91
12.9.2 Biomedical Engineering, page 91
12.10 Minor Programs, page 91
12.10.1 Bachelor of Engineering (B.Eng.) - Minor Aerospace Engineering (24 credits), page 92
12.10.2 Bachelor of Engineering (B.Eng.) - Minor Arts (24 credits), page 95
12.10.3 Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits), page 95
12.10.4 Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits), page 97
12.10.5 Bachelor of Engineering (B.Eng.) - Minor Chemistry (25 credits), page 99
12.10.6 Computer Science Courses and Minor Program, page 100
12.10.6.1 Computer Science Courses in Engineering Programs, page 101
12.10.6.2 Bachelor of Engineering (B.Eng.) - Minor Computer Science (24 credits), page 101
12.10.7 Bachelor of Engineering (B.Eng.) - Minor Construction Engineering and Management (24 credits), page 102
12.10.8 Bachelor of Engineering (B.Eng.) - Minor Economics (18 credits), page 103
12.10.9 Minor in Environment, page 104
12.10.10 Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits), page 105
12.10.11 Minor Programs in Finance, Management, Marketing, and Operations Management, page 108
12.10.12 Bachelor of Engineering (B.Eng.) - Minor Materials Engineering (24 credits), page 108
12.10.13 Bachelor of Engineering (B.Eng.) - Minor Mathematics (24 credits), page 109
12.10.14 Bachelor of Engineering (B.Eng.) - Minor Mining Engineering (23 credits), page 109
12.10.15 Minor in Musical Science and Technology, page 111
12.10.16 Bachelor of Engineering (B.Eng.) - Minor Nanotechnology (21 credits), page 111
12.10.17 Bachelor of Engineering (B.Eng.) - Minor Physics (18 credits), page 113
12.10.18 Bachelor of Engineering (B.Eng.) - Minor Software Engineering (18 credits), page 114
12.10.19 Bachelor of Engineering (B.Eng.) - Minor Technological Entrepreneurship (18 credits), page 115
1 About the Faculty of Engineering

The Faculty currently includes six engineering departments and two schools, and houses three institutes:

Departments
- Bioengineering
- Chemical Engineering
- Civil Engineering and Applied Mechanics
- Electrical and Computer Engineering
- Mechanical Engineering
- Mining and Materials Engineering

Schools
- The Peter Guo-hua Fu School of Architecture
- Urban Planning

Institutes
- Trottier Institute for Sustainability in Engineering and Design (TISED) (Website: www.mcgill.ca/tised)
- McGill Institute for Advanced Materials (MIAM) (Website: www.mcgill.ca/miam) (established by the Faculties of Engineering and Science)
- McGill Institute for Aerospace Engineering (MIAE) (Website: www.mcgill.ca/miae)

The Faculty serves approximately 3,300 undergraduate students and 1,300 graduate students in a wide variety of academic programs.

Undergraduate programs leading to professional bachelor's degrees are offered in all Engineering departments. These programs are designed to qualify graduates for immediate employment in a wide range of industries and for membership in the appropriate professional bodies. Additionally, a non-professional undergraduate degree is offered in the School of Architecture for those who plan to work in related fields not requiring professional qualification.

The curricula are structured to provide suitable preparation for those who plan to continue their education in postgraduate studies either at McGill or elsewhere. The professional degrees in Architecture and Urban Planning are offered at the master's level and are described at [Faculty of Engineering > Graduate](#).

The academic programs are divided into required and complementary sections. The required courses emphasize basic principles which permit graduates to keep abreast of progress in technology throughout their careers. Exposure to current technology is provided by the wide variety of complementary courses which allow students to pursue a particular interest in depth. For program details and requirements, refer to [section 12: Browse Academic Units & Programs](#).

The [Engineering Internship Program](#) provides engineering students with the opportunity to participate in four-, eight-, twelve-, or sixteen-month paid work experiences. Details can be found at www.mcgill.ca/careers4engineers/engineering-internship-program/students. In addition, co-op programs are offered in Mining Engineering and in Materials Engineering.

Graduate and postgraduate programs leading to master's and doctoral degrees are offered in all sectors of the Faculty. Numerous areas of specialization are available in each of the departments and schools. All postgraduate programs, including the professional degree programs in Architecture and in Urban Planning, are described at [Faculty of Engineering > Graduate](#).

2 History of the Faculty

The Faculty of Engineering began in 1871 as the Department of Practical and Applied Science in the Faculty of Arts with degree programs in Civil Engineering and Surveying; Mining Engineering and Assaying; and Practical Chemistry. Diploma courses had been offered from 1859, and by 1871 the staff and enrolments had increased sufficiently to justify the creation of the Department. Continued growth led to the formation of the Faculty of Applied Science in 1878. By 1910 there were ten degree programs offered, including Architecture and Railroad Engineering. Subsequent changes in the overall pattern of the University led to the creation of the Faculty of Engineering in 1931 with a departmental structure very similar to that which exists at present.

For a detailed history of the Faculty from 1811 to 2003, see www.mcgill.ca/engineering/about/history.
3 Engineering Microcomputing Facility

In addition to the services provided by McGill's Information Technology Services, the Faculty, in conjunction with its departments and schools, maintains specialized computing and information resources in support of teaching and research. These vary from desktop computers distributed throughout the Engineering complex to very high-performance scientific workstations found in the research laboratories. Each unit organizes and maintains facilities that are designed around specific roles, e.g., CAD/CAM, microelectronic design, software engineering, circuit simulation, process control, polymers, structural mechanics, metal processing, etc., in addition to systems dedicated to administrative support.

The role of the Faculty is to provide access to computing resources on a 24-hour basis and to provide services that are not covered by individual units.

Further information is available at www.mcgill.ca/emf.

4 Schulich Library of Physical Sciences, Life Sciences, and Engineering

Schulich Library of Physical Sciences, Life Sciences, and Engineering
Macdonald-Stewart Library Building
809 Sherbrooke Street West
Montreal QC H3A 0C1
Telephone: 514-398-4769
Email: schulich.library@mcgill.ca
Website: www.mcgill.ca/library/branches/schulich

The Schulich Library of Physical Sciences, Life Sciences, and Engineering provides resources and services to support research and teaching programs in engineering, physical and natural sciences, medicine, and dentistry. The Library holds more than 300,000 books, journals, and other materials and provides access to an extensive collection of online resources, with thousands of electronic journals, e-books, and databases.

The Schulich Library has over 100 networked computer workstations, and the entire building is a McGill wireless zone. Within the library’s six floors are many options for both quiet and group study, and numerous uPrint machines on site for copying, printing, and scanning. The Library provides support for users with disabilities, including wheelchair access and an adaptive workstation. Schulich Library staff includes ten subject-specialized liaison librarians who offer one-on-one research consultations, as well as a range of tours and workshops designed to help users effectively find, assess, and use information.

Further information is available at www.mcgill.ca/library/branches/schulich.

The Schulich Library is one of several McGill library branches. The following other branch libraries will also be of interest to students in the Faculty of Engineering:

- Blackader-Lauterman Library of Architecture and Art
- Macdonald Campus Library

Contact us by phone or email or visit the website to learn more about the Library’s services, collections, and facilities. We look forward to seeing you in the Library.

5 About Engineering (Undergraduate)

5.1 Location

Faculty of Engineering

Macdonald Engineering Building
817 Sherbrooke Street West
Montreal QC H3A 0C3
Canada
Telephone: 514-398-7250
Faculty website: www.mcgill.ca/engineering
The McGill Engineering Student Centre (Student Affairs Office, Career Centre, Peer Tutoring Services) and the Office of the Associate Dean (Student Affairs) are located at the following address:

3450 University Street
Montreal QC H3A 0E8
Frank Dawson Adams Building, Suite 22
Telephone: 514-398-7257
McGill Engineering Student Centre website: www.mcgill.ca/engineering/students/undergraduate/mesc

5.2 About the Faculty of Engineering

The mission of the Faculty of Engineering is to contribute to the advancement of learning and to the socio-economic development of Quebec and Canada, through teaching and research activities at the highest international standards of quality.

Goals:

- To prepare graduates for productive professional careers through the provision of accredited bachelor's programs
- To train students through focused professional programs to attain the forefront of their fields
- To perform research and other scholarly activities which achieve international recognition
- To ensure that technological innovations developed through research are transferred to industry
- To provide a stimulating environment for teaching, learning, and research

In this section, you will find up-to-date information about the Faculty and about the undergraduate programs and courses it offers. For information about graduate studies in the Faculty of Engineering, see [Faculty of Engineering > Graduate](#).

You will find information on the following topics (and others):

- **section 1:** About the Faculty of Engineering
- **section 2:** History of the Faculty
- **section 3:** Engineering Microcomputing Facility
- **section 4:** Schulich Library of Physical Sciences, Life Sciences, and Engineering
- **section 6:** Degrees and Requirements for Professional Registration
- **section 9:** Student Activities
- **section 11:** Engineering Internship Program (EIP)
- Undergraduate Programs and Courses
- **section 12.10:** Minor Programs for students in the Faculty of Engineering

For regulations that are specific to undergraduate studies in the Faculty of Engineering, see [University Regulations and Resources (Undergraduate)](#) and watch for sections and notes that are specific to the Faculty of Engineering.

5.3 Administrative Officers

Dean

James Nicell; B.A.Sc., M.A.Sc., Ph.D.(Windsor), P.Eng.

Associate Deans

Benoit Boulet; B.Sc.(Laval), M.Eng.(McG.), Ph.D.(Toronto) (William Dawson Scholar) (Research and Innovation)

David L. Frost; B.A & Sc.(Br. Col.), M.S., Ph.D.(Calif. Tech.), P.Eng. (Student Affairs)

Fabrice Labeau; M.S., Ph.D.(Louvain) (Faculty Affairs)

Laurent Mydlarski; B.A.Sc.(Wat.), Ph.D.(Cornell), ing. (Academic Programs)

Department Chairs

Sylvain Coloumbe; B.Sc., M.Sc.A.(Sher.), Ph.D.(McG.), ing. (Chemical Engineering)

George P. Demopoulos; Dipl.Eng.(Nat. Tech., Athens), M.Sc., Ph.D.(McG.), ing. (Mining and Materials Engineering)

Andrew Kirk; B.Sc.(Brist.), Ph.D.(Lond.) (William Dawson Scholar) (Electrical and Computer Engineering)
Degrees and Requirements for Professional Registration

Non-Professional

Bachelor of Science (Architecture)

The first professional degree in architecture is the Master of Architecture (Professional). Further information can be found in Faculty of Engineering > Graduate.

Professional

Bachelor of Engineering

The B.Eng. programs are accredited by the Canadian Engineering Accreditation Board (CEAB) of Engineers Canada, with the sole exception of the new Bioengineering program (see note below). Our accredited programs fulfill the academic requirements for admission to the provincial engineering professional organizations. Engineers Canada has also negotiated agreements with engineering organizations in other countries to grant Canadian licensed engineers the same privileges accorded to professional engineers in those countries. For more information, visit the Engineers Canada website at www.engineerscanada.ca. All students are expected to seek professional registration after graduation.

To become a professional engineer in Canada, a graduate must pass an examination on legal aspects and on the principles of professional practice, and acquire two to four years of engineering experience, depending on the province. Only persons duly registered may use the title “engineer” and perform the professional activities reserved for engineers by provincial laws and regulations.

In Quebec, the professional engineering body is the Ordre des ingénieurs du Québec (OIQ). In order to better prepare new graduates for the practice of their profession, McGill organizes seminars in cooperation with the OIQ on various aspects of the profession. The OIQ also has a student section. As soon as you have accumulated 60 credits in a B.Eng. program, you can join the student section of the OIQ. Registration is free. For more information, visit the OIQ website at www.oiq.qc.ca.

Note Regarding the Accreditation Status of the B.Eng. Bioengineering Program: Accreditation for new undergraduate engineering programs in Canada can only be granted by CEAB after students have graduated from the program. Following normal procedures for the accreditation of new engineering programs, the B.Eng. Bioengineering program at McGill University will undergo a formal accreditation review and site visit during the
final year of study of its first cohort of students. For more information on the accreditation status of the Bioengineering program, please see the Department of Bioengineering website.

7 Admission Requirements

The Faculty of Engineering offers programs leading to the degrees of B.Eng. and B.Sc.(Arch.). Enrolment in Engineering programs is limited. For detailed information on admissions requirements, see the Undergraduate Admissions Guide at www.mcgill.ca/applying.

8 Student Progress

The length of the B.Eng. and B.Sc.(Arch.) programs varies depending on the program and basis of admission. You can find the curriculum for your program on the website of your department/school. See www.mcgill.ca/engineering/departments-schools-and-institutes for links to department/school websites.

You must successfully complete the B.Eng. or B.Sc.(Arch.) program within six years of entry. Candidates admitted to a lengthened program, or to a shortened program because of advanced standing, or who are participating in a work term or in the Engineering Internship Program (EIP), will have a correspondingly greater or lesser period in which to complete their program.

Extensions may be granted by the Committee on Standing in cases of serious medical problems or where other similarly uncontrollable factors have affected your progress.

9 Student Activities

The campus offers a wide variety of extracurricular activities for students. All are encouraged to participate. Many of these are organized within the Faculty under the auspices of the Engineering Undergraduate Society (EUS). EUS publishes a handbook describing their operations and the activities of various Faculty clubs and societies; you can also find these on their website (see below). All undergraduate students automatically become members of the EUS. Each department and school also has a student association.

- For more information about EUS and links to department/school student association websites, visit the EUS website at www.mcgilleus.ca.
- For more information on extra-curricular activities and organizations, see www.mcgill.ca/engineering/students/current-students/undergraduate/student-life.
- For more information on student design teams and projects, see mcgill.ca/engineering/students/current-students/undergraduate/student-life/design-teams-projects.

10 Degrees and Programs Offered

<table>
<thead>
<tr>
<th>Internship Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Internship Program</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-op Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Engineering (B.Eng.)</td>
</tr>
<tr>
<td>Mining Engineering (B.Eng.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture (B.Sc.(Arch.))</td>
</tr>
<tr>
<td>Bioengineering (B.Eng.)</td>
</tr>
<tr>
<td>Chemical Engineering (B.Eng.)</td>
</tr>
<tr>
<td>Civil Engineering (B.Eng.)</td>
</tr>
<tr>
<td>Computer Engineering (B.Eng.)</td>
</tr>
</tbody>
</table>

McGill University, Faculty of Engineering, including Peter Guo-hua Fu School of Architecture and School of Urban Planning, 2018-2019 (Published August 21, 2018)
Major Programs

- Electrical Engineering (B.Eng.)
- Mechanical Engineering (B.Eng.)
- Software Engineering (B.S.E.)

Honours Programs

- Electrical Engineering (B.Eng.)
- Mechanical Engineering (B.Eng.)

Minors

- Arts
- Biomedical Engineering
- Biotechnology
- Chemistry
- Computer Science
- Construction Engineering and Management
- Economics
- Environment
- Environmental Engineering
- Management Minors: Minor in Finance, Minor in Management, Minor in Marketing, Minor in Operations Management
- Materials Engineering
- Mathematics
- Mining Engineering
- Musical Science and Technology
- Nanotechnology
- Physics
- Software Engineering
- Technological Entrepreneurship

11 Engineering Internship Program

Employers value experience. Internships (four, eight, twelve, or sixteen months) allow you to gain professional work experience during the course of your undergraduate studies while earning a salary within the average range for entry-level professional positions. Other benefits include the following:

- Improved employment prospects upon graduation, often at a higher starting salary
- The opportunity to explore career options prior to graduation
- The opportunity to develop communication and technical skills and to acquire a business perspective that cannot be learned in school

An internship may begin in January, May, or September. Employers choose the most suitable students for their organization through an application and interview process. While employed by the participating companies, you work on assignments related to your field of study. Internships will be recognized on your transcript as one or more non-credit courses entitled “Industrial Practicum.” Successful completion of an internship of eight months or more qualifies you to graduate with the Internship Program designation on your transcript.

11.1 Student Eligibility

To participate in the Engineering Internship Program, you must:
• have a CGPA of 2.00 or higher;
• be in good financial standing with the University;
• obtain approval from the Engineering Career Centre before registering for or starting your internship;
• be registered full-time in your program before and after your internship;
• remain a degree candidate while on internship;
• return to complete your undergraduate degree at McGill, with a minimum of 12 credits remaining in your program after your internship (i.e., you are not allowed to complete your degree during your internship).

Internship students will receive an automatic extension for the completion of their studies.

International students are eligible (a few restrictions may apply).

For more information, see www.mcgill.ca/careers4engineers or send an email to careers4engineers@mcgill.ca.

Important Information:
• While on internship, you are expected to complete any deferrals you may have been granted, regardless of the location of the internship. If you do not write a deferred exam as scheduled, you will receive a final grade of J. The J grade will calculate as a failure in both the TGPA and CGPA.
• International students must ensure that their health coverage remains in force during their internship.
• During your time as an intern, you are not considered to be in full-time status. Your government loans will become due and payable within the prescribed grace period (usually six months).
• If you have a scholarship, please check with the administrator of the scholarship for information on eligibility (you will not be a full-time student during the internship).

12 Browse Academic Units & Programs

The programs and courses in the following sections have been approved for the 2018–2019 session as listed, but the Faculty reserves the right to introduce changes as may be deemed necessary or desirable.

12.1 Architecture

12.1.1 Location

Macdonald-Harrington Building, Room 201
815 Sherbrooke Street West
Montreal QC H3A 0C2
Telephone: 514-398-6700
Fax: 514-398-7372
Website: www.mcgill.ca/architecture

12.1.2 About the Peter Guo-hua Fu School of Architecture

Founded in 1896, the Peter Guo-hua Fu School of Architecture at McGill University offers professional programs, including B.Sc. (Arch.) and M.Arch. (Professional), and post-professional research programs, including M.Arch. (Post-professional) and Ph.D.

Vision
To advance professional architectural education that flourishes through research, critical practice, and community engagement.

Mission
The Peter Guo-hua Fu School of Architecture educates professionals who contribute to the global community through the design, construction, and interpretation of the built environment. The School:
• encourages a diverse environment for teaching, learning, and research, supported by both traditional and state-of-the-art digital resources;
• develops professional and post-professional research-based Masters and Ph.D. programs that enable graduates to contribute responsibly to the profession, to research, and to careers in related fields;
• enriches multidisciplinary teaching and research within the University and in connection with other local and international universities;
• engages citizens’ groups, local, provincial, and national governments, the private sector, and the profession toward the improvement of the built environment.
12.1.3 Architectural Certification in Canada

In Canada, all provincial/territorial associations/institutes/orders recommend a degree from an accredited professional degree program as a prerequisite for licensure. The Canadian Architectural Certification Board (CACB), which is the sole agency authorized to accredit Canadian professional degree programs in architecture, recognizes two types of accredited degrees: the Master of Architecture (M.Arch.), and the Bachelor of Architecture (B.Arch.). A program may be granted a two-year, three-year, or six-year term of accreditation, depending on its degree of conformance with established educational standards. Master's degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree, which, when earned sequentially, comprise an accredited professional education. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The M.Arch. (Professional) degree is accredited by the Canadian Architectural Certification Board (CACB), and is recognized as accredited by the National Council of Architectural Registration Boards (NCARB) in the United States.

12.1.4 Programs of Study

Students in the B.Sc.(Arch.) program who intend to proceed to the professional degree must satisfy certain minimum requirements. Students must:

• complete the B.Sc.(Arch.) degree, including the series of required and complementary courses stipulated for professional studies, with a minimum CGPA of 3.00;
• submit a portfolio of work executed in the sequence of six design studios, as well as samples of professional and personal work;
• complete the minimum period of relevant work experience according to the current Work Experience Guidelines (see www.mcgill.ca/architecture/programs/professional/workexperience).

Further information on the M.Arch. (Professional) program and application procedures is available at www.mcgill.ca/architecture.

12.1.4.1 Student Exchanges

A limited number of qualified students may participate in an exchange with schools of architecture at other universities that have agreements with the McGill School of Architecture, for a maximum of one term in the second year of the B.Sc.(Arch.) program. These include the following:

• Università Iuav di Venezia (Venice, Italy);
• Fakultät für Raumplanung und Architektur, Technische Universität Wien (Vienna, Austria);
• Université Catholique de Louvain (Louvain, Brussels, and Tournai, Belgium);
• Scuola di Architettura Civile Politecnico di Milano (Leonardo) (Milan, Italy);
• The Royal Danish Academy of Fine Arts, School of Architecture (Copenhagen, Denmark);
• College of Architecture and Urban Planning, Tongji University (Shanghai, China);

12.1.5 Ancillary Academic Facilities

Laboratories and Workshops

Facility for Architectural Research in Media Mediation (FARMM) – Professor Michael Jemtrud
Media Centre – Juan Osorio, Media Technician
Workshop Facilities – David Speller, Technician

Library

Blackader-Lauterman Library of Architecture and Art, located in the Redpath Library – David Greene, Liaison Librarian

Collections

Architecture Slide Library – Professor Annmarie Adams
The John Bland Canadian Architecture Collection, housed in the Blackader-Lauterman Library – Ann Marie Holland, Liaison Librarian
Orson Wheeler Architectural Model Collection – Professor Pieter Sijpkes

12.1.6 Architecture Faculty

Director

Martin Bressani
Graduate Program Directors

Robert Mellin (*Post-professional program*)

David Covo (*Professional program*)

Emeritus Professors

Bruce Anderson; B.Arch.(McG.), M.Arch.(Harv.), F.R.A.I.C., O.A.Q.

Derek Drummond; B.Arch.(McG.), F.R.A.I.C., O.A.Q., O.A.A. (*William C. Macdonald Emeritus Professor of Architecture*)

Adrian Sheppard; B.Arch.(McG.), M.Arch.(Yale), A.A.P.P.Q., F.R.A.I.C., O.A.Q.

Radoslav Zuk; B.Arch.(McG.), M.Arch.(MIT), D.Sc.(U.A.A.), F.R.A.I.C., O.A.Q., O.A.A.

Professors

Annmarie Adams; B.A.(McG.), M.Arch., Ph.D.(Calif., Berk.), M.R.A.I.C. (*Stevenson Chair in the History and Philosophy of Science*)

Martin Bressani; B.Sc.(Arch.), B.Arch.(McG.), M.Sc.(Arch.)(MIT), D.E.A., Docteur(Paris IV), O.A.Q. (*William C. Macdonald Professor of Architecture*)

Avi Friedman; B.Arch.(Technion), M.Arch.(McG.), Ph.D.(Montr.), O.A.Q., I.A.A.

Associate Professors

David Covo; B.Sc.(Arch.), B.Arch.(McG.), F.R.A.I.C., O.A.Q.

Nik Luka; B.A.A.(Ryerson), M.Arch.(Laval), Ph.D.(Tor.), M.C.I.P.

Robert Mellin; B.Arch., M.Sc.(Arch.)(Penn.), M.Arch.(McG.), M.Sc., Ph.D.(Penn.), F.R.A.I.C., N.A.A.

Assistant Professors

Salmaan Craig; B.Sc., Eng.D.(Brunel)

David Theodore; B.A., B.Sc.(Arch.), B.Arch., M.Arch.(McG.), Ph.D.(Harv.)

Ipek Türeli; B.Arch.(Istanbul), A.A.Dipl.(A.A.), Ph.D.(Calif., Berk.)

Theodora Vardouli; Dipl.Arch.Eng., M.Sc.(Athens), S.M.Arch.S.(MIT)

Clifford C. F. Wong Professor of Practice

Howard Davies

Professor of Practice

Peter Guo-hua Fu

Adjunct Professors

Julia Gersovitz, Andrew King, Conor Sampson

Course Lecturers

Vedanta Balbahadur, Erika Brandl-Mouton, Clothilde Caillé-Levesque, Morgan Carter, Ricardo L. Castro, Laurie Damme Gonneville, Tania Delage, Nancy Dunton, Scott Francisco, Fabrizio Gallanti, Marc Hallé, Edward Houle, Laurent Laframboise, Sybil McKenna, Hubert Pelletier, Marc-André Plourde, François Sabourin, Gilles Saucier, Pieter Sijpkes, Angela Silver

Visiting Critics and Guest Lecturers

Each year, visitors are involved in the teaching of certain courses as critics and lecturers. These visitors change from year to year. The following were visitors in 2017:

12.1.7 Bachelor of Science (B.Sc.) (Architecture) - Architecture (126 credits)

Program credit weight: 126 credits
Program credit weight for CEGEP students: 100 credits

McGill's professional program in Architecture is divided into two parts. The first part is an eight-term design-based program (six-term program for students entering with the Quebec Diploma of Collegial Studies in Pure and Applied Science or the equivalent) leading to a non-professional degree, Bachelor of Science (Architecture). Applicants whose background includes a university degree in an area not related to architecture should apply to the B.Sc.(Arch.) program. For detailed information about admission procedures and requirements, please see the Undergraduate Admissions Guide at http://www.mcgill.ca/applying.

The second part, for students with the McGill B.Sc.(Arch.) degree or equivalent non-professional undergraduate architecture degree, is either a three-term or a two-year program leading to the Master of Architecture (Professional) degree. There are two options for the completion of the M.Arch. (Professional) program: Design Studio (45 credits) and Design Studio-Directed Research (60 credits). The M.Arch. (Professional) degree is accredited by the Canadian Architectural Certification Board (CACB), and is recognized as accredited by the National Council of Architectural Registration Boards (NCARB) in the U.S.

For more information on program structure and courses, visit the School of Architecture website at http://www.mcgill.ca/architecture.

Required Year 0 (Freshman) Courses
26 credits

Generally, students admitted to the Architecture program from Quebec CEGEPs are granted transfer credit for the Year 0 (Freshman) courses and enter a 100-credit (six-term) program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

Required Non-Departmental Courses
13 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 284</td>
<td>4</td>
<td>Structural Engineering Basics</td>
</tr>
<tr>
<td>CIVE 385</td>
<td>3</td>
<td>Structural Steel and Timber Design</td>
</tr>
<tr>
<td>CIVE 388</td>
<td>3</td>
<td>Foundation and Concrete Design</td>
</tr>
<tr>
<td>FACC 220</td>
<td>3</td>
<td>Law for Architects and Engineers</td>
</tr>
</tbody>
</table>

Required Architectural Courses
75 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 201</td>
<td>6</td>
<td>Communication, Behaviour and Architecture</td>
</tr>
<tr>
<td>ARCH 202</td>
<td>6</td>
<td>Architectural Graphics and Elements of Design</td>
</tr>
<tr>
<td>ARCH 221</td>
<td>2</td>
<td>Architectural Drawing</td>
</tr>
<tr>
<td>ARCH 240</td>
<td>3</td>
<td>Organization of Materials in Buildings</td>
</tr>
<tr>
<td>Code</td>
<td>Credits</td>
<td>Course Name</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>ARCH 241</td>
<td>(3)</td>
<td>Architectural Structures</td>
</tr>
<tr>
<td>ARCH 250</td>
<td>(3)</td>
<td>Architectural History 1</td>
</tr>
<tr>
<td>ARCH 251</td>
<td>(3)</td>
<td>Architectural History 2</td>
</tr>
<tr>
<td>ARCH 303</td>
<td>(6)</td>
<td>Design and Construction 1</td>
</tr>
<tr>
<td>ARCH 304</td>
<td>(6)</td>
<td>Design and Construction 2</td>
</tr>
<tr>
<td>ARCH 325</td>
<td>(2)</td>
<td>Architectural Sketching</td>
</tr>
<tr>
<td>ARCH 342</td>
<td>(3)</td>
<td>Digital Representation</td>
</tr>
<tr>
<td>ARCH 354</td>
<td>(3)</td>
<td>Architectural History 3</td>
</tr>
<tr>
<td>ARCH 355</td>
<td>(3)</td>
<td>Architectural History 4</td>
</tr>
<tr>
<td>ARCH 375</td>
<td>(2)</td>
<td>Landscape</td>
</tr>
<tr>
<td>ARCH 377</td>
<td>(3)</td>
<td>Energy, Environment and Buildings</td>
</tr>
<tr>
<td>ARCH 405</td>
<td>(6)</td>
<td>Design and Construction 3</td>
</tr>
<tr>
<td>ARCH 406</td>
<td>(6)</td>
<td>Design and Construction 4</td>
</tr>
<tr>
<td>ARCH 445</td>
<td>(2)</td>
<td>Structural Systems</td>
</tr>
<tr>
<td>ARCH 447</td>
<td>(2)</td>
<td>Lighting</td>
</tr>
<tr>
<td>ARCH 451</td>
<td>(2)</td>
<td>Building Regulations and Safety</td>
</tr>
<tr>
<td>ARCH 512</td>
<td>(3)</td>
<td>Architectural Modelling</td>
</tr>
</tbody>
</table>

Complementary Courses

6 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 378</td>
<td>(3)</td>
<td>Site Usage</td>
</tr>
<tr>
<td>ARCH 379</td>
<td>(3)</td>
<td>Summer Course Abroad</td>
</tr>
<tr>
<td>ARCH 383</td>
<td>(3)</td>
<td>Geometry and Architecture</td>
</tr>
<tr>
<td>ARCH 461</td>
<td>(1)</td>
<td>Freehand Drawing and Sketching</td>
</tr>
<tr>
<td>ARCH 490</td>
<td>(2)</td>
<td>Selected Topics in Design</td>
</tr>
<tr>
<td>ARCH 514</td>
<td>(4)</td>
<td>Community Design Workshop</td>
</tr>
<tr>
<td>ARCH 515</td>
<td>(3)</td>
<td>Sustainable Design</td>
</tr>
<tr>
<td>ARCH 517</td>
<td>(3)</td>
<td>Sustainable Residential Development</td>
</tr>
<tr>
<td>ARCH 520</td>
<td>(3)</td>
<td>Montreal: Urban Morphology</td>
</tr>
<tr>
<td>ARCH 521</td>
<td>(3)</td>
<td>Structure of Cities</td>
</tr>
<tr>
<td>ARCH 523</td>
<td>(3)</td>
<td>Significant Texts and Buildings</td>
</tr>
<tr>
<td>ARCH 525</td>
<td>(3)</td>
<td>Seminar on Analysis and Theory</td>
</tr>
<tr>
<td>ARCH 526</td>
<td>(3)</td>
<td>Philosophy of Structure</td>
</tr>
<tr>
<td>ARCH 527</td>
<td>(3)</td>
<td>Civic Design</td>
</tr>
<tr>
<td>ARCH 528</td>
<td>(3)</td>
<td>History of Housing</td>
</tr>
<tr>
<td>ARCH 529</td>
<td>(3)</td>
<td>Housing Theory</td>
</tr>
<tr>
<td>ARCH 531</td>
<td>(3)</td>
<td>Architectural Intentions Vitruvius - Renaissance</td>
</tr>
<tr>
<td>ARCH 532</td>
<td>(3)</td>
<td>Origins of Modern Architecture</td>
</tr>
<tr>
<td>ARCH 533</td>
<td>(3)</td>
<td>New Approaches to Architectural History</td>
</tr>
<tr>
<td>ARCH 535</td>
<td>(3)</td>
<td>History of Architecture in Canada</td>
</tr>
<tr>
<td>ARCH 536</td>
<td>(3)</td>
<td>Heritage Conservation</td>
</tr>
<tr>
<td>ARCH 540</td>
<td>(3)</td>
<td>Selected Topics in Architecture 1</td>
</tr>
<tr>
<td>ARCH 541</td>
<td>(3)</td>
<td>Selected Topics in Architecture 2</td>
</tr>
</tbody>
</table>
Design for Development (ARCH 564) (3)
Cultural Landscapes Seminar (ARCH 566) (3)
Environments for the Disabled (OCC1 442) (2)

Electives

6 credits of elective courses outside the School of Architecture must be completed, subject to approval by the Student Adviser.

12.2 Bioengineering

12.2.1 Location

McConnell Engineering Building
Room 350
3480 University Street
Montreal QC H3A 0E9
Telephone: 514-398-7254
Fax: 514-398-7379
Email: studentaffairs.bioeng@mcgill.ca
Website: www.mcgill.ca/bioengineering

12.2.2 About the Department of Bioengineering

The Department of Bioengineering, established in 2012, is the newest academic unit in McGill University’s renowned Faculty of Engineering. In Fall 2016, the Department launched a full-time undergraduate program, admitting its first cohort of students. The program is designed to provide students with fundamental knowledge in natural sciences, engineering, and mathematics, as they relate to the field of bioengineering. Those pursuing an undergraduate degree in Bioengineering may select courses in one of the following three streams:

- Biological materials and mechanics
- Biomolecular and cellular engineering
- Biomedical, diagnostics, and high throughput screening engineering

12.2.3 Bioengineering Faculty

Chair
Dan V. Nicolau

Professors
Amine Kamen; Ph.D.(Mines ParisTech), Ph.D.(École Poly., Montr.)
Sebastian Wachsmann-Hogiu; Dipl.(Poly. Univ. Bucharest), Ph.D.(Humboldt)

Associate Professors
Georgios Mitsis; Dipl.(Nat. Tech., Athens), M.S.(Elect. Eng.), M.S.(Biomed. Eng.), Ph.D.(USC)
Yu (Brandon) Xia; B.Sc.(Peking), Ph.D.(Stan.)

Assistant Professors
Allen Ehrlicher; B.Sc., B.A.(Texas-Austin), M.Sc., Ph.D.(Leipzig)
Adam Hendricks; B.S., M.S.(Virg. Poly. Inst. & State Univ.), Ph.D.(Mich.)
J. Matt Kinsella; B.Sc.(SXU, Chicago), M.S., Ph.D.(Purd.)
Sara Mahshid; B.Sc.(IUST, Tehran), M.Sc., Ph.D.(SUT, Tehran)
12.2.4 Bachelor of Engineering (B.Eng.) - Bioengineering (142 credits)

Revision, May 2018. Start of revision.

Program credit weight: 142-152 credits
Program credit weight for Quebec CEGEP students: 122-123 credits
Program credit weight for out-of-province students: 142-143 credits

The B.Eng.; Major in Bioengineering will 1) provide students with the ability to apply systematic knowledge of biology, physical sciences and mathematics; and sound engineering foundations in order to solve problems of a biological nature; and 2) prepare students for the broad area of bioengineering, incorporating both biology-focused biological engineering and medicine-focused biomedical engineering.

Students will acquire fundamental knowledge in bioengineering-related natural sciences and mathematics, as well as in the foundations of general engineering and bioengineering. Students will also acquire knowledge in one area of specialization of bioengineering: 1) biological materials and biomechanics; 2) biomolecular and cellular engineering; or 3) biomedical, diagnostic and high throughput screening engineering.

Required Year 0 (Freshman) Courses

29 credits

 Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credits for Year 0 (Freshman) courses, except BIOL 112, and enter a 121-122-credit program. Students from Quebec CEGEPs who have successfully completed a course at CEGEP that is equivalent to BIOL 112 may obtain transfer credits for this course by passing the McGill Science Placement Exam for BIOL 112. For information on transfer credit for French Baccalaureate, International Baccalaureate exams, Advanced Placement exams, Advanced Levels and Science Placement Exams, see www.mcgill.ca/engineering/student/sao/newstudents and select your term of admission.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 112</td>
<td>3</td>
<td>Cell and Molecular Biology</td>
</tr>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

44 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 212</td>
<td>3</td>
<td>Molecular Mechanisms of Cell Function</td>
</tr>
<tr>
<td>BIOL 200</td>
<td>3</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BREE 301</td>
<td>3</td>
<td>Biothermodynamics</td>
</tr>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CHEE 310</td>
<td>3</td>
<td>Physical Chemistry for Engineers</td>
</tr>
<tr>
<td>CHEM 212**</td>
<td>4</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
<tr>
<td>CIVE 281</td>
<td>3</td>
<td>Analytical Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>0</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>3</td>
<td>Advanced Calculus for Engineers</td>
</tr>
</tbody>
</table>
MECH 210 (2) Mechanics 1
PHYS 319 (3) Introduction to Biophysics

* Note FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

** Students from a CEGEP background who have completed a CEGEP course equivalent to CHEM 212 may obtain transfer credits for this course by passing the McGill Placement Exam before the start of their first term. For information on Science Placement Exams, see www.mcgill.ca/students/exams/dates/science. CEGEP students who do not successfully complete the CHEM 212 Placement Exam must take CHEM 212 at McGill, as outlined in the program requirements.

Required Bioengineering Courses
27 credits

BIEN 200 (2) Introduction to Bioengineering
BIEN 210 (3) Electrical and Optical Properties of Biological Systems
BIEN 290 (4) Bioengineering Measurement Laboratory
BIEN 340 (3) Transport Processes in Biological Systems
BIEN 350 (4) Biosignals, Systems and Control
BIEN 390 (3) Bioengineering Laboratory
BIEN 470D1 (3) Bioengineering Design Project
BIEN 470D2 (3) Bioengineering Design Project
BIEN 471 (2) Bioengineering Research Project

Complementary Courses
42-43 credits

Bioengineering Complementary Courses
33-34 credits

Starting in the third year (second year for CEGEP students) (Year 2), students will need to take 33-34 credits of courses to upgrade their general knowledge of Bioengineering. Students are required to choose all courses in one of the three streams of bioengineering knowledge and practice: 1) Biological Materials and Mechanics (34 credits); 2) Biomolecular and Cellular Engineering (33 credits); or 3) Biomedical, Diagnostics, and High Throughput Screening Engineering (33 credits).

Stream 1: Biological Materials and Mechanics (34 credits)

BIEN 320 (3) Molecular, Cellular and Tissue Biomechanics
BIEN 330 (3) Tissue Engineering and Regenerative Medicine
BIEN 462 (3) Engineering Principles in Physiological Systems
BIEN 510 (3) Engineered Nanomaterials for Biomedical Applications
BIEN 570 (3) Active Mechanics in Biology
CHEE 314 (3) Fluid Mechanics
CHEE 563* (3) Biofluids and Cardiovascular Mechanics
CIVE 207 (4) Solid Mechanics
MECH 547 (3) Mechanics of Biological Materials
MIME 261 (3) Structure of Materials
MIME 470 (3) Engineering Biomaterials

* Note: Students may choose only one of CHEE 563 and MECH 563 Biofluids and Cardiovascular Mechanics

Stream 2: Biomolecular and Cellular Engineering (33 credits)

BIEN 310 (3) Introduction to Biomolecular Engineering
BIEN 320 (3) Molecular, Cellular and Tissue Biomechanics
BIEN 330 (3) Tissue Engineering and Regenerative Medicine
BIEN 410 (3) Computational Methods in Biomolecular Engineering
BIEN 510 (3) Engineered Nanomaterials for Biomedical Applications
BIEN 520 (3) High Throughput Bioanalytical Devices
BIEN 550 (3) Biomolecular Devices
BIEN 570 (3) Active Mechanics in Biology
BIEN 590 (3) Cell Culture Engineering
CHEE 370 (3) Elements of Biotechnology
PHYS 534 (3) Nanoscience and Nanotechnology

Stream 3: Biomedical, Diagnostics and High Throughput Screening Engineering (33 credits)
BIEN 310 (3) Introduction to Biomolecular Engineering
BIEN 410 (3) Computational Methods in Biomolecular Engineering
BIEN 462 (3) Engineering Principles in Physiological Systems
BIEN 520 (3) High Throughput Bioanalytical Devices
BIEN 530 (3) Imaging and Bioanalytical Instrumentation
BIEN 560 (3) Biosensors
CHEE 314 (3) Fluid Mechanics
CHEM 267 (3) Introductory Chemical Analysis
CHEM 367 (3) Instrumental Analysis 1
ECSE 415 (3) Intro to Computer Vision
PHYS 534 (3) Nanoscience and Nanotechnology

Complementary Studies
9 credits

Group A - Impact of Technology on Society
3 credits from the following:

ANTH 212 (3) Anthropology of Development
CIVE 469 (3) Infrastructure and Society
ECON 225 (3) Economics of the Environment
ECON 347 (3) Economics of Climate Change
ENVR 201 (3) Society, Environment and Sustainability
GEOG 200 (3) Geographical Perspectives: World Environmental Problems
GEOG 203 (3) Environmental Systems
GEOG 205 (3) Global Change: Past, Present and Future
GEOG 302 (3) Environmental Management 1
MGPO 440* (3) Strategies for Sustainability
PHIL 343 (3) Biomedical Ethics
RELG 270 (3) Religious Ethics and the Environment
SOCI 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City
* Note: Management courses have limited enrolment and registration dates. See Important Dates at www.mcgill.ca/importantdates.

Group B - Humanities and Social Science, Management Studies and Law

Generally, students admitted to Engineering from Quebec CEGEP's are granted transfer credits for 3 credits (one course) from the Complementary Studies Group B list.

6 credits of courses at the 200-level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew)**
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR from the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 528</td>
<td>3</td>
<td>History of Housing</td>
</tr>
<tr>
<td>BUSA 465*</td>
<td>3</td>
<td>Technological Entrepreneurship</td>
</tr>
<tr>
<td>CLAS 203</td>
<td>3</td>
<td>Greek Mythology</td>
</tr>
<tr>
<td>ENVR 203</td>
<td>3</td>
<td>Knowledge, Ethics and Environment</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>3</td>
<td>Environmental Thought</td>
</tr>
<tr>
<td>FACC 220</td>
<td>3</td>
<td>Law for Architects and Engineers</td>
</tr>
<tr>
<td>FACC 500</td>
<td>3</td>
<td>Technology Business Plan Design</td>
</tr>
<tr>
<td>FACC 501</td>
<td>3</td>
<td>Technology Business Plan Project</td>
</tr>
<tr>
<td>HISP 225</td>
<td>3</td>
<td>Hispanic Civilization 1</td>
</tr>
<tr>
<td>HISP 226</td>
<td>3</td>
<td>Hispanic Civilization 2</td>
</tr>
<tr>
<td>INDR 294*</td>
<td>3</td>
<td>Introduction to Labour-Management Relations</td>
</tr>
<tr>
<td>INTG 201**</td>
<td>3</td>
<td>Integrated Management Essentials 1</td>
</tr>
<tr>
<td>INTG 202**</td>
<td>3</td>
<td>Integrated Management Essentials 2</td>
</tr>
<tr>
<td>MATH 338</td>
<td>3</td>
<td>History and Philosophy of Mathematics</td>
</tr>
<tr>
<td>MGCR 222*</td>
<td>3</td>
<td>Introduction to Organizational Behaviour</td>
</tr>
<tr>
<td>MGCR 352*</td>
<td>3</td>
<td>Principles of Marketing</td>
</tr>
<tr>
<td>ORGB 321*</td>
<td>3</td>
<td>Leadership</td>
</tr>
<tr>
<td>ORGB 423*</td>
<td>3</td>
<td>Human Resources Management</td>
</tr>
</tbody>
</table>

* Note: Management courses have limited enrolment and registration dates. See Important Dates: www.mcgill.ca/importantdates.

** INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

Elective Courses

0-9 credits

Students from Quebec CEGEPs must take 9 credits of elective courses. These can be chosen from any course at the 200-level or higher offered by the University, subject to permission of the offering department.
12.3 Chemical Engineering

12.3.1 Location

M.H. Wong Building, Room 3060
3610 University Street
Montreal QC H3A 0C5
Telephone: 514-398-4494
Fax: 514-398-6678
Email: ugrad.chemeng@mcgill.ca
Website: www.mcgill.ca/chemeng

12.3.2 About the Department of Chemical Engineering

The central purpose of engineering is to pursue solutions to technological problems in order to satisfy the needs and desires of society. Chemical engineers are trained to solve the kinds of problems that are typically found in the “chemical process industries,” which include:

- chemical manufacturing;
- plastics;
- water treatment;
- pulp and paper;
- petroleum refining;
- ceramics; and
- paint industries;

as well as substantial portions of the:

- food processing;
- textile;
- nuclear energy;
- alternative energy;
- biochemical;
- biomedical; and
- pharmaceutical industries.

The technological problems and opportunities in these industries are often closely linked to social, economic, and environmental concerns. For this reason, chemical engineers often deal with these questions while working in management, pollution abatement, product development, marketing, and equipment design.

By means of complementary courses, students can also obtain further depth in technical areas and breadth in non-technical subjects. Some students elect to complete a minor in biotechnology, nanotechnology, management, materials engineering, computer science, environmental engineering, chemistry, or another minor (see section 12.10: Minor Programs for minors available to engineering students).

The solution to many environmental problems requires an understanding of technological principles; a Chemical Engineering degree provides an ideal background. In addition to relevant material learned in the core program, a selection of environmental complementary courses and minor programs is available. The involvement of many Chemical Engineering faculty members in environmental research provides the opportunity for undergraduate students to carry out research projects in this area.

The B.Eng. curriculum also provides the preparation necessary to undertake postgraduate studies leading to the M.Eng. or Ph.D. degrees in Chemical Engineering. Students completing this curriculum acquire a broad, balanced education in the natural sciences with the accent on application. Thus, for those who do not continue in Chemical Engineering, it provides an exceptionally balanced education in applied science. For others, it will form the basis of an educational program that may continue with a variety of studies such as business administration, medicine, or law. Versatility is, therefore, one of the most valuable characteristics of Chemical Engineering program graduates.

12.3.3 Academic Programs

The Chemical Engineering program comprises 143 credits (117 credits for those who completed the Quebec CEGEP program in Pure and Applied Sciences).
Students must obtain a grade of C or better in all core courses. For the Department of Chemical Engineering, core courses include all required courses (departmental and non-departmental) as well as technical complementary courses.

12.3.4 Canadian Society for Chemical Engineering

The Chemical Engineering Student Society has for many years been affiliated with both the CSChE (Canadian Society for Chemical Engineering) and with the AIChE (American Institute of Chemical Engineers). For a nominal fee, students receive Canadian Chemical News, a monthly publication, and the AIChE Student Members Bulletin, as well as other privileges of student membership in the two societies. The student chapter also organizes a series of local social, educational, and sporting events. Recent events have included student-professor banquets and Christmas parties, dances, speakers, broomball games, and joint meetings with the Montreal Section of the CSChE, which gives students a chance to mix with practising chemical engineers.

12.3.5 Chemical Engineering Faculty

<table>
<thead>
<tr>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvain Coulombe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emeritus Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>David G. Cooper; B.Sc., Ph.D.(Tor.)</td>
</tr>
<tr>
<td>John M. Dealy; B.S.(Kansas), M.S.E., Ph.D.(Mich.), Eng.</td>
</tr>
<tr>
<td>Musa R. Kamal; B.S.(Ill.), M.S., Ph.D.(Carn. Mell), Eng.</td>
</tr>
<tr>
<td>Richard J. Munz; B.A.Sc.(Wat.), Ph.D.(McG.), Eng.</td>
</tr>
<tr>
<td>W.J. Murray Douglas; B.Sc.(Qu.), M.S.E., Ph.D.(Mich.)</td>
</tr>
<tr>
<td>Juan H. Vera; Ing.Quiin.(UTE, Chile), M.Sc.(Calif., Berk.), Dr.Ing.(USM, Chile)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvain Coulombe; B.Sc., M.Sc.A.(Sher.), Ph.D.(McG.), eng. (Gerald Hatch Faculty Fellow)</td>
</tr>
<tr>
<td>Jean-Luc Meunier; Dipl.Ing.(EPFL), M.Sc., Ph.D.(INRS, Queb.), ing.</td>
</tr>
<tr>
<td>Sasha Omanovic; Dipl.Eng., Dr.Sc.(Zagreb), P.Eng.</td>
</tr>
<tr>
<td>Alejandro D. Rey; B.Ch.E.(CCNY), Ph.D.(Calif.), F.R.S.C. (James McGill Professor)</td>
</tr>
<tr>
<td>Nathalie Tufenkji; B.Eng.(McG.), M.Sc., Ph.D.(Yale), ing. (CRC-Tier I)</td>
</tr>
<tr>
<td>Viviane Yargeau; B.Ch.E., M.Sc.A., Ph.D.(Sher.), ing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associate Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimitrios Berk; B.Sc.(Bosphorus), M.E.Sc.(W. Ont.), Ph.D.(Calg.), P.Eng.</td>
</tr>
<tr>
<td>P.-Luc Girard-Lauriault; B.Sc.(Montr.), Ph.D.(École Poly., Montr.)</td>
</tr>
<tr>
<td>Reghan James Hill; B.E.(Auck.), Ph.D.(Cornell)</td>
</tr>
<tr>
<td>Anne-Marie Kietzig; Dipl.Ing.(TU Berlin), Ph.D.(Br. Col.), ing.</td>
</tr>
<tr>
<td>Richard L. Leask; B.A.Sc., M.A.Sc.(Wat.), Ph.D.(Tor.), P.Eng.</td>
</tr>
<tr>
<td>Phillip Servio; B.A.Sc., Ph.D.(Br. Col.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assistant Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noémie Dorval Courchesne; B.Sc., B.A. & Sc.(Ott.), Ph.D.(MIT)</td>
</tr>
<tr>
<td>Corinne Hoesli; B.Sc., B.A.Sc.(Ott.), Ph.D.(Br. Col.), ing.</td>
</tr>
<tr>
<td>Jan Kopyscinski; Dipl.Ing.(BTU Cottbus), Dr.Sc.(ETH Zurich)</td>
</tr>
<tr>
<td>Christopher Moraes; B.A.Sc., Ph.D.(Tor.)</td>
</tr>
</tbody>
</table>

12.3.6 Bachelor of Engineering (B.Eng.) - Chemical Engineering (143 credits)

Program credit weight: 143-146 credits
Program credit weight for Quebec CEGEP students: 117 credits
Program credit weight for out-of-province students: 143 credits

The discipline of chemical engineering is distinctive in being based equally on physics, mathematics, and chemistry. Application of these three fundamental sciences is basic to a quantitative understanding of the process industries. Those with an interest in the fourth fundamental science, biology, will find several courses in the chemical engineering curriculum that integrate aspects of the biological sciences relevant to process industries such as food processing, fermentation, biomedical, and water pollution control. Courses on the technical operations and economics of the process industries are added to this foundation. The core curriculum concludes with process design courses taught by practising design engineers. Problem-solving, experimenting, planning, and communication skills are emphasized in courses throughout the core curriculum.

Certain students who take advantage of Summer session courses can complete the departmental program in three calendar years.

In some cases, students from university science disciplines have sufficient credits to complete the requirements for the B.Eng. (Chemical) program in two and a half years. Those concerned should discuss this with their adviser.

Students must obtain a grade of C or better in all core courses. For the Department of Chemical Engineering, core courses include all required courses (departmental and non-departmental) as well as technical complementary courses.

Note to CEGEP students

If you have successfully completed a course at CEGEP that is equivalent to CHEM 212 or CHEM 234, you may obtain transfer credits for either or both courses by passing the McGill Science Placement Exam for the course(s). You must complete an application form available on the Science Placement Exam website and an application fee will be charged to your student account. Science placement exams take place in August and September before classes begin. If you pass the exam(s), transfer credits for the course(s) will be reflected on your transcript and your program credit requirements will be decreased to reflect these transfer credits. For information on Science Placement Exams, including application deadlines, the application form, application fee, dates, times, and location of the exams, see http://www.mcgill.ca/students/exams/dates/science. If you do not pass the placement exams, you must register for CHEM 212 and CHEM 234 during your studies at McGill as outlined in your program requirements.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 116-credit program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>(4)</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>(4)</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>(3)</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>(3)</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>(4)</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>(4)</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>(4)</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

24 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 212</td>
<td>(4)</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
<tr>
<td>CHEM 234</td>
<td>(3)</td>
<td>Topics in Organic Chemistry</td>
</tr>
<tr>
<td>COMP 208</td>
<td>(3)</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>(1)</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>(0)</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>(3)</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>(1)</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>(3)</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>(3)</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>(3)</td>
<td>Advanced Calculus for Engineers</td>
</tr>
</tbody>
</table>
* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Chemical Engineering Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 200</td>
<td>Chemical Engineering Principles 1</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 204</td>
<td>Chemical Engineering Principles 2</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 220</td>
<td>Chemical Engineering Thermodynamics</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 231</td>
<td>Data Analysis and Design of Experiments</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 291</td>
<td>Instrumentation and Measurement 1</td>
<td>(4)</td>
</tr>
<tr>
<td>CHEE 310</td>
<td>Physical Chemistry for Engineers</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 314</td>
<td>Fluid Mechanics</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 315</td>
<td>Heat and Mass Transfer</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 351</td>
<td>Separation Processes</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 360</td>
<td>Technical Paper</td>
<td>(1)</td>
</tr>
<tr>
<td>CHEE 370</td>
<td>Elements of Biotechnology</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 380</td>
<td>Materials Science</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 390</td>
<td>Computational Methods in Chemical Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 400</td>
<td>Principles of Energy Conversion</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 401</td>
<td>Energy Systems Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 423</td>
<td>Chemical Reaction Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 440</td>
<td>Process Modelling</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 453</td>
<td>Process Design</td>
<td>(4)</td>
</tr>
<tr>
<td>CHEE 455</td>
<td>Process Control</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 456</td>
<td>Design Project 1</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 457</td>
<td>Design Project 2</td>
<td>(5)</td>
</tr>
<tr>
<td>CHEE 474</td>
<td>Biochemical Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 484</td>
<td>Materials Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 491</td>
<td>Instrumentation and Measurement 2</td>
<td>(4)</td>
</tr>
</tbody>
</table>

Technical Complementaries

9 credits

The purpose of this requirement is to provide students with an area of specialization within the broad field of chemical engineering. Alternatively, students use the technical complementaries to increase the breadth of their chemical engineering training.

List A

3-9 credits from the following:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 301</td>
<td>Resource Recovery from Waste</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 452</td>
<td>Particulate Systems</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 510</td>
<td>Advanced Separation Processes</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 511</td>
<td>Catalysis for Sustainable Fuels and Chemicals</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 515+</td>
<td>Material Surfaces: A Biomimetic Approach</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 521+</td>
<td>Nanomaterials and the Aquatic Environment</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 541</td>
<td>Electrochemical Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 543</td>
<td>Plasma Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>CHEE 561</td>
<td>Introduction to Soft Tissue Biophysics</td>
<td>(3)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>CHEE 563+</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>CHEE 571</td>
<td>3</td>
<td>Small Computer Applications: Chemical Engineering</td>
</tr>
<tr>
<td>CHEE 582</td>
<td>3</td>
<td>Polymer Science & Engineering</td>
</tr>
<tr>
<td>CHEE 584</td>
<td>3</td>
<td>Polymer Processing</td>
</tr>
<tr>
<td>CHEE 585</td>
<td>3</td>
<td>Foundations of Soft Matter</td>
</tr>
<tr>
<td>CHEE 587</td>
<td>3</td>
<td>Chemical Processing: Electronics Industry</td>
</tr>
<tr>
<td>CHEE 591</td>
<td>3</td>
<td>Environmental Bioremediation</td>
</tr>
<tr>
<td>CHEE 593+</td>
<td>3</td>
<td>Industrial Water Pollution Control</td>
</tr>
<tr>
<td>CIVE 430+</td>
<td>3</td>
<td>Water Treatment and Pollution Control</td>
</tr>
<tr>
<td>CIVE 521+</td>
<td>3</td>
<td>Nanomaterials and the Aquatic Environment</td>
</tr>
<tr>
<td>MECH 534+</td>
<td>3</td>
<td>Air Pollution Engineering</td>
</tr>
<tr>
<td>MECH 563+</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>MIME 515+</td>
<td>3</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
</tbody>
</table>

* Students may choose only one course in each of the following sets:
 - CHEE 515 or MIME 515
 - CHEE 521 or CIVE 521
 - CHEE 563 or MECH 563
 - CHEE 593 or CIVE 430

List B

0-6 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 320</td>
<td>3</td>
<td>Molecular, Cellular and Tissue Biomechanics</td>
</tr>
<tr>
<td>BIEN 330</td>
<td>3</td>
<td>Tissue Engineering and Regenerative Medicine</td>
</tr>
<tr>
<td>BIEN 340</td>
<td>3</td>
<td>Transport Processes in Biological Systems</td>
</tr>
<tr>
<td>BIEN 350</td>
<td>3</td>
<td>Biosignals, Systems and Control</td>
</tr>
<tr>
<td>BIEN 462</td>
<td>3</td>
<td>Engineering Principles in Physiological Systems</td>
</tr>
<tr>
<td>BIEN 510</td>
<td>3</td>
<td>Engineered Nanomaterials for Biomedical Applications</td>
</tr>
<tr>
<td>BIEN 520</td>
<td>3</td>
<td>High Throughput Bioanalytical Devices</td>
</tr>
<tr>
<td>BIEN 550</td>
<td>3</td>
<td>Biomolecular Devices</td>
</tr>
<tr>
<td>BIEN 570</td>
<td>3</td>
<td>Active Mechanics in Biology</td>
</tr>
<tr>
<td>BIOT 505*</td>
<td>3</td>
<td>Selected Topics in Biotechnology</td>
</tr>
<tr>
<td>BREE 325</td>
<td>3</td>
<td>Food Process Engineering</td>
</tr>
<tr>
<td>BREE 522</td>
<td>3</td>
<td>Bio-Based Polymers</td>
</tr>
<tr>
<td>CHEE 363**</td>
<td>2</td>
<td>Projects Chemical Engineering 1</td>
</tr>
<tr>
<td>CHEE 494**</td>
<td>3</td>
<td>Research Project and Seminar 1</td>
</tr>
<tr>
<td>CHEE 495**</td>
<td>4</td>
<td>Research Project and Seminar 2</td>
</tr>
<tr>
<td>CHEE 496**</td>
<td>3</td>
<td>Environmental Research Project</td>
</tr>
<tr>
<td>CIVE 557</td>
<td>3</td>
<td>Microbiology for Environmental Engineering</td>
</tr>
<tr>
<td>MIME 470</td>
<td>3</td>
<td>Engineering Biomaterials</td>
</tr>
<tr>
<td>MIME 558</td>
<td>3</td>
<td>Engineering Nanomaterials</td>
</tr>
</tbody>
</table>

* BIOT 505 can only be chosen by students taking the Minor in Biotechnology.
** Students may choose only one project course: CHEE 363, CHEE 494, CHEE 495, or CHEE 496.
List C
0-3 credits
The remaining credits, up to a maximum of 3 credits, may be taken from other suitable undergraduate courses in the Faculty of Engineering, with departmental permission.

Complementary Studies

6 credits (9 credits for students from Quebec CEGEPs)

Group A - Impact of Technology on Society

3 credits from the following:

- ANTH 212 (3) Anthropology of Development
- BTEC 502 (3) Biotechnology Ethics and Society
- CIVE 469 (3) Infrastructure and Society
- ECON 225 (3) Economics of the Environment
- ECON 347 (3) Economics of Climate Change
- ENVR 201 (3) Society, Environment and Sustainability
- GEOG 200 (3) Geographical Perspectives: World Environmental Problems
- GEOG 203 (3) Environmental Systems
- GEOG 205 (3) Global Change: Past, Present and Future
- GEOG 302 (3) Environmental Management 1
- MGPO 440* (3) Strategies for Sustainability
- PHIL 343 (3) Biomedical Ethics
- RELG 270 (3) Religious Ethics and the Environment
- SOCI 235 (3) Technology and Society
- SOCI 312 (3) Sociology of Work and Industry
- URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies and Law

3 credits (6 credits for students from Quebec CEGEPs) at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR 3 credits from the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- CLAS 203 (3) Greek Mythology
- ENVR 203 (3) Knowledge, Ethics and Environment

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies and Law

3 credits (6 credits for students from Quebec CEGEPs) at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR 3 credits from the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- CLAS 203 (3) Greek Mythology
- ENVR 203 (3) Knowledge, Ethics and Environment

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.
Environmental Thought (3) ENVR 400
Law for Architects and Engineers (3) FACC 220
Technology Business Plan Design (3) FACC 500
Technology Business Plan Project (3) FACC 501
Hispanic Civilization 1 (3) HISP 225
Hispanic Civilization 2 (3) HISP 226
Introduction to Labour-Management Relations (3) INDR 294*
Integrated Management Essentials 1 (3) INTG 201**
Integrated Management Essentials 2 (3) INTG 202**
History and Philosophy of Mathematics (3) MATH 338
Introduction to Organizational Behaviour (3) MGCR 222*
Principles of Marketing (3) MGCR 352*
Leadership (3) ORGB 321*
Human Resources Management (3) ORGB 423*

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

12.3.6.1 More about B.Eng. Degree in Chemical Engineering

Courses CHEE 582 and CHEE 584 comprise a Polymeric Materials course sequence, while courses CHEE 380 and CHEE 484 present fundamental aspects of materials science and engineering, respectively. Additional courses in the polymer materials area are available in the Chemistry Department (e.g., CHEM 574). The Department has considerable expertise in the polymer area.

Courses CHEE 370 and CHEE 474 make up a sequence in Biochemical Engineering and Biotechnology. Students interested in this area may take additional courses, particularly those offered by the section 12.2: Bioengineering (Faculty of Engineering); by the Department of Food Science and Agricultural Chemistry (Faculty of Agricultural and Environmental Sciences); and courses in biochemistry and microbiology. The food, beverage, and pharmaceutical industries are large industries in the Montreal area, and these courses are relevant to these industries and to the new high-technology applications of biotechnology.

A third sequence of courses is offered in Energy, comprising CHEE 400 Principles of Energy Conversion and CHEE 401 Energy Systems Engineering. Additional courses that offer topics related to energy are CHEE 511 Catalysis for Sustainable Fuels and Chemicals and CHEE 541 Electrochemical Engineering.

The fourth area in which there is a sequence of courses is Pollution Control. The Department offers three courses in this area: CHEE 521, CHEE 591, and CHEE 593. As some water pollution control problems are solved by microbial processes, course CHEE 474 is also relevant to the pollution control area. Additional courses in this area are listed in the section 12.10.10: Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits).

A Minor in Biotechnology is also offered by the Faculties of Engineering and Science with emphasis on molecular biology and chemical engineering processes. A full description of the program appears in the section 12.10.4: Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits).

Note: Many of the technical complementaries are offered only in alternate years. Students should, therefore, plan their complementaries as far ahead as possible. With the approval of the instructor and Academic Adviser, students may take graduate (600-level) CHEE courses as technical complementaries.

12.4 Civil Engineering and Applied Mechanics

12.4.1 Location

Macdonald Engineering Building, Room 492
817 Sherbrooke Street West
Montreal QC H3A 0C3
12.4.2 About the Department of Civil Engineering and Applied Mechanics

Civil engineers have traditionally applied scientific and engineering knowledge to the task of providing the built environment, from its conception and planning to its design, construction, maintenance, rehabilitation, and sustainability. Examples include buildings; bridges; roads; railways; dams; facilities for water supply and treatment; waste disposal; and transportation system.

With the aging and deterioration of an already vast infrastructure, its maintenance and rehabilitation has become an increasingly important role of the civil engineering profession. Also, with worldwide concern about the detrimental impact of human activities on the environment, civil engineers are now in the forefront of developing and providing the means for both prevention and remediation of many aspects of environmental pollution.

Students who wish to extend their knowledge in certain areas beyond the range that the program complementary courses allow can also take a minor. Minors are available in fields such as:

- Arts;
- Economics;
- Management;
- Environmental Engineering;
- Construction Engineering and Management;
- and others.

These require additional credits to be taken from a specified list of topics relating to the chosen field. Further information on the various minors may be found in section 12.10: Minor Programs. Details on how minors can be accommodated within the Civil Engineering program will be made available during preregistration counselling.

12.4.3 Academic Programs

Considerable freedom exists for students to influence the nature of the program of study which they follow in the Department of Civil Engineering and Applied Mechanics. A variety of advanced complementary courses is offered in five main groupings:

- Environmental Engineering;
- Geotechnical and Geoenvironmental Engineering;
- Water Resources and Hydraulic Engineering;
- Structural Engineering;
- Transportation Engineering.

Guidance on the sequence in which required core courses should be taken is provided for students in the form of a sample program which covers the entire period of study. The technical complementary courses selected, usually in the last two terms of the program, will depend upon the student's interests. All students must meet with their adviser each term to confirm the courses for which they are registered.

Courses taken in Term 3 or later will depend on a student's interests and ability. Information and advice concerning different possibilities are made available in the Department prior to registration. All programs require the approval of a staff adviser. Programs for students transferring into the Department with advanced standing will be dependent upon the academic credit previously achieved, and such a program will be established only after consultation with a staff adviser.

12.4.4 Civil Engineering and Applied Mechanics Faculty

Chair
Van-Thanh-Van Nguyen

Associate Chair
Yixin Shao

Emeritus Professors
Stuart B. Savage; B.Eng.(McG.), M.S.Eng.(Cal. Tech.), Ph.D.(McG.), F.R.S.C.
12.4.5 Bachelor of Engineering (B.Eng.) - Civil Engineering (139 credits)

Program credit weight: 139 credits

Program credit weight for Quebec CEGEP students: 110 credits

The Civil Engineering program is comprehensive in providing the fundamentals in mechanics and engineering associated with the diverse fields of the profession, in offering choices of specialization, and in fully reflecting the advances in science, mathematics, engineering, and computing that have transformed all fields of engineering in recent years. The resulting knowledge and training enables graduates to not only enter the profession thoroughly well prepared, but also to adapt to further change.

The required courses ensure a sound scientific and analytical basis for professional studies through courses in solid mechanics, fluid mechanics, soil mechanics, environmental engineering, water resources management, structural analysis, systems analysis, and mathematics. Fundamental concepts are applied to various fields of practice in both required and complementary courses.

By a suitable choice of complementary courses, students can attain advanced levels of technical knowledge in the specialized areas mentioned above. Alternatively, students may choose to develop their interests in a more general way by combining complementary courses within the Department with several from other departments or faculties.

Required Year 0 (Freshman) Courses
29 credits
Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 110-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

28 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>EPSC 221</td>
<td>3</td>
<td>General Geology</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>0</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>3</td>
<td>Advanced Calculus for Engineers</td>
</tr>
<tr>
<td>MECH 261</td>
<td>2</td>
<td>Measurement Laboratory</td>
</tr>
<tr>
<td>MECH 289</td>
<td>3</td>
<td>Design Graphics</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Civil Engineering Courses

61 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 202</td>
<td>4</td>
<td>Construction Materials</td>
</tr>
<tr>
<td>CIVE 205</td>
<td>3</td>
<td>Statics</td>
</tr>
<tr>
<td>CIVE 206</td>
<td>3</td>
<td>Dynamics</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>4</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>CIVE 208</td>
<td>3</td>
<td>Civil Engineering System Analysis</td>
</tr>
<tr>
<td>CIVE 210</td>
<td>2</td>
<td>Surveying</td>
</tr>
<tr>
<td>CIVE 225</td>
<td>4</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>CIVE 290</td>
<td>3</td>
<td>Thermodynamics and Heat Transfer</td>
</tr>
<tr>
<td>CIVE 302</td>
<td>3</td>
<td>Probabilistic Systems</td>
</tr>
<tr>
<td>CIVE 311</td>
<td>4</td>
<td>Geotechnical Mechanics</td>
</tr>
</tbody>
</table>
CIVE 317 (3) Structural Engineering 1
CIVE 318 (3) Structural Engineering 2
CIVE 319 (3) Transportation Engineering
CIVE 320 (4) Numerical Methods
CIVE 323 (3) Hydrology and Water Resources
CIVE 324 (3) Sustainable Project Management
CIVE 327 (4) Fluid Mechanics and Hydraulics
CIVE 418 (4) Design Project
CIVE 432 (1) Technical Paper

Complementary Courses
21 credits

List A - Design Technical Complementaries
6-15 credits from the following:
CIVE 416 (3) Geotechnical Engineering
CIVE 421 (3) Municipal Systems
CIVE 428 (3) Water Resources and Hydraulic Engineering
CIVE 430 (3) Water Treatment and Pollution Control
CIVE 440 (3) Traffic Engineering and Simulation
CIVE 462 (3) Design of Steel Structures
CIVE 463 (3) Design of Concrete Structures

List B - General Technical Complementaries
0-9 credits from the following, or from other suitable undergraduate or 500-level courses:
CHEE 521* (3) Nanomaterials and the Aquatic Environment
CIVE 446 (3) Construction Engineering
CIVE 451 (3) Geoenvironmental Engineering
CIVE 460 (3) Matrix Structural Analysis
CIVE 470 (3) Undergraduate Research Project
CIVE 512 (3) Advanced Civil Engineering Materials
CIVE 514 (3) Structural Mechanics
CIVE 520 (3) Groundwater Hydrology
CIVE 521* (3) Nanomaterials and the Aquatic Environment
CIVE 527 (3) Renovation and Preservation: Infrastructure
CIVE 540 (3) Urban Transportation Planning
CIVE 542 (3) Transportation Network Analysis
CIVE 546 (3) Selected Topics in Civil Engineering 1
CIVE 550 (3) Water Resources Management
CIVE 551 (3) Environmental Transport Processes
CIVE 555 (3) Environmental Data Analysis
CIVE 557 (3) Microbiology for Environmental Engineering
CIVE 558 (3) Biomolecular Techniques for Environmental Engineering
Transportation Safety and Design (3) CIVE 560
Urban Activity, Air Pollution, and Health (3) CIVE 561
Computational Hydraulics (3) CIVE 572
Hydraulic Structures (3) CIVE 573
Fluid Mechanics of Water Pollution (3) CIVE 574
River Engineering (3) CIVE 577
Groundwater Engineering (3) CIVE 584
Urban Design and Planning (3) URBP 551

* Students may choose only one of CHEE 521 or CIVE 521.

Complementary Studies
6 credits

Group A - Impact of Technology on Society
3 credits from the following:

ANTH 212 (3) Anthropology of Development
BTEC 502 (3) Biotechnology Ethics and Society
CIVE 469 (3) Infrastructure and Society
ECON 225 (3) Economics of the Environment
ECON 347 (3) Economics of Climate Change
ENVR 201 (3) Society, Environment and Sustainability
GEOG 200 (3) Geographical Perspectives: World Environmental Problems
GEOG 203 (3) Environmental Systems
GEOG 205 (3) Global Change: Past, Present and Future
GEOG 302 (3) Environmental Management 1
MGPO 440* (3) Strategies for Sustainability
PHIL 343 (3) Biomedical Ethics
RELG 270 (3) Religious Ethics and the Environment
SOCI 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law
3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)
Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
History (HIST)
Philosophy (excluding PHIL 210 and PHIL 310)
Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
School of Social Work (SWRK)
Sociology (excluding SOCI 350)
OR one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 528</td>
<td>3</td>
<td>History of Housing</td>
</tr>
<tr>
<td>BUSA 465*</td>
<td>3</td>
<td>Technological Entrepreneurship</td>
</tr>
<tr>
<td>CLAS 203</td>
<td>3</td>
<td>Greek Mythology</td>
</tr>
<tr>
<td>ENVR 203</td>
<td>3</td>
<td>Knowledge, Ethics and Environment</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>3</td>
<td>Environmental Thought</td>
</tr>
<tr>
<td>FACC 220</td>
<td>3</td>
<td>Law for Architects and Engineers</td>
</tr>
<tr>
<td>FACC 500</td>
<td>3</td>
<td>Technology Business Plan Design</td>
</tr>
<tr>
<td>FACC 501</td>
<td>3</td>
<td>Technology Business Plan Project</td>
</tr>
<tr>
<td>HISP 225</td>
<td>3</td>
<td>Hispanic Civilization 1</td>
</tr>
<tr>
<td>HISP 226</td>
<td>3</td>
<td>Hispanic Civilization 2</td>
</tr>
<tr>
<td>INDR 294*</td>
<td>3</td>
<td>Introduction to Labour-Management Relations</td>
</tr>
<tr>
<td>INTG 201**</td>
<td>3</td>
<td>Integrated Management Essentials 1</td>
</tr>
<tr>
<td>INTG 202**</td>
<td>3</td>
<td>Integrated Management Essentials 2</td>
</tr>
<tr>
<td>MATH 338</td>
<td>3</td>
<td>History and Philosophy of Mathematics</td>
</tr>
<tr>
<td>MGCR 222*</td>
<td>3</td>
<td>Introduction to Organizational Behaviour</td>
</tr>
<tr>
<td>MGCR 352*</td>
<td>3</td>
<td>Principles of Marketing</td>
</tr>
<tr>
<td>ORGB 321*</td>
<td>3</td>
<td>Leadership</td>
</tr>
<tr>
<td>ORGB 423*</td>
<td>3</td>
<td>Human Resources Management</td>
</tr>
</tbody>
</table>

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

12.5 Electrical and Computer Engineering

12.5.1 Location

Department of Electrical and Computer Engineering
Undergraduate Programs Office
Lorne Trottier Building, Room 2060
3630 University Street
Montreal QC H3A 0C6
Telephone: 514-398-3943
Email: undergrad.ece@mcgill.ca
Website: www.mcgill.ca/ece

12.5.2 About the Department of Electrical and Computer Engineering

The Department of Electrical and Computer Engineering offers undergraduate degree programs in:

- Electrical Engineering
- Electrical Engineering (Honours)
- Computer Engineering
- Software Engineering
All programs provide students with a strong background in mathematics, natural sciences, engineering science, engineering design, and complementary studies, in conformity with the requirements of the Canadian Engineering Accreditation Board (CEAB).

In addition to technical complementary courses, students in all three programs take general complementary courses in humanities and social sciences and/or management studies and law. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

12.5.3 Electrical and Computer Engineering Faculty

<table>
<thead>
<tr>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associate Chair, Academic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warren Gross</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associate Chair, Undergraduate Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>François Bouffard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associate Chair, Graduate Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odile Liboiron-Ladouceur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emeritus Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clifford H. Champness; M.Sc.(Lond.), Ph.D.(McG.)</td>
</tr>
<tr>
<td>Peter Kabal; B.A.Sc., M.A.Sc., Ph.D.(Tor.)</td>
</tr>
<tr>
<td>Boon-Teck Ooi; B.E.(Adel.), S.M.(MIT), Ph.D.(McG.), Eng.</td>
</tr>
<tr>
<td>Jonathan P. Webb; B.A., Ph.D.(Camb.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tal Arbel; M.Eng., Ph.D.(McG.)</td>
</tr>
<tr>
<td>Benoit Champagne; B.Eng., M.Eng.(Montr.), Ph.D.(Tor.)</td>
</tr>
<tr>
<td>Lawrence Chen; B.Eng.(McG.), M.A.Sc., Ph.D.(Tor.)</td>
</tr>
<tr>
<td>James Clark; B.Sc., Ph.D.(Br. Col.)</td>
</tr>
<tr>
<td>Mark Coates; B.Eng.(Adel.), Ph.D.(Camb.)</td>
</tr>
<tr>
<td>Jeremy R. Cooperstock; A.Sc.(Br. Col.), M.Sc., Ph.D.(Tor.) (on sabbatical)</td>
</tr>
<tr>
<td>Frank Ferrier; B.Eng., Ph.D.(McG.)</td>
</tr>
<tr>
<td>Warren Gross; B.A.Sc.(Wat.), M.A.Sc., Ph.D.(Tor.)</td>
</tr>
<tr>
<td>Geza Joos; B.Sc.(C'dia), M.Eng., Ph.D.(McG.) (CRC Chair)</td>
</tr>
<tr>
<td>Andrew G. Kirk; B.Sc.(Brist.), Ph.D.(Lond.), P.Eng. (James McGill Professor) (on sabbatical)</td>
</tr>
<tr>
<td>Fabrice Labeau; M.S., Ph.D.(Louvain) (Associate Dean, Faculty Affairs)</td>
</tr>
<tr>
<td>Harry Leib; B.Sc.(Technion), Ph.D.(Tor.)</td>
</tr>
<tr>
<td>Tho Le-Ngoc; M.Eng.(McG.), Ph.D.(Ott.), F.I.E.E.E.</td>
</tr>
<tr>
<td>David A. Lowther; B.Sc.(Lond.), Ph.D.(C.N.A.A.), F.C.A.E., Eng.</td>
</tr>
</tbody>
</table>
Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin Rochette</td>
<td>B.A., M.Eng., Ph.D.(Laval)</td>
</tr>
<tr>
<td>Dániel Varró</td>
<td>M.Sc., Ph.D.(BME)</td>
</tr>
<tr>
<td>Zeljko Zilic</td>
<td>B.Eng.(Zagreb), M.Sc., Ph.D.(Tor.)</td>
</tr>
</tbody>
</table>

Associate Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan Bajcsy</td>
<td>B.Sc.(Harv.), M.Eng., Ph.D.(Princ.)</td>
</tr>
<tr>
<td>François Bouffard</td>
<td>B.Eng., Ph.D.(McG.) (William Dawson Scholar)</td>
</tr>
<tr>
<td>Benoit Boulet</td>
<td>B.Sc.(Laval), M.Eng.(McG.), Ph.D.(Tor.) (Associate Dean, Research & Innovation)</td>
</tr>
<tr>
<td>Mourad El-Gamal</td>
<td>B.Sc.(Cairo), M.Sc.(Nashville), Ph.D.(McG.)</td>
</tr>
<tr>
<td>Dennis Giannacopoulos</td>
<td>M.Eng., Ph.D.(McG.)</td>
</tr>
<tr>
<td>Roni Khazaka</td>
<td>M.Eng., Ph.D.(Car.)</td>
</tr>
<tr>
<td>Odile Liboiron-Ladouceur</td>
<td>B.Eng.(McG.), M.Sc., Ph.D.(Col.)</td>
</tr>
<tr>
<td>Muthucumaru Maheswaran</td>
<td>B.Sc.(Peradeniya), M.S.E.E., Ph.D.(Purd.) (joint appt. with School of Computer Science)</td>
</tr>
<tr>
<td>Steve McFee</td>
<td>B.Eng., Ph.D.(McG.)</td>
</tr>
<tr>
<td>Hannah Michalska</td>
<td>B.Sc., M.Sc.(Warsaw), Ph.D.(Lond.)</td>
</tr>
<tr>
<td>Sam Musallam</td>
<td>B.Sc., M.Sc., Ph.D.(Tor.)</td>
</tr>
<tr>
<td>Derek Nowrouzezahrai</td>
<td>B.Sc.(Wat.), M.Sc., Ph.D.(Tor.)</td>
</tr>
<tr>
<td>Milica Popovich</td>
<td>B.Sc.(Colo.), M.Sc., Ph.D.(Nwestern)</td>
</tr>
<tr>
<td>Ioannis Psaromiligkos</td>
<td>B.Sc.(Patras), M.Sc., Ph.D.(Buffalo)</td>
</tr>
<tr>
<td>Michael Rabbat</td>
<td>B.S.(Ill.), M.S.(Rice), Ph.D.(Wisc.) (William Dawson Scholar)</td>
</tr>
<tr>
<td>Ishiang Shih</td>
<td>M.Eng., Ph.D.(McG.)</td>
</tr>
<tr>
<td>Thomas Szkopek</td>
<td>B.A.Sc., M.A.Sc.(Tor.), Ph.D.(Calif.-LA)</td>
</tr>
</tbody>
</table>

Assistant Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharmistha Bhadra</td>
<td>B.Sc.(New Br.), M.Sc., Ph.D.(Manit.)</td>
</tr>
<tr>
<td>Shane McIntosh</td>
<td>B.A.(Comp.)(Guelph), M.Sc., Ph.D.(Qu.)</td>
</tr>
<tr>
<td>Gunter Mussbacher</td>
<td>Ph.D.(Ott.)</td>
</tr>
<tr>
<td>Xiaozhe Wang</td>
<td>B.Sc.(Zhejiang); M.Sc.(Cornell); Ph.D.(MIT)</td>
</tr>
</tbody>
</table>

Associate Members

<table>
<thead>
<tr>
<th>Name</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew Adam Dobbs</td>
<td>Ph.D.(Vic., BC)</td>
</tr>
<tr>
<td>Gregory Dudek</td>
<td>B.Sc.(Qu.), M.Sc., Ph.D.(Tor.)</td>
</tr>
<tr>
<td>Alan C. Evans</td>
<td>M.Sc.(Surrey), Ph.D.(Leeds)</td>
</tr>
<tr>
<td>William R. Funnell</td>
<td>M.Eng., Ph.D.(McG.)</td>
</tr>
<tr>
<td>David Juncker</td>
<td>Ph.D.(Neuchatel)</td>
</tr>
<tr>
<td>Nathaniel J. Quitoriano</td>
<td>B.S.(Calif.), Ph.D.(MIT)</td>
</tr>
</tbody>
</table>

Adjunct Professors

<table>
<thead>
<tr>
<th>Name</th>
<th>Qualifications</th>
</tr>
</thead>
</table>
12.5.4 Bachelor of Engineering (B.Eng.) - Electrical Engineering (134 credits)

Revision, May 2018. Start of revision.

Program credit weight: 134-138 credits
Program credit weight for Quebec CEGEP students: 109-113 credits

This program gives students a broad understanding of the key principles that are responsible for the extraordinary advances in the technology of computers, micro-electronics, automation and robotics, telecommunications, and power systems. These areas are critical to the development of our industries and, more generally, to our economy. A graduate of this program is exposed to all basic elements of electrical engineering and can function in any of our client industries. This breadth is what distinguishes an engineer from, for example, a computer scientist or physicist.

In addition to technical complementary courses, students in the Electrical Engineering program take general complementary courses in social sciences, administrative studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

Required Year 0 (Freshman) Courses
25 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 109- to 113-credit program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B)

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses
23 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 281</td>
<td>Analytical Mechanics</td>
</tr>
<tr>
<td>COMP 250</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MIME 262</td>
<td>Properties of Materials in Electrical Engineering</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Electrical Engineering Courses
57 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 200</td>
<td>Electric Circuits 1</td>
</tr>
<tr>
<td>ECSE 202</td>
<td>Introduction to Software Development</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>ECSE 205</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 206</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 210</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 211</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 222</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 251</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 237</td>
<td>4</td>
</tr>
<tr>
<td>ECSE 308</td>
<td>4</td>
</tr>
<tr>
<td>ECSE 324</td>
<td>4</td>
</tr>
<tr>
<td>ECSE 331</td>
<td>4</td>
</tr>
<tr>
<td>ECSE 354</td>
<td>4</td>
</tr>
<tr>
<td>ECSE 362</td>
<td>4</td>
</tr>
<tr>
<td>ECSE 443</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 456</td>
<td>3</td>
</tr>
<tr>
<td>ECSE 457</td>
<td>3</td>
</tr>
</tbody>
</table>

Complementary Courses (26-30 credits)

Technical Complementaries

20-24 credits (6 courses) must be taken, chosen as follows:

- 8 credits (2 courses) from List A
- 12-16 credits (4 courses) from List A or List B

List A: Technical Complementaries with Laboratory Experience

8-24 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 335</td>
<td>4</td>
<td>Microelectronics</td>
</tr>
<tr>
<td>ECSE 403</td>
<td>4</td>
<td>Control</td>
</tr>
<tr>
<td>ECSE 408</td>
<td>4</td>
<td>Communication Systems</td>
</tr>
<tr>
<td>ECSE 416</td>
<td>4</td>
<td>Telecommunication Networks</td>
</tr>
<tr>
<td>ECSE 433</td>
<td>4</td>
<td>Physical Basis of Transistor Devices</td>
</tr>
<tr>
<td>ECSE 444</td>
<td>4</td>
<td>Microprocessors</td>
</tr>
<tr>
<td>ECSE 470</td>
<td>4</td>
<td>Electromechanical Systems</td>
</tr>
</tbody>
</table>

List B: Technical Complementaries

0-12 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 310</td>
<td>3</td>
<td>Thermodynamics of Computing</td>
</tr>
<tr>
<td>ECSE 325</td>
<td>3</td>
<td>Digital Systems</td>
</tr>
<tr>
<td>ECSE 405</td>
<td>3</td>
<td>Antennas</td>
</tr>
<tr>
<td>ECSE 412</td>
<td>3</td>
<td>Discrete Time Signal Processing</td>
</tr>
<tr>
<td>ECSE 413</td>
<td>3</td>
<td>Communications Systems 2</td>
</tr>
<tr>
<td>ECSE 415</td>
<td>3</td>
<td>Intro to Computer Vision</td>
</tr>
<tr>
<td>ECSE 420</td>
<td>3</td>
<td>Parallel Computing</td>
</tr>
<tr>
<td>ECSE 421</td>
<td>3</td>
<td>Embedded Systems</td>
</tr>
<tr>
<td>ECSE 422</td>
<td>3</td>
<td>Fault Tolerant Computing</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>ECSE 423</td>
<td>3</td>
<td>Fundamentals of Photonics</td>
</tr>
<tr>
<td>ECSE 424</td>
<td>3</td>
<td>Human-Computer Interaction</td>
</tr>
<tr>
<td>ECSE 425</td>
<td>3</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>ECSE 427</td>
<td>3</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>ECSE 430</td>
<td>3</td>
<td>Photonic Devices and Systems</td>
</tr>
<tr>
<td>ECSE 431</td>
<td>3</td>
<td>Introduction to VLSI CAD</td>
</tr>
<tr>
<td>ECSE 435</td>
<td>3</td>
<td>Mixed-Signal Test Techniques</td>
</tr>
<tr>
<td>ECSE 436</td>
<td>3</td>
<td>Signal Processing Hardware</td>
</tr>
<tr>
<td>ECSE 446</td>
<td>3</td>
<td>Realistic Image Synthesis</td>
</tr>
<tr>
<td>ECSE 450</td>
<td>3</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>ECSE 451</td>
<td>3</td>
<td>EM Transmission and Radiation</td>
</tr>
<tr>
<td>ECSE 460*</td>
<td>3</td>
<td>Appareillage électrique (Electrical Power Equipment)</td>
</tr>
<tr>
<td>ECSE 463</td>
<td>3</td>
<td>Electric Power Generation</td>
</tr>
<tr>
<td>ECSE 464</td>
<td>3</td>
<td>Power Systems Analysis</td>
</tr>
<tr>
<td>ECSE 465</td>
<td>3</td>
<td>Power Electronic Systems</td>
</tr>
<tr>
<td>ECSE 466*</td>
<td>3</td>
<td>Réseaux de distribution</td>
</tr>
<tr>
<td>ECSE 467*</td>
<td>3</td>
<td>Comportement des réseaux électriques</td>
</tr>
<tr>
<td>ECSE 468*</td>
<td>3</td>
<td>Electricité industrielle (Industrial Power Systems)</td>
</tr>
<tr>
<td>ECSE 469*</td>
<td>3</td>
<td>Protection des réseaux électriques</td>
</tr>
<tr>
<td>ECSE 472</td>
<td>3</td>
<td>Fundamentals of Circuit Simulation and Modelling</td>
</tr>
<tr>
<td>PHYS 434</td>
<td>3</td>
<td>Optics</td>
</tr>
<tr>
<td>PHYS 446</td>
<td>3</td>
<td>Majors Quantum Physics</td>
</tr>
</tbody>
</table>

* Courses taught in French.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 212</td>
<td>3</td>
<td>Anthropology of Development</td>
</tr>
<tr>
<td>BTEC 502</td>
<td>3</td>
<td>Biotechnology Ethics and Society</td>
</tr>
<tr>
<td>CIVE 469</td>
<td>3</td>
<td>Infrastructure and Society</td>
</tr>
<tr>
<td>ECON 225</td>
<td>3</td>
<td>Economics of the Environment</td>
</tr>
<tr>
<td>ECON 347</td>
<td>3</td>
<td>Economics of Climate Change</td>
</tr>
<tr>
<td>ENVR 201</td>
<td>3</td>
<td>Society, Environment and Sustainability</td>
</tr>
<tr>
<td>GEOG 200</td>
<td>3</td>
<td>Geographical Perspectives: World Environmental Problems</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>3</td>
<td>Environmental Systems</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>3</td>
<td>Global Change: Past, Present and Future</td>
</tr>
<tr>
<td>GEOG 302</td>
<td>3</td>
<td>Environmental Management 1</td>
</tr>
<tr>
<td>MGPO 440*</td>
<td>3</td>
<td>Strategies for Sustainability</td>
</tr>
<tr>
<td>PHIL 343</td>
<td>3</td>
<td>Biomedical Ethics</td>
</tr>
<tr>
<td>RELG 270</td>
<td>3</td>
<td>Religious Ethics and the Environment</td>
</tr>
<tr>
<td>SOCI 235</td>
<td>3</td>
<td>Technology and Society</td>
</tr>
</tbody>
</table>
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

*Note: Management courses have limited enrolment and registration dates. See Important Dates at www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR 3 credits from the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- CLAS 203 (3) Greek Mythology
- ENVR 203 (3) Knowledge, Ethics and Environment
- ENVR 400 (3) Environmental Thought
- FACC 220 (3) Law for Architects and Engineers
- FACC 500 (3) Technology Business Plan Design
- FACC 501 (3) Technology Business Plan Project
- HISP 225 (3) Hispanic Civilization 1
- HISP 226 (3) Hispanic Civilization 2
- INDR 294* (3) Introduction to Labour-Management Relations
- INTG 201** (3) Integrated Management Essentials 1
- INTG 202** (3) Integrated Management Essentials 2
- MATH 338 (3) History and Philosophy of Mathematics
- MGCR 222* (3) Introduction to Organizational Behaviour
- MGCR 352* (3) Principles of Marketing
- ORGB 321* (3) Leadership
- ORGB 423* (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

Enhanced Power Concentration

Students following this program must complete 15 credits of technical complementary courses.
The Institute for Electrical Power Engineering was recently established as a province-wide centre for electrical power engineering education. It is funded by industry, mostly Hydro-Québec, and provides a comprehensive program, state-of-the-art laboratory facilities, and a point of contact between industry and universities involved in power engineering.

Note: This program is open to students in the regular Electrical Engineering program only.

Here are some benefits of the concentration:

- A complete and up-to-date final-year program in electrical power engineering, with industry-sponsored and supported courses
- Access to industry-sponsored projects, internships, and new employment opportunities

ELIGIBILITY CRITERIA

To be considered in September 2018, the applicant must:

- be registered in the B.Eng. program (regular Electrical Engineering);
- have a cumulative GPA of at least 2.5;
- have completed or be registered in ECSE 361 (Power Engineering);
- be able to complete the degree requirements by December 2018;
- agree to follow the curriculum requirements set out below.

SELECTION CRITERIA

The number of students selected, expected to be between five and ten, will be subject to a specific agreement between the University and the Institute. Selection criteria for admission to the Institute will be based on the CGPA and on the curriculum vitae. The selection process for the scholarship may involve an interview with the committee presided by Hydro-Québec and the industrial partners. There is a possibility of an internship with Hydro-Québec.

CURRICULUM REQUIREMENTS FOR SELECTED STUDENTS

Generally, unless the University has authorized specific substitutions, students must complete the degree requirements set out in this eCalendar with the following specifications:

Technical Complementaries and Laboratories (15 credits)

All students must take (or have taken) five courses from the following:

Required Courses

9 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 462</td>
<td>3</td>
<td>Electromechanical Energy Conversion</td>
</tr>
<tr>
<td>ECSE 464</td>
<td>3</td>
<td>Power Systems Analysis</td>
</tr>
<tr>
<td>ECSE 465</td>
<td>3</td>
<td>Power Electronic Systems</td>
</tr>
</tbody>
</table>

Students must also complete ECSE 456 and ECSE 457 (Electrical Engineering Design Projects 1 and 2) on a practical project in power engineering, preferably at the Institute or with a company sponsoring the Institute.

Complementary Courses

6 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 404</td>
<td>3</td>
<td>Control Systems</td>
</tr>
<tr>
<td>ECSE 460*</td>
<td>3</td>
<td>Appareillage électrique (Electrical Power Equipment)</td>
</tr>
<tr>
<td>ECSE 463</td>
<td>3</td>
<td>Electric Power Generation</td>
</tr>
<tr>
<td>ECSE 466*</td>
<td>3</td>
<td>Réseaux de distribution</td>
</tr>
<tr>
<td>ECSE 467*</td>
<td>3</td>
<td>Comportement des réseaux électriques</td>
</tr>
<tr>
<td>ECSE 468*</td>
<td>3</td>
<td>Electricité industrielle (Industrial Power Systems)</td>
</tr>
<tr>
<td>ECSE 469*</td>
<td>3</td>
<td>Protection des réseaux électriques</td>
</tr>
</tbody>
</table>

* Courses taught in French.

Note: ECSE 460, ECSE 464 (Fall semester), ECSE 465, ECSE 467, ECSE 468, and ECSE 469 are courses sponsored by the Institute and taught at École Polytechnique de Montréal.

Elective Course

One 3-credit course at the 200-level or higher from any department at McGill, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering.
Bachelor of Engineering (B.Eng.) - Honours Electrical Engineering (138 credits)

Program credit weight: 138-142 credits
Program credit weight for Quebec CEGEP students: 113-117 credits

Entry into the Electrical Engineering Honours Program

The Honours program is a limited enrolment program and entry is highly competitive. There is no direct entry to the Honours program in the first year. Students may enter the Honours program in the following ways:

- Students from CEGEP will be admitted, on the basis of their grades, at the start of the third term.
- Students from outside Quebec will be admitted, on the basis of their grades, at the start of the fifth term.

To remain in the Honours program and to be awarded the Honours degree, a student must have completed at least 14 credits in each term since entering Electrical and Computer Engineering, except for the final two terms of their degree, and maintained a CGPA of at least 3.30 since entering Electrical and Computer Engineering. In either of their final two full terms (i.e., Fall and Winter, or Winter and Fall) students may drop below 14 credits, provided the combined load for the two terms is at least 16 credits. For more information, please contact the Departmental office at 514-398-3943.

Required Year 0 (Freshman) Courses (25 credits)

Note: Students in the Honours Electrical Engineering program complete the Year 0 (Freshman) courses before entering the Honours program, as explained above.

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 113- to 117-credit program.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>(4)</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>(3)</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>(3)</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>(4)</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>(4)</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>(4)</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

23 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>(3)</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 281</td>
<td>(3)</td>
<td>Analytical Mechanics</td>
</tr>
<tr>
<td>COMP 250</td>
<td>(3)</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>(1)</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>(0)</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>(3)</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>(1)</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>(3)</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>(3)</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MIME 262</td>
<td>(3)</td>
<td>Properties of Materials in Electrical Engineering</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.
Required Electrical Engineering Courses

61 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 200</td>
<td>3</td>
<td>Electric Circuits 1</td>
</tr>
<tr>
<td>ECSE 202</td>
<td>3</td>
<td>Introduction to Software Development</td>
</tr>
<tr>
<td>ECSE 205</td>
<td>3</td>
<td>Probability and Statistics for Engineers</td>
</tr>
<tr>
<td>ECSE 206</td>
<td>3</td>
<td>Introduction to Signals and Systems</td>
</tr>
<tr>
<td>ECSE 210</td>
<td>3</td>
<td>Electric Circuits 2</td>
</tr>
<tr>
<td>ECSE 211</td>
<td>3</td>
<td>Design Principles and Methods</td>
</tr>
<tr>
<td>ECSE 222</td>
<td>3</td>
<td>Digital Logic</td>
</tr>
<tr>
<td>ECSE 251</td>
<td>3</td>
<td>Electric and Magnetic Fields</td>
</tr>
<tr>
<td>ECSE 307</td>
<td>4</td>
<td>Linear Systems and Control</td>
</tr>
<tr>
<td>ECSE 308</td>
<td>4</td>
<td>Introduction to Communication Systems and Networks</td>
</tr>
<tr>
<td>ECSE 324</td>
<td>4</td>
<td>Computer Organization</td>
</tr>
<tr>
<td>ECSE 331</td>
<td>4</td>
<td>Electronics</td>
</tr>
<tr>
<td>ECSE 354</td>
<td>4</td>
<td>Electromagnetic Wave Propagation</td>
</tr>
<tr>
<td>ECSE 362</td>
<td>4</td>
<td>Fundamentals of Power Engineering</td>
</tr>
<tr>
<td>ECSE 396</td>
<td>1</td>
<td>Honours Research Laboratory Rotation 1</td>
</tr>
<tr>
<td>ECSE 397</td>
<td>1</td>
<td>Honours Research Laboratory Rotation 2</td>
</tr>
<tr>
<td>ECSE 496</td>
<td>1</td>
<td>Honours Research Laboratory Rotation 3</td>
</tr>
<tr>
<td>ECSE 497</td>
<td>1</td>
<td>Honours Research Laboratory Rotation 4</td>
</tr>
<tr>
<td>ECSE 498</td>
<td>3</td>
<td>Honours Thesis 1</td>
</tr>
<tr>
<td>ECSE 499</td>
<td>3</td>
<td>Honours Thesis 2</td>
</tr>
<tr>
<td>ECSE 543</td>
<td>3</td>
<td>Numerical Methods in Electrical Engineering</td>
</tr>
</tbody>
</table>

Complementary Courses (26-30 credits)

Technical Complementaries

20-24 credits (6 courses) must be taken, chosen as follows:

- 8 credits (2 courses) from List A
- 6-8 credits (2 courses) from 500-level ECSE courses
- 3-4 credits (1 course) from List A, List B, or from 500-level ECSE courses
- 3-4 credits (1 course) from List C or from 500-level ECSE courses

List A: Technical Complementaries with Laboratory Experience

8-12 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 335</td>
<td>4</td>
<td>Microelectronics</td>
</tr>
<tr>
<td>ECSE 403*</td>
<td>4</td>
<td>Control</td>
</tr>
<tr>
<td>ECSE 408**</td>
<td>4</td>
<td>Communication Systems</td>
</tr>
<tr>
<td>ECSE 416</td>
<td>4</td>
<td>Telecommunication Networks</td>
</tr>
<tr>
<td>ECSE 433</td>
<td>4</td>
<td>Physical Basis of Transistor Devices</td>
</tr>
<tr>
<td>ECSE 444</td>
<td>4</td>
<td>Microprocessors</td>
</tr>
<tr>
<td>ECSE 470</td>
<td>4</td>
<td>Electromechanical Systems</td>
</tr>
</tbody>
</table>

* ECSE 403 and ECSE 501 cannot both be taken.
** ECSE 408 and ECSE 511 cannot both be taken.

List B: Technical Complementaries

0-3 credits

- ECSE 310 (3) Thermodynamics of Computing
- ECSE 325 (3) Digital Systems
- ECSE 420 (3) Parallel Computing
- ECSE 421 (3) Embedded Systems
- ECSE 422 (3) Fault Tolerant Computing
- ECSE 424 (3) Human-Computer Interaction
- ECSE 425 (3) Computer Architecture
- ECSE 427 (3) Operating Systems
- ECSE 431 (3) Introduction to VLSI CAD
- ECSE 435 (3) Mixed-Signal Test Techniques
- ECSE 436 (3) Signal Processing Hardware
- ECSE 451 (3) EM Transmission and Radiation
- ECSE 460* (3) Appareillage électrique (Electrical Power Equipment)
- ECSE 464 (3) Power Systems Analysis
- ECSE 467* (3) Comportement des réseaux électriques
- ECSE 468* (3) Électricité industrielle (Industrial Power Systems)
- ECSE 469* (3) Protection des réseaux électriques

* Courses taught in French.

List C: Honours Math/Physics Complementary Courses

0-4 credits

- MATH 247 (3) Honours Applied Linear Algebra
- MATH 249 (3) Honours Complex Variables
- MATH 547 (4) Stochastic Processes
- MATH 560 (4) Optimization
- PHYS 357 (3) Honours Quantum Physics 1
- PHYS 434 (3) Optics
- PHYS 457 (3) Honours Quantum Physics 2
- PHYS 558 (3) Solid State Physics

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

- ANTH 212 (3) Anthropology of Development
- BTEC 502 (3) Biotechnology Ethics and Society
- CIVE 469 (3) Infrastructure and Society
- ECON 225 (3) Economics of the Environment
- ECON 347 (3) Economics of Climate Change
ENVR 201 (3) Society, Environment and Sustainability
GEOG 200 (3) Geographical Perspectives: World Environmental Problems
GEOG 203 (3) Environmental Systems
GEOG 205 (3) Global Change: Past, Present and Future
GEOG 302 (3) Environmental Management 1
MGPO 440* (3) Strategies for Sustainability
PHIL 343 (3) Biomedical Ethics
RELG 270 (3) Religious Ethics and the Environment
SOCI 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Group B - Humanities and Social Sciences, Management Studies, and Law **

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)
Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
History (HIST)

Philosophy (excluding PHIL 210 and PHIL 310)
Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)

Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***

School of Social Work (SWRK)
Sociology (excluding SOCI 350)

OR 3 credits from the following:

ARCH 528 (3) History of Housing
BUS 465* (3) Technological Entrepreneurship
CLAS 203 (3) Greek Mythology
ENVR 203 (3) Knowledge, Ethics and Environment
ENVR 400 (3) Environmental Thought
FACC 220 (3) Law for Architects and Engineers
FACC 500 (3) Technology Business Plan Design
FACC 501 (3) Technology Business Plan Project
HISP 225 (3) Hispanic Civilization 1
HISP 226 (3) Hispanic Civilization 2
INDR 294* (3) Introduction to Labour-Management Relations
INTG 201** (3) Integrated Management Essentials 1
INTG 202** (3) Integrated Management Essentials 2
MATH 338 (3) History and Philosophy of Mathematics
MGCR 222* (3) Introduction to Organizational Behaviour
MGCR 352* (3) Principles of Marketing
ORGB 321* (3) Leadership
ORGB 423* (3) Human Resources Management

2018-2019, Faculty of Engineering, including Peter Guo-hua Fu School of Architecture and School of Urban Planning, McGill University (Published August 21, 2018)
* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

Elective Course

One 3-credit course at the 200-level or higher from any department at McGill, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering.

Revision, May 2018. End of revision.

12.5.6 Bachelor of Engineering (B.Eng.) - Computer Engineering (133 credits)

Program credit weight: 133-139 credits
Program credit weight for Quebec CEGEP students: 111-114 credits
Program credit weight for out-of-province students: 133-136 credits

The Computer Engineering program provides students with greater depth and breadth of knowledge in the hardware and software aspects of computers. Students are exposed to both theoretical and practical issues of both hardware and software in well-equipped laboratories. Although the program is designed to meet the growing demands by industry for engineers with a strong background in modern computer technology, it also provides the underlying depth for graduate studies in all fields of Computer Engineering.

In addition to technical complementary courses, students in the program take general complementary courses in social sciences, management studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

Required Year 0 (Freshman) Courses

25 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 111- to 114-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Administrative Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

23 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>COMP 250</td>
<td>3</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>COMP 251</td>
<td>3</td>
<td>Algorithms and Data Structures</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>0</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
</tbody>
</table>
Required Computer Engineering Courses

64 credits

ECSE 200 (3) Electric Circuits 1
ECSE 202 (3) Introduction to Software Development
ECSE 205 (3) Probability and Statistics for Engineers
ECSE 206 (3) Introduction to Signals and Systems
ECSE 210 (3) Electric Circuits 2
ECSE 211 (3) Design Principles and Methods
ECSE 222 (3) Digital Logic
ECSE 223 (3) Model-Based Programming
ECSE 308 (4) Introduction to Communication Systems and Networks
ECSE 310 (3) Thermodynamics of Computing
ECSE 321 (3) Introduction to Software Engineering
ECSE 324 (4) Computer Organization
ECSE 325 (3) Digital Systems
ECSE 331 (4) Electronics
ECSE 353 (3) Electromagnetic Fields and Waves
ECSE 425 (3) Computer Architecture
ECSE 427 (3) Operating Systems
ECSE 444 (4) Microprocessors
ECSE 456 (3) ECSE Design Project 1
ECSE 457 (3) ECSE Design Project 2

Complementary Courses

18-24 credits

Technical Complementaries

12-15 credits (4 courses) must be taken, chosen as follows:

9-11 credits (3 courses) from List A
3-4 credits (1 course) from List A or List B

List A

9-14 credits from the following:

COMP 424 (3) Artificial Intelligence
ECSE 335 (4) Microelectronics
ECSE 412 (3) Discrete Time Signal Processing
ECSE 416 (4) Telecommunication Networks
ECSE 420 (3) Parallel Computing
ECSE 421 (3) Embedded Systems
ECSE 422 (3) Fault Tolerant Computing
ECSE 424 (3) Human-Computer Interaction
ECSE 428 (3) Software Engineering Practice
ECSE 429 (3) Software Validation
ECSE 439 (3) Software Language Engineering

List B
Revision, May 2018. Start of revision.
0-4 credits from the following:

COMP 551 (4) Applied Machine Learning
COMP 557 (4) Fundamentals of Computer Graphics
ECSE 307 (4) Linear Systems and Control
ECSE 403 (4) Control
ECSE 408 (4) Communication Systems
ECSE 415 (3) Intro to Computer Vision
ECSE 431 (3) Introduction to VLSI CAD
ECSE 435 (3) Mixed-Signal Test Techniques
ECSE 436 (3) Signal Processing Hardware
ECSE 446 (3) Realistic Image Synthesis
ECSE 450 (3) Electromagnetic Compatibility
ECSE 472 (3) Fundamentals of Circuit Simulation and Modelling

Revision, May 2018. End of revision.

Natural Science Complementary Courses (for CEGEP students only)
0-3 credits
Students from CEGEP are required to complete one 3-credit course at the 200 level or higher, chosen from the following science departments, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering:
Atmospheric and Oceanic Sciences (ATOC)
Biology (BIOL)
Chemistry (CHEM)
Earth and Planetary Sciences (EPSC)
Earth System Science (ESYS)
Physics (PHYS)

Complementary Studies
6 credits

Group A - Impact of Technology on Society
3 credits from the following:

ANTH 212 (3) Anthropology of Development
BTEC 502 (3) Biotechnology Ethics and Society
CIVE 469 (3) Infrastructure and Society
ECON 225 (3) Economics of the Environment
ECON 347 (3) Economics of Climate Change
ENVR 201 (3) Society, Environment and Sustainability
GEOG 200 (3) Geographical Perspectives: World Environmental Problems
GEOG 203 (3) Environmental Systems
GEOG 205 (3) Global Change: Past, Present and Future
GEOG 302 (3) Environmental Management I
MGPO 440* (3) Strategies for Sustainability
PHIL 343 (3) Biomedical Ethics
RELG 270 (3) Religious Ethics and the Environment
SOCI 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)
Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
History (HIST)
Philosophy (excluding PHIL 210 and PHIL 310)
Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
School of Social Work (SWRK)
Sociology (excluding SOCI 350)

OR 3 credits from one the following:

ARCH 528 (3) History of Housing
BUSA 465* (3) Technological Entrepreneurship
CLAS 203 (3) Greek Mythology
ENVR 203 (3) Knowledge, Ethics and Environment
ENVR 400 (3) Environmental Thought
FACC 220 (3) Law for Architects and Engineers
FACC 500 (3) Technology Business Plan Design
FACC 501 (3) Technology Business Plan Project
HISP 225 (3) Hispanic Civilization 1
HISP 226 (3) Hispanic Civilization 2
INDR 294* (3) Introduction to Labour-Management Relations
INTG 201** (3) Integrated Management Essentials 1
INTG 202** (3) Integrated Management Essentials 2
MATH 338 (3) History and Philosophy of Mathematics
MGCR 222* (3) Introduction to Organizational Behaviour
MGCR 352* (3) Principles of Marketing
ORGB 321* (3) Leadership
ORGB 423* (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.
** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

Elective Course

One 3-credit course at the 200-level or higher from any department at McGill, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering.

12.5.7 Bachelor of Software Engineering (B.S.E.) - Software Engineering (137 credits)

Program credit weight: 137-144 credits

Program credit weight for Quebec CEGEP students: 115-119 credits

Program credit weight for out-of-province students: 137-141 credits

This program offers students the opportunity to focus their studies on the skills needed to design and develop complex software systems. This emerging field of engineering is a major component of the growing Information Technology (IT) sector of the economy, in which the demand for qualified personnel continues to outstrip supply. Graduates of this program will have a solid foundation for careers in the software industry.

In addition to technical complementary courses, students take general complementary courses in social sciences, management studies, and humanities. These courses allow students to develop specific interests in areas such as psychology, economics, management, or political science.

Required Year 0 (Freshman) Courses

25 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 115- to 119-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 120</td>
<td>(4)</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>(3)</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>(3)</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>(4)</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>(4)</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>(4)</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B)

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses

35 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>(3)</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>COMP 206</td>
<td>(3)</td>
<td>Introduction to Software Systems</td>
</tr>
<tr>
<td>COMP 250</td>
<td>(3)</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>COMP 251</td>
<td>(3)</td>
<td>Algorithms and Data Structures</td>
</tr>
<tr>
<td>COMP 302</td>
<td>(3)</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>COMP 360</td>
<td>(3)</td>
<td>Algorithm Design</td>
</tr>
<tr>
<td>COMP 421</td>
<td>(3)</td>
<td>Database Systems</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>(1)</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>(0)</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>(3)</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>FAC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 240</td>
<td>3</td>
<td>Discrete Structures 1</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
</tbody>
</table>

Note: FAC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Software Engineering Courses

52 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 200</td>
<td>3</td>
<td>Electric Circuits 1</td>
</tr>
<tr>
<td>ECSE 202</td>
<td>3</td>
<td>Introduction to Software Development</td>
</tr>
<tr>
<td>ECSE 205</td>
<td>3</td>
<td>Probability and Statistics for Engineers</td>
</tr>
<tr>
<td>ECSE 211</td>
<td>3</td>
<td>Design Principles and Methods</td>
</tr>
<tr>
<td>ECSE 222</td>
<td>3</td>
<td>Digital Logic</td>
</tr>
<tr>
<td>ECSE 223</td>
<td>3</td>
<td>Model-Based Programming</td>
</tr>
<tr>
<td>ECSE 310</td>
<td>3</td>
<td>Thermodynamics of Computing</td>
</tr>
<tr>
<td>ECSE 316</td>
<td>3</td>
<td>Signals and Networks</td>
</tr>
<tr>
<td>ECSE 321</td>
<td>3</td>
<td>Introduction to Software Engineering</td>
</tr>
<tr>
<td>ECSE 324</td>
<td>4</td>
<td>Computer Organization</td>
</tr>
<tr>
<td>ECSE 326</td>
<td>3</td>
<td>Software Requirements Engineering</td>
</tr>
<tr>
<td>ECSE 420</td>
<td>3</td>
<td>Parallel Computing</td>
</tr>
<tr>
<td>ECSE 427</td>
<td>3</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>ECSE 428</td>
<td>3</td>
<td>Software Engineering Practice</td>
</tr>
<tr>
<td>ECSE 429</td>
<td>3</td>
<td>Software Validation</td>
</tr>
<tr>
<td>ECSE 456</td>
<td>3</td>
<td>ECSE Design Project 1</td>
</tr>
<tr>
<td>ECSE 457</td>
<td>3</td>
<td>ECSE Design Project 2</td>
</tr>
</tbody>
</table>

Complementary Courses

21-28 credits

Technical Complementaries

15-20 credits (5 courses) from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 330</td>
<td>3</td>
<td>Theory of Computation</td>
</tr>
<tr>
<td>COMP 350</td>
<td>3</td>
<td>Numerical Computing</td>
</tr>
<tr>
<td>COMP 409</td>
<td>3</td>
<td>Concurrent Programming</td>
</tr>
<tr>
<td>COMP 417</td>
<td>3</td>
<td>Introduction Robotics and Intelligent Systems</td>
</tr>
<tr>
<td>COMP 424</td>
<td>3</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>COMP 512</td>
<td>4</td>
<td>Distributed Systems</td>
</tr>
<tr>
<td>COMP 520</td>
<td>4</td>
<td>Compiler Design</td>
</tr>
<tr>
<td>COMP 521</td>
<td>4</td>
<td>Modern Computer Games</td>
</tr>
<tr>
<td>COMP 525</td>
<td>3</td>
<td>Formal Verification</td>
</tr>
<tr>
<td>COMP 529</td>
<td>4</td>
<td>Software Architecture</td>
</tr>
<tr>
<td>COMP 533</td>
<td>3</td>
<td>Model-Driven Software Development</td>
</tr>
<tr>
<td>COMP 551</td>
<td>4</td>
<td>Applied Machine Learning</td>
</tr>
</tbody>
</table>
Natural Science Complementary Courses

3-6 credits
Students from CEGEP must complete 6 credits of Natural Science complementary courses; all other students must complete 3 credits of courses.
Natural Science complementary courses must be chosen from courses at the 200-level or higher from the following science departments, approved by the Undergraduate Programs Office in the Department of Electrical and Computer Engineering.
Atmospheric and Oceanic Sciences (ATOIC)
Biology (BIOL)
Chemistry (CHEM)
Earth and Planetary Sciences (EPSC)
Earth System Science (ESYS)
Physics (PHYS)

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

ANTH 212 (3) Anthropology of Development
BTEC 502 (3) Biotechnology Ethics and Society
CIVE 469 (3) Infrastructure and Society
ECON 225 (3) Economics of the Environment
ECON 347 (3) Economics of Climate Change
ENVR 201 (3) Society, Environment and Sustainability
GEOG 200 (3) Geographical Perspectives: World Environmental Problems
GEOG 203 (3) Environmental Systems
GEOG 205 (3) Global Change: Past, Present and Future
GEOG 302 (3) Environmental Management 1
MGPO 440* (3) Strategies for Sustainability
PHIL 343 (3) Biomedical Ethics
RELG 270 (3) Religious Ethics and the Environment
SOCl 235 (3) Technology and Society
SOCl 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City
* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR 3 credits from the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- CLAS 203 (3) Greek Mythology
- ENVR 203 (3) Knowledge, Ethics and Environment
- ENVR 400 (3) Environmental Thought
- FACC 220 (3) Law for Architects and Engineers
- FACC 500 (3) Technology Business Plan Design
- FACC 501 (3) Technology Business Plan Project
- HISP 225 (3) Hispanic Civilization 1
- HISP 226 (3) Hispanic Civilization 2
- INDR 294* (3) Introduction to Labour-Management Relations
- INTG 201** (3) Integrated Management Essentials 1
- INTG 202** (3) Integrated Management Essentials 2
- MATH 338 (3) History and Philosophy of Mathematics
- MGCR 222* (3) Introduction to Organizational Behaviour
- MGCR 352* (3) Principles of Marketing
- ORGB 321* (3) Leadership
- ORGB 423* (3) Human Resources Management

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

12.6 Mechanical Engineering

12.6.1 Location

Macdonald Engineering Building, Room 270
12.6.2 About the Department of Mechanical Engineering

Mechanical engineers are involved in the conception, design, implementation, and operation of mechanical systems. Typical application areas include aerospace, energy, manufacturing, machinery, and transportation. Because of the very broad nature of the discipline, there is a high demand for mechanical engineers.

Many mechanical engineers follow other career paths. Graduate studies are useful for the specialists working in research establishments, consulting firms, or in corporate research and development.

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design engineering courses, which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

Concentrations in Aeronautical Engineering and Design are available for students in either the regular or Honours program who wish to specialize in these areas.

While the program is demanding, there is time for many extracurricular activities. Students are active in such professional societies as CASI (Canadian Aeronautics and Space Institute), SAE (Society of Automotive Engineers), and ASME (American Society of Mechanical Engineers), and in various campus organizations.

Relations between faculty and students are extremely close. Social functions, at which students and professors meet to exchange views and get to know each other, are organized frequently.

12.6.3 Mechanical Engineering Faculty

Chair
Meyer Nahon

Associate Chair (Curriculum Affairs)
David L. Frost

Associate Chair (Undergraduate Affairs)
Srikar T. Vengallatore

Associate Chair (Graduate Affairs)
François Barthelat

Director, M.Eng. Aerospace Program
Mathias Legrand

Emeritus Professors
Abdul M. Ahmed; B.Sc.(Dhaka), Ph.D.(McG.), ing. (Thomas Workman Emeritus Professor of Mechanical Engineering)
Romuald Knystautas; B.Eng., M.Eng., Ph.D.(McG.), ing.
Stuart J. Price; B.Sc., Ph.D.(Brist.), P.Eng.

Associate Professors (Post-Retirement)
Vince Thomson; B.Sc.(Windsor), Ph.D.(McM.)
Paul J. Zsombor-Murray; B.Eng., M.Eng., Ph.D.(McG.), ing., F.C.S.M.E.
Professors

Marco Amabili; M.Sc.(Ancona), Ph.D.(Bologna), F.A.S.M.E. (*Canada Research Chair*)

Bantwal R. Baliga; B.Tech.(I.I.T. Kanpur), M.Sc.(Case West.), Ph.D.(Minn.)

François Barthelat; M.Sc.(Roch.), Ph.D.(N’western)

Wagdi G. Habashi; B.Eng., M.Eng.(McG.), Ph.D.(Cornell), ing., F.A.S.M.E., F.A.I.A.A., F.C.A.E., F.R.S.C. (*NSERC; Lockheed Martin; Bell Helicopter Industrial Research Chair*)

Pascal Hubert; B.Eng., M.A.Sc.(École Poly., Montr.), Ph.D.(Br. Col.), ing. (*Warner Graupe Professor*)

Larry B. Lessard; B.Eng.(McG.), M.Sc., Ph.D.(Stan.), ing.

Luc Mongeau; B.Sc., M.Sc.(École Poly., Montr.), Ph.D.(Penn St.), ing. (*Canada Research Chair*)

Rosaire Mongrain; B.Sc., M.Sc.(Montr.), Ph.D.(École Poly., Montr.), ing. (*William Dawson Scholar*)

Meyer Nahon; B.Sc.(Qu.), M.Sc.(Tor.), Ph.D.(McG.), ing., A.F.A.I.A.A.

Damiano Pasini; M.Sc.(Pavia), Ph.D.(Brist.), ing.

Inna Sharf; B.A.Sc., Ph.D.(Tor.)

Associate Professors

Jeffrey M. Bergthorson; B.Sc.(Manit.), M.Sc., Ph.D.(Calif. Tech.), P.Eng.

Andrew J. Higgins; B.Sc.(Ill.), M.S., Ph.D.(Wash.)

Michael Kokkolaras; Dipl.Ing.(TUM), Ph.D.(Rice)

Jozsef Kövecses; M.Sc.(U. Miskolc), Ph.D.(Hung. Acad. Sci.), ing.

Tim Lee; M.S.(Portland St.), Ph.D.(Idaho)

Laurent Mydlarski; B. Sc.(Wat.), Ph.D.(Cornell)

Siva Nadarajah; B.Sc.(Kansas), M.S., Ph.D.(Stan.)

Evgeny V. Timofeev; M.Sc., Ph.D.(S.T.U. St. Petersburg), Eng., A.F.A.I.A.A.

Srikar T. Vengallatore; B.Tech.(B.H.U), Ph.D.(MIT)

Assistant Professors

James R. Forbes; Ph.D.(Tor), B.Eng.(Wat.)

Mathias Legrand; M.Sc., Ph.D.(École Centrale, Nantes)

Jianyu Li; B.Eng.(Zhejiang), M.Sc., Ph.D.(Harv.)

Jovan Nedi ; M.Eng., Ph.D.(Imperial Coll.)

Yuoyao Fiona Zhao; B.Eng.(B.I.T.), M.Eng., Ph.D.(Auck.)

Adjunct Professors

Farbod Alijani

Helmi Attea

Olivier Bertrand

Gilles Bourque

Luca Cortelezzii

Farhang Daneshmand

Xinyu Liu

Mouhab Meshreki

Alireza Najafi-Yazdi
Adjunct Professors
Aditya Paranjape
Peter Radziszewski
Gilles Soulez

Course Lecturers
Marwan Kanaan
Richard Klopp
Alexei Morozov
Amar Sabih

Associate Members
Jake Barralet
Renzo Cecere
Allen Ehrlicher
Dan Nicolau
Abdolhamid Akbarzadeh Shafaroud

12.6.4 Bachelor of Engineering (B.Eng.) - Mechanical Engineering (142 credits)

Program credit weight: 142-148 credits
Program credit weight for Quebec CEGEP students: 119 credits
Program credit weight for out-of-province students: 142 credits

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design engineering courses which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

Special interests are satisfied by selecting appropriate complementary courses from among those offered with a specific subject concentration, such as management, industrial engineering, computer science, controls and robotics, bio-engineering, aeronautics, combustion, systems engineering, etc.

Required Year 0 (Freshman) Courses
29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

CHEM 110 (4) General Chemistry 1
CHEM 120 (4) General Chemistry 2
MATH 133 (3) Linear Algebra and Geometry
MATH 140 (3) Calculus 1
MATH 141 (4) Calculus 2
PHYS 131 (4) Mechanics and Waves
PHYS 142 (4) Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses
33 credits
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>4</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>ECSE 461</td>
<td>3</td>
<td>Electric Machinery</td>
</tr>
<tr>
<td>FACC 100</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>0</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>3</td>
<td>Advanced Calculus for Engineers</td>
</tr>
<tr>
<td>MATH 271</td>
<td>3</td>
<td>Linear Algebra and Partial Differential Equations</td>
</tr>
<tr>
<td>MIME 260</td>
<td>3</td>
<td>Materials Science and Engineering</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Mechanical Engineering Courses

65 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 201</td>
<td>2</td>
<td>Introduction to Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 210</td>
<td>2</td>
<td>Mechanics 1</td>
</tr>
<tr>
<td>MECH 220</td>
<td>4</td>
<td>Mechanics 2</td>
</tr>
<tr>
<td>MECH 240</td>
<td>3</td>
<td>Thermodynamics 1</td>
</tr>
<tr>
<td>MECH 262</td>
<td>3</td>
<td>Statistics and Measurement Laboratory</td>
</tr>
<tr>
<td>MECH 290</td>
<td>3</td>
<td>Design Graphics for Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 292</td>
<td>3</td>
<td>Design 1: Conceptual Design</td>
</tr>
<tr>
<td>MECH 309</td>
<td>3</td>
<td>Numerical Methods in Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 314</td>
<td>3</td>
<td>Dynamics of Mechanisms</td>
</tr>
<tr>
<td>MECH 315</td>
<td>4</td>
<td>Mechanics 3</td>
</tr>
<tr>
<td>MECH 321</td>
<td>3</td>
<td>Mechanics of Deformable Solids</td>
</tr>
<tr>
<td>MECH 331</td>
<td>3</td>
<td>Fluid Mechanics 1</td>
</tr>
<tr>
<td>MECH 341</td>
<td>3</td>
<td>Thermodynamics 2</td>
</tr>
<tr>
<td>MECH 346</td>
<td>3</td>
<td>Heat Transfer</td>
</tr>
<tr>
<td>MECH 360</td>
<td>3</td>
<td>Principles of Manufacturing</td>
</tr>
<tr>
<td>MECH 362</td>
<td>2</td>
<td>Mechanical Laboratory 1</td>
</tr>
<tr>
<td>MECH 383</td>
<td>3</td>
<td>Applied Electronics and Instrumentation</td>
</tr>
<tr>
<td>MECH 393</td>
<td>3</td>
<td>Design 2: Machine Element Design</td>
</tr>
<tr>
<td>MECH 412</td>
<td>3</td>
<td>System Dynamics and Control</td>
</tr>
<tr>
<td>MECH 430</td>
<td>3</td>
<td>Fluid Mechanics 2</td>
</tr>
<tr>
<td>MECH 463D1</td>
<td>3</td>
<td>Design 3: Mechanical Engineering Project</td>
</tr>
<tr>
<td>MECH 463D2</td>
<td>3</td>
<td>Design 3: Mechanical Engineering Project</td>
</tr>
</tbody>
</table>

Technical Complementary Courses

9 credits
6 credits at the 300 level or higher, chosen from Mechanical Engineering courses (subject code MECH). One of these two courses (3 credits) must be from the following list:

- CHEE 563* (3) Biofluids and Cardiovascular Mechanics
- MECH 497 (3) Value Engineering
- MECH 498 (3) Interdisciplinary Design Project 1
- MECH 499 (3) Interdisciplinary Design Project 2
- MECH 513 (3) Control Systems
- MECH 529 (3) Discrete Manufacturing Systems
- MECH 530 (3) Mechanics of Composite Materials
- MECH 532 (3) Aircraft Performance, Stability and Control
- MECH 535 (3) Turbomachinery and Propulsion
- MECH 536 (3) Aerospace Structures
- MECH 541 (3) Kinematic Synthesis
- MECH 543 (3) Design with Composite Materials
- MECH 544 (3) Processing of Composite Materials
- MECH 553 (3) Design and Manufacture of Microdevices
- MECH 557 (3) Mechatronic Design
- MECH 559 (3) Engineering Systems Optimization
- MECH 563* (3) Biofluids and Cardiovascular Mechanics
- MECH 565 (3) Fluid Flow and Heat Transfer Equipment
- MECH 573 (3) Mechanics of Robotic Systems
- MECH 577 (3) Optimum Design

* Students select either CHEE 563 or MECH 563.

3 credits chosen from courses at the 300 level or higher (approved by the Department) in the Faculty of Engineering (including MECH courses) or from courses in the Faculty of Science, including MATH courses.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

- ANTH 212 (3) Anthropology of Development
- BTEC 502 (3) Biotechnology Ethics and Society
- CIVE 469 (3) Infrastructure and Society
- ECON 225 (3) Economics of the Environment
- ECON 347 (3) Economics of Climate Change
- ENVR 201 (3) Society, Environment and Sustainability
- GEOG 200 (3) Geographical Perspectives: World Environmental Problems
- GEOG 203 (3) Environmental Systems
- GEOG 205 (3) Global Change: Past, Present and Future
- GEOG 302 (3) Environmental Management 1
- MGPO 440* (3) Strategies for Sustainability
- PHIL 343 (3) Biomedical Ethics
Religious Ethics and the Environment (3) RELG 270
Technology and Society (3) SOCI 235
Sociology of Work and Industry (3) SOCI 312
Planning the 21st Century City (3) URBP 201

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

Anthropology (ANTH)
Economics (any 200- or 300-level course excluding ECON 227, and ECON 337)
History (HIST)
Philosophy (excluding PHIL 210 and PHIL 310)
Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
School of Social Work (SWRK)
Sociology (excluding SOCI 350)

OR one of the following:

ARCH 528 (3) History of Housing
BUSA 465* (3) Technological Entrepreneurship
CLAS 203 (3) Greek Mythology
ENVR 203 (3) Knowledge, Ethics and Environment
ENVR 400 (3) Environmental Thought
FACC 220 (3) Law for Architects and Engineers
FACC 500 (3) Technology Business Plan Design
FACC 501 (3) Technology Business Plan Project
HISP 225 (3) Hispanic Civilization 1
HISP 226 (3) Hispanic Civilization 2
INDR 294* (3) Introduction to Labour-Management Relations
INTG 201** (3) Integrated Management Essentials 1
INTG 202** (3) Integrated Management Essentials 2
MATH 338 (3) History and Philosophy of Mathematics
MGCR 222* (3) Introduction to Organizational Behaviour
MGCR 352* (3) Principles of Marketing
ORGB 321* (3) Leadership
ORGB 423* (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.
Elective Courses

0-6 credits
Students from Quebec CEGEPs must take 6 credits of courses at the 200 level or higher from the following faculties/schools:
- Desautels Faculty of Management
- Faculty of Agricultural and Environmental Sciences
- Faculty of Arts
- Faculty of Engineering
- Faculty of Religious Studies
- Faculty of Science
- Schulich School of Music

Typical Program of Study

Students entering the program from Quebec CEGEPs follow a different curriculum from those entering from outside the province. Students will be advised by the Department as to which courses they should select from the course lists above.

For a detailed curriculum, please see http://www.mcgill.ca/mecheng/undergrad/curriculum.

For all minors and concentrations, students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the minor or concentration.

12.6.5 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering (142 credits)

Program credit weight: 142-148 credits
Program credit weight for Quebec CEGEP students: 119 credits
Program credit weight for out-of-province students: 142 credits

To prepare the mechanical engineer for a wide range of career possibilities, there is a heavy emphasis in our curriculum on the fundamental analytical disciplines. This is balanced by a sequence of experimental and design Engineering courses, which include practice in design, manufacturing, and experimentation. In these courses, students learn how to apply their analytical groundwork to the solution of practical problems.

The Honours program is particularly suitable for those with a high aptitude in mathematics and physics and gives a thorough grounding in the basic engineering sciences.

Special interests are satisfied by selecting appropriate complementary courses from among those offered with a specific subject concentration, such as management, industrial engineering, computer science, controls and robotics, bio-engineering, aeronautics, combustion, systems engineering, etc.

Required Year 0 (Freshman) Courses

29 credits
Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
<tr>
<td>MATH 141</td>
<td>4</td>
<td>Calculus 2</td>
</tr>
<tr>
<td>PHYS 131</td>
<td>4</td>
<td>Mechanics and Waves</td>
</tr>
<tr>
<td>PHYS 142</td>
<td>4</td>
<td>Electromagnetism and Optics</td>
</tr>
</tbody>
</table>

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>(3)</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>(4)</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>(3)</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>(1)</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>(0)</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>(3)</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>(1)</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>(3)</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>(3)</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>(3)</td>
<td>Advanced Calculus for Engineers</td>
</tr>
<tr>
<td>MATH 271</td>
<td>(3)</td>
<td>Linear Algebra and Partial Differential Equations</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Mechanical Engineering Courses

62 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 201</td>
<td>(2)</td>
<td>Introduction to Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 210</td>
<td>(2)</td>
<td>Mechanics 1</td>
</tr>
<tr>
<td>MECH 220</td>
<td>(4)</td>
<td>Mechanics 2</td>
</tr>
<tr>
<td>MECH 240</td>
<td>(3)</td>
<td>Thermodynamics 1</td>
</tr>
<tr>
<td>MECH 262</td>
<td>(3)</td>
<td>Statistics and Measurement Laboratory</td>
</tr>
<tr>
<td>MECH 290</td>
<td>(3)</td>
<td>Design Graphics for Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 292</td>
<td>(3)</td>
<td>Design 1: Conceptual Design</td>
</tr>
<tr>
<td>MECH 309</td>
<td>(3)</td>
<td>Numerical Methods in Mechanical Engineering</td>
</tr>
<tr>
<td>MECH 321</td>
<td>(3)</td>
<td>Mechanics of Deformable Solids</td>
</tr>
<tr>
<td>MECH 331</td>
<td>(3)</td>
<td>Fluid Mechanics 1</td>
</tr>
<tr>
<td>MECH 341</td>
<td>(3)</td>
<td>Thermodynamics 2</td>
</tr>
<tr>
<td>MECH 346</td>
<td>(3)</td>
<td>Heat Transfer</td>
</tr>
<tr>
<td>MECH 360</td>
<td>(3)</td>
<td>Principles of Manufacturing</td>
</tr>
<tr>
<td>MECH 362</td>
<td>(2)</td>
<td>Mechanical Laboratory 1</td>
</tr>
<tr>
<td>MECH 383</td>
<td>(3)</td>
<td>Applied Electronics and Instrumentation</td>
</tr>
<tr>
<td>MECH 403D1</td>
<td>(3)</td>
<td>Thesis (Honours)</td>
</tr>
<tr>
<td>MECH 403D2</td>
<td>(3)</td>
<td>Thesis (Honours)</td>
</tr>
<tr>
<td>MECH 404</td>
<td>(3)</td>
<td>Honours Thesis 2</td>
</tr>
<tr>
<td>MECH 419</td>
<td>(4)</td>
<td>Advanced Mechanics of Systems</td>
</tr>
<tr>
<td>MECH 430</td>
<td>(3)</td>
<td>Fluid Mechanics 2</td>
</tr>
<tr>
<td>MECH 494</td>
<td>(3)</td>
<td>Honours Design Project</td>
</tr>
</tbody>
</table>

Technical Complementary Courses

18 credits

3 credits from the following, chosen with the approval of either the thesis supervisor or the coordinator of the Honours program, when a thesis supervisor has not yet been secured:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 323</td>
<td>(3)</td>
<td>Probability</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>MATH 326</td>
<td>(3)</td>
<td>Nonlinear Dynamics and Chaos</td>
</tr>
<tr>
<td>MATH 327</td>
<td>(3)</td>
<td>Matrix Numerical Analysis</td>
</tr>
<tr>
<td>MATH 363</td>
<td>(3)</td>
<td>Discrete Mathematics</td>
</tr>
<tr>
<td>MATH 381</td>
<td>(3)</td>
<td>Complex Variables and Transforms</td>
</tr>
<tr>
<td>MATH 407</td>
<td>(3)</td>
<td>Dynamic Programming</td>
</tr>
<tr>
<td>MATH 417</td>
<td>(3)</td>
<td>Linear Optimization</td>
</tr>
</tbody>
</table>

6 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 513</td>
<td>(3)</td>
<td>Control Systems</td>
</tr>
<tr>
<td>MECH 546</td>
<td>(3)</td>
<td>Finite Element Methods in Solid Mechanics</td>
</tr>
<tr>
<td>MECH 562</td>
<td>(3)</td>
<td>Advanced Fluid Mechanics</td>
</tr>
<tr>
<td>MECH 577*</td>
<td>(3)</td>
<td>Optimum Design</td>
</tr>
<tr>
<td>MECH 578</td>
<td>(3)</td>
<td>Advanced Thermodynamics</td>
</tr>
<tr>
<td>MECH 579*</td>
<td>(3)</td>
<td>Multidisciplinary Design Optimization</td>
</tr>
</tbody>
</table>

* Note: Students select either MECH 577 or MECH 579

6 credits at the 300 level or higher, chosen from Mechanical Engineering courses (subject code MECH). One of these two courses (3 credits) must be from the following list:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 563*</td>
<td>(3)</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>MECH 497</td>
<td>(3)</td>
<td>Value Engineering</td>
</tr>
<tr>
<td>MECH 498</td>
<td>(3)</td>
<td>Interdisciplinary Design Project 1</td>
</tr>
<tr>
<td>MECH 499</td>
<td>(3)</td>
<td>Interdisciplinary Design Project 2</td>
</tr>
<tr>
<td>MECH 513</td>
<td>(3)</td>
<td>Control Systems</td>
</tr>
<tr>
<td>MECH 529</td>
<td>(3)</td>
<td>Discrete Manufacturing Systems</td>
</tr>
<tr>
<td>MECH 530</td>
<td>(3)</td>
<td>Mechanics of Composite Materials</td>
</tr>
<tr>
<td>MECH 532</td>
<td>(3)</td>
<td>Aircraft Performance, Stability and Control</td>
</tr>
<tr>
<td>MECH 535</td>
<td>(3)</td>
<td>Turbomachinery and Propulsion</td>
</tr>
<tr>
<td>MECH 536</td>
<td>(3)</td>
<td>Aerospace Structures</td>
</tr>
<tr>
<td>MECH 541</td>
<td>(3)</td>
<td>Kinematic Synthesis</td>
</tr>
<tr>
<td>MECH 543</td>
<td>(3)</td>
<td>Design with Composite Materials</td>
</tr>
<tr>
<td>MECH 544</td>
<td>(3)</td>
<td>Processing of Composite Materials</td>
</tr>
<tr>
<td>MECH 553</td>
<td>(3)</td>
<td>Design and Manufacture of Microdevices</td>
</tr>
<tr>
<td>MECH 557</td>
<td>(3)</td>
<td>Mechatronic Design</td>
</tr>
<tr>
<td>MECH 559</td>
<td>(3)</td>
<td>Engineering Systems Optimization</td>
</tr>
<tr>
<td>MECH 563*</td>
<td>(3)</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>MECH 565</td>
<td>(3)</td>
<td>Fluid Flow and Heat Transfer Equipment</td>
</tr>
<tr>
<td>MECH 573</td>
<td>(3)</td>
<td>Mechanics of Robotic Systems</td>
</tr>
<tr>
<td>MECH 577*</td>
<td>(3)</td>
<td>Optimum Design</td>
</tr>
</tbody>
</table>

*Students choose either CHEE 563 or MECH 563

3 credits chosen from courses at the 300-level or higher (approved by the Department) in the Faculty of Engineering (including MECH courses) or from MIME 260 or from courses at the 300 level or higher in the Faculty of Science, including MATH courses.

Complementary Studies
6 credits

Group A - Impact of Technology on Society

3 credits from the following:

- ANTH 212 (3) Anthropology of Development
- BTEC 502 (3) Biotechnology Ethics and Society
- CIVE 469 (3) Infrastructure and Society
- ECON 225 (3) Economics of the Environment
- ECON 347 (3) Economics of Climate Change
- ENVR 201 (3) Society, Environment and Sustainability
- GEOG 200 (3) Geographical Perspectives: World Environmental Problems
- GEOG 203 (3) Environmental Systems
- GEOG 205 (3) Global Change: Past, Present and Future
- MGPO 440* (3) Strategies for Sustainability
- PHIL 343 (3) Biomedical Ethics
- RELG 270 (3) Religious Ethics and the Environment
- SOCI 235 (3) Technology and Society
- SOCI 312 (3) Sociology of Work and Industry
- URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B: Humanities and Social Sciences, Management Studies and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR one of the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
- CLAS 203 (3) Greek Mythology
- ENVR 203 (3) Knowledge, Ethics and Environment
- ENVR 400 (3) Environmental Thought
- FACC 220 (3) Law for Architects and Engineers
- FACC 500 (3) Technology Business Plan Design
- FACC 501 (3) Technology Business Plan Project
- HISP 225 (3) Hispanic Civilization 1
- HISP 226 (3) Hispanic Civilization 2
Elective Courses

0-6 credits

Students from Quebec CEGEPs must take 6 credits of courses at the 200 level or higher from the following faculties/schools:

- Desautels Faculty of Management
- Faculty of Agricultural and Environmental Sciences
- Faculty of Arts
- Faculty of Engineering
- Faculty of Religious Studies
- Faculty of Science
- Schulich School of Music

Typical Program of Study

Students entering the program from CEGEP follow a different curriculum from those entering from out of province. Students will be advised by the Department as to which courses they should select from the course lists above.

For a detailed curriculum, see http://www.mcgill.ca/mecheng/undergrad/curriculum.

For all minors and concentrations, students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the minor or concentration.

12.6.6 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Aeronautical Engineering (15 credits)

Students in this concentration take five courses in the area of Aeronautical Engineering. All courses must be passed with a grade of C or better.

Students should discuss their course selection with their adviser and complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses (6 credits)

6 credits

- MECH 532 (3) Aircraft Performance, Stability and Control
- MECH 533 (3) Subsonic Aerodynamics

Complementary Courses (9 credits)

- MECH 535 (3) Turbomachinery and Propulsion
MECH 536 (3) Aerospace Structures
MECH 537 (3) High-Speed Aerodynamics
MECH 538 (3) Unsteady Aerodynamics
MECH 539 (3) Computational Aerodynamics
MECH 559* (3) Engineering Systems Optimization
MECH 565 (3) Fluid Flow and Heat Transfer Equipment
MECH 566 (3) Fluid-Structure Interactions
MECH 567 (3) Structural Dynamics of Turbomachines
MECH 579* (3) Multidisciplinary Design Optimization

* Students cannot get credit for both MECH 559 and MECH 579.

12.6.7 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Aeronautical Engineering (15 credits)

Students in this concentration take five courses in the area of aeronautical engineering. All courses must be passed with a grade of C or better.

Students should discuss their course selection with their adviser and complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Required Courses (6 credits)

6 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 532</td>
<td>(3)</td>
<td>Aircraft Performance, Stability and Control</td>
</tr>
<tr>
<td>MECH 533</td>
<td>(3)</td>
<td>Subsonic Aerodynamics</td>
</tr>
</tbody>
</table>

Complementary Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 535</td>
<td>(3)</td>
<td>Turbomachinery and Propulsion</td>
</tr>
<tr>
<td>MECH 536</td>
<td>(3)</td>
<td>Aerospace Structures</td>
</tr>
<tr>
<td>MECH 537</td>
<td>(3)</td>
<td>High-Speed Aerodynamics</td>
</tr>
<tr>
<td>MECH 538</td>
<td>(3)</td>
<td>Unsteady Aerodynamics</td>
</tr>
<tr>
<td>MECH 539</td>
<td>(3)</td>
<td>Computational Aerodynamics</td>
</tr>
<tr>
<td>MECH 559*</td>
<td>(3)</td>
<td>Engineering Systems Optimization</td>
</tr>
<tr>
<td>MECH 565</td>
<td>(3)</td>
<td>Fluid Flow and Heat Transfer Equipment</td>
</tr>
<tr>
<td>MECH 566</td>
<td>(3)</td>
<td>Fluid-Structure Interactions</td>
</tr>
<tr>
<td>MECH 567</td>
<td>(3)</td>
<td>Structural Dynamics of Turbomachines</td>
</tr>
<tr>
<td>MECH 579*</td>
<td>(3)</td>
<td>Multidisciplinary Design Optimization</td>
</tr>
</tbody>
</table>

* Students cannot get credit for both MECH 559 and MECH 579.

12.6.8 Bachelor of Engineering (B.Eng.) - Mechanical Engineering - Design (15 credits)

Students in this concentration take five courses in the area of design, including the completion of an interdisciplinary project.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Total concentration credit weight: 15-16 credits

Required Courses

6 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 498</td>
<td>(3)</td>
<td>Interdisciplinary Design Project 1</td>
</tr>
</tbody>
</table>
MECH 499 (3) Interdisciplinary Design Project 2

Complementary Courses

9-10 credits from the following:

- ARCH 515 (3) Sustainable Design
- CHEE 453 (4) Process Design
- MECH 497 (3) Value Engineering
- MECH 526 (3) Manufacturing and the Environment
- MECH 528 (3) Product Design
- MECH 530 (3) Mechanics of Composite Materials
- MECH 541 (3) Kinematic Synthesis
- MECH 543 (3) Design with Composite Materials
- MECH 557 (3) Mechatronic Design
- MECH 565 (3) Fluid Flow and Heat Transfer Equipment
- MECH 577 (3) Optimum Design
- MECH 579 (3) Multidisciplinary Design Optimization

12.6.9 Bachelor of Engineering (B.Eng.) - Honours Mechanical Engineering - Design (15 credits)

Students in this concentration take five courses in the area of design, including the completion of an interdisciplinary project.

Students should complete a Course Authorization Form, available from the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) or from the Undergraduate Program Coordinator, indicating their intention to take the concentration.

Total concentration credit weight: 15-16 credits

Required Courses

6 credits

- MECH 498 (3) Interdisciplinary Design Project 1
- MECH 499 (3) Interdisciplinary Design Project 2

Complementary Courses

9-10 credits from the following:

- ARCH 515 (3) Sustainable Design
- CHEE 453 (4) Process Design
- MECH 497 (3) Value Engineering
- MECH 526 (3) Manufacturing and the Environment
- MECH 528 (3) Product Design
- MECH 530 (3) Mechanics of Composite Materials
- MECH 541 (3) Kinematic Synthesis
- MECH 543 (3) Design with Composite Materials
- MECH 557 (3) Mechatronic Design
- MECH 565 (3) Fluid Flow and Heat Transfer Equipment
- MECH 577 (3) Optimum Design
- MECH 579 (3) Multidisciplinary Design Optimization
12.7 Mining and Materials Engineering

12.7.1 Location

General Office:
Wong Building, Room 2140
3610 University Street
Montreal QC H3A 0C5
Website: www.mcgill.ca/minmat

Materials:
Wong Building, Room 2140
3610 University Street
Montreal QC H3A 0C5
Telephone: 514-398-1040
Fax: 514-398-4492
Email: coordinator.minmat@mcgill.ca
Website: www.mcgill.ca/materials

Mining:
Frank Dawson Adams Building, Room 125
3450 University Street
Montreal QC H3A 0E8
Telephone: 514-398-2215
Fax: 514-398-7099
Email: admin.mining@mcgill.ca
Website: www.mcgill.ca/mining

12.7.2 About the Department of Mining and Materials Engineering

The Department of Mining and Materials Engineering offers programs leading to the Bachelor of Engineering degree in Materials Engineering or Mining Engineering. In addition to regular courses and laboratories, the curriculum includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

For more information, refer to:
- Materials Engineering – section 12.7.4.3: Bachelor of Engineering (B.Eng.) - Materials Engineering (148 credits) and section 12.7.4.4: Bachelor of Engineering (B.Eng.) - Materials Engineering CO-OP (148 credits)
- Mining Engineering – and section 12.7.5.3: Bachelor of Engineering (B.Eng.) - Mining Engineering (144 credits) and section 12.7.5.4: Bachelor of Engineering (B.Eng.) - Co-op in Mining Engineering (150 credits)

12.7.2.1 Scholarships

The Department offers renewable Entrance Scholarships every year. A substantial number of other scholarships and bursaries are also awarded by the Department, as well as by the Canadian Mineral Industry Education Foundation, Canadian Institute of Mining Foundation, Quebec Mining Association, and others.

Please refer to the Faculty of Engineering website's Scholarships and Financial Aid section for more information.

12.7.3 Mining and Materials Engineering Faculty

Department Chair
George P. Demopoulos

Associate Chair, Materials Engineering Program
Richard Chromik

Associate Chair & Graduate Program Director
Mathieu Brochu
Graduate Program Coordinator
Barbara Hanley

Director, Mining Engineering Program
Hani S. Mitri

Emeritus Professors
John E. Grubeski; B.Sc., M.Sc.(Qu.), Ph.D.(Tor.), Eng., F.C.I.M., F.A.S.M. (Gerald G. Hatch Emeritus Professor)

Post-Retirement Professor

Professors
George P. Demopoulos; Dipl.Eng.(NTU Athens), M.Sc., Ph.D.(McG.), Eng., F.C.I.M. (Gerald G. Hatch Professor)
Roussos Dimitrakopoulos; B.Sc.(Thessaloniki), M.Sc.(Alta.), Ph.D.(École Poly., Montr.) (Canada Research Chair I)
Raynaldu Gauvin; B.Eng., Ph.D.(Montr.), Eng. (Henry Birks Professor)
Faramarz (Ferri) P Hassani; B.Sc., Ph.D.(Nott.) (George Boyd Webster Professor)
Hani S. Mitri; B.Sc.(Cairo), M.Eng., Ph.D.(McM.), Eng.
Stephan Yue; B.Sc., Ph.D.(Leeds), P.Eng. (James McGill Professor) (Lorne Trottier Chair in Aerospace Engineering)

Associate Professors
Kirk Bevan; B.Eng.(Western), Ph.D.(Purd.), P.Eng. (on sabbatical July to Dec. 2018)
Mathieu Brochu; B.Eng.(Laval), Ph.D.(McG.), Eng. (Hatch Faculty Fellow)
Marta Cerruti; B.Sc., Ph.D., Laurea in Chemistry(Torino), P.Eng. (Canada Research Chair II)
Richard Chromik; B.Sc.(Penn. St.), M.Sc., Ph.D.(SUNY/Binghamton), P.Eng. (Hatch Faculty Fellow)
Mainul Hasan; B.Eng.(Dhaka), M.Eng.(Dahran), Ph.D.(McG.) (on sabbatical Jan. to June 2019)
Showan Nazhat; B.Eng., M.Sc., Ph.D.(Lond.), P.Eng.
Mehriban Pekguleryuz; B.Sc., M.Eng.(Flor.), Ph.D.(McG.), Eng.
Nathaniel Quitoriano; B.S.(Calif., Berk.), Ph.D.(MIT), P.Eng.
Jun Song; B.Sc.(USTC), M.Sc., Ph.D.(Princ.), P.Eng. (on sabbatical July to Dec. 2018)
Kristian Waters; M.Eng., M.Sc.(UMIST), Ph.D.(Birm.), P.Eng.

Assistant Professor
Agus Pulung Sasmito; B.Eng.(Univ. Gadjah Mada), Ph.D.(NUS)

Adjunct Professors
Michel Gamache, Xueqiu He, Ahmad Hemami, In-Ho Jung, Alessandro Navarra, Jan Nesset, Marco Quirion, Karim Zaghib

Faculty Lecturer
Florence Paray; B.Eng.(CSP), M.Eng., Ph.D.(McG.), Eng.

Course Lecturers – Mining
Yves Buro
12.7.4 About Materials Engineering

12.7.4.1 Materials Engineering (Co-op)

The Materials Engineering degree is a cooperative program leading to a B.Eng, and includes formal industrial work periods. It is built on a strong background of mathematics, basic sciences, computer skills and applications, and specific engineering and design courses to provide up-to-date training in materials engineering. Students take core courses covering processing, fabrication, applications, and performance of materials.

The program is fully accredited by the Canadian Engineering Accreditation Board (CEAB) and is designed to offer students exceptional training for employment in the field.

The core courses are supplemented by complementary courses, which provide a diverse selection of specialties for the graduating engineer. The course structure is reinforced with laboratory exercises. Graduates find employment in a wide range of industries, including the resource and manufacturing sectors. Students in the Co-op program benefit from practical learning experience gained from work-term employment in meaningful engineering jobs, as well as non-tangible learning experiences arising from the responsibilities required to obtain and successfully complete the work terms.

Regarding the Co-op program fees, an amount of $220.57 will be billed during ten consecutive terms for a total amount of $2,205.70 before graduation. These fees cover expenses directly related to the operation of the Co-op program. Students must register for each of their industrial training courses within the university registration period for returning students or late fees will apply. Before registering for any work term course, students must contact the Materials Co-op Liaison Officer for approval.

12.7.4.2 Student Advising

Students entering this program must plan their schedule of studies in consultation with one of the departmental advisers. Appointments may be obtained by contacting the Administrative and Student Affairs Coordinator.

For more information, please refer to the Academic Advising section of our website.

12.7.4.3 Bachelor of Engineering (B.Eng.) - Materials Engineering (148 credits)

Program credit weight: 148 credits

Program credit weight for Quebec CEGEP students: 119 credits

Enrolment in this program is subject to departmental approval, please consult with an Academic Advisor within the appropriate program further to discuss your suitability in this program.

The department offers a Major in Materials Engineering leading to an accredited B.Eng. degree in Materials Engineering. Materials are used to enact every human technology and have shaped key eras in history. In the Major in Materials Engineering, students will have the opportunity to learn the fundamental science and engineering of materials. The program spans the materials processing pipeline, teaching students how to enrich mineral-poor ore, then to process the materials into the desired microstructures and compositions and finally how to use these materials in various applications (aerospace, electronics and biological systems). With the choice of technical complementary courses, students have an opportunity to specialize and strengthen key materials technologies or broaden their horizons and take courses from several interdisciplinary areas.

Students entering this program must plan their schedule of studies in consultation with a departmental adviser.

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 110</td>
<td>4</td>
<td>General Chemistry 1</td>
</tr>
<tr>
<td>CHEM 120</td>
<td>4</td>
<td>General Chemistry 2</td>
</tr>
<tr>
<td>MATH 133</td>
<td>3</td>
<td>Linear Algebra and Geometry</td>
</tr>
<tr>
<td>MATH 140</td>
<td>3</td>
<td>Calculus 1</td>
</tr>
</tbody>
</table>
MATH 141 (4) Calculus 2
PHYS 131 (4) Mechanics and Waves
PHYS 142 (4) Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses
36 credits

- CCOM 206 (3) Communication in Engineering
- CHEM 233 (3) Topics in Physical Chemistry
- CIVE 205 (3) Statics
- CIVE 207 (4) Solid Mechanics
- COMP 208 (3) Computers in Engineering
- ECSE 461 (3) Electric Machinery
- FACC 100* (1) Introduction to the Engineering Profession
- FACC 250 (0) Responsibilities of the Professional Engineer
- FACC 300 (3) Engineering Economy
- FACC 400 (1) Engineering Professional Practice
- MATH 262 (3) Intermediate Calculus
- MATH 263 (3) Ordinary Differential Equations for Engineers
- MATH 264 (3) Advanced Calculus for Engineers
- MECH 289 (3) Design Graphics

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Materials Engineering Courses
62 credits

- MIME 209 (3) Mathematical Applications
- MIME 212 (3) Engineering Thermodynamics
- MIME 250 (3) Introduction to Extractive Metallurgy
- MIME 261 (3) Structure of Materials
- MIME 311 (3) Modelling and Automatic Control
- MIME 317 (3) Analytical and Characterization Techniques
- MIME 341 (3) Introduction to Mineral Processing
- MIME 345 (3) Applications of Polymers
- MIME 350 (3) Extractive Metallurgical Engineering
- MIME 352 (3) Hydrochemical Processing
- MIME 356 (4) Heat, Mass and Fluid Flow
- MIME 360 (3) Phase Transformations: Solids
- MIME 362 (3) Mechanical Properties
- MIME 380 (2) Industrial Training 2
- MIME 452 (4) Process and Materials Design
- MIME 455 (3) Advanced Process Engineering
MIME 456 (3) Steelmaking and Steel Processing
MIME 465 (3) Metallic and Ceramic Powders Processing
MIME 467 (3) Electronic Properties of Materials
MIME 470 (3) Engineering Biomaterials
MIME 473 (3) Introduction to Computational Materials Design

Complementary Courses (21 credits)

Technical Complementaries
15 credits
9-15 credits from the following:

CHEE 515* (3) Material Surfaces: A Biomimetic Approach
CIVE 512 (3) Advanced Civil Engineering Materials
MECH 530 (3) Mechanics of Composite Materials
MIME 410 (3) Research Project
MIME 442 (3) Analysis, Modelling and Optimization in Mineral Processing
MIME 512 (3) Corrosion and Degradation of Materials
MIME 515* (3) Material Surfaces: A Biomimetic Approach
MIME 526 (3) Mineral Economics
MIME 542 (3) Transmission Electron Microscopy
MIME 544 (3) Analysis: Mineral Processing Systems 1
MIME 545 (3) Analysis: Mineral Processing Systems 2
MIME 551 (3) Electrochemical Processing
MIME 556 (3) Sustainable Materials Processing
MIME 558 (3) Engineering Nanomaterials
MIME 559 (3) Aluminum Physical Metallurgy
MIME 560 (3) Joining Processes
MIME 561 (3) Advanced Materials Design
MIME 563 (3) Hot Deformation of Metals
MIME 565 (3) Aerospace Metallic-Materials and Manufacturing Processes
MIME 568 (3) Topics in Advanced Materials
MIME 569 (3) Electron Beam Analysis of Materials
MIME 570 (3) Micro- and Nano-Fabrication Fundamentals
MIME 571 (3) Surface Engineering
MIME 572 (3) Computational Thermodynamics
MIME 580 (3) Additive Manufacturing Using Metallic and Ceramic Materials

* Students choose either CHEE 515 or MIME 515, offered in alternate years.

6 credits may be taken from courses outside of the Department of Mining and Materials Engineering, with department approval.

Complementary Studies
6 credits

Group A - Impact of Technology on Society
3 credits from the following:
ANTH 212 (3) Anthropology of Development
BTEC 502 (3) Biotechnology Ethics and Society
CIVE 469 (3) Infrastructure and Society
ECON 225 (3) Economics of the Environment
ECON 347 (3) Economics of Climate Change
ENVR 201 (3) Society, Environment and Sustainability
GEOG 200 (3) Geographical Perspectives: World Environmental Problems
GEOG 203 (3) Environmental Systems
GEOG 205 (3) Global Change: Past, Present and Future
GEOG 302 (3) Environmental Management 1
MGPO 440* (3) Strategies for Sustainability
PHIL 343 (3) Biomedical Ethics
RELG 270 (3) Religious Ethics and the Environment
SOCI 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

* Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law
3 credits at the 200 level or higher from the following departments:
Anthropology (ANTH)
Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
History (HIST)
Philosophy (excluding PHIL 210 and PHIL 310)
Political Science (POLI)
Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
School of Social Work (SWRK)
Sociology (excluding SOCI 350)

OR 3 credits from the following:
ARCH 528 (3) History of Housing
BUSA 465* (3) Technological Entrepreneurship
CLAS 203 (3) Greek Mythology
ENVR 203 (3) Knowledge, Ethics and Environment
ENVR 400 (3) Environmental Thought
FACC 220 (3) Law for Architects and Engineers
FACC 500 (3) Technology Business Plan Design
FACC 501 (3) Technology Business Plan Project
HISP 225 (3) Hispanic Civilization 1
HISP 226 (3) Hispanic Civilization 2
INDR 294* (3) Introduction to Labour-Management Relations
INTG 201** (3) Integrated Management Essentials 1
INTG 202** (3) Integrated Management Essentials 2
MATH 338 (3) History and Philosophy of Mathematics
MGCR 222* (3) Introduction to Organizational Behaviour
MGCR 352* (3) Principles of Marketing
ORGB 321* (3) Leadership
ORGB 423* (3) Human Resources Management

* Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams building, Room 22) or email an adviser.

Note regarding language courses: Language course are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

12.7.4.4 Bachelor of Engineering (B.Eng.) - Materials Engineering CO-OP (148 credits)

Program credit weight: 148 credits
Program credit weight for Quebec CEGEP students: 119 credits
In addition to regular courses and laboratories, the B.Eng. Materials Engineering curriculum includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

Students entering this program must plan their schedule of studies in consultation with a departmental adviser.

Required Year 0 (Freshman) Courses
29 credits
Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 119-credit program.

CHEM 110 (4) General Chemistry 1
CHEM 120 (4) General Chemistry 2
MATH 133 (3) Linear Algebra and Geometry
MATH 140 (3) Calculus 1
MATH 141 (4) Calculus 2
PHYS 131 (4) Mechanics and Waves
PHYS 142 (4) Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses
33 credits

CCOM 206 (3) Communication in Engineering
CHEM 233 (3) Topics in Physical Chemistry
CIVE 205 (3) Statics
CIVE 207 (4) Solid Mechanics
COMP 208 (3) Computers in Engineering
FACC 100* (1) Introduction to the Engineering Profession
FACC 250 (0) Responsibilities of the Professional Engineer
FACC 300 (3) Engineering Economy
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACC 400</td>
<td>(1)</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>(3)</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>(3)</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>(3)</td>
<td>Advanced Calculus for Engineers</td>
</tr>
<tr>
<td>MECH 289</td>
<td>(3)</td>
<td>Design Graphics</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Materials Engineering Courses

71 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 461</td>
<td>(3)</td>
<td>Electric Machinery</td>
</tr>
<tr>
<td>MIME 209</td>
<td>(3)</td>
<td>Mathematical Applications</td>
</tr>
<tr>
<td>MIME 212</td>
<td>(3)</td>
<td>Engineering Thermodynamics</td>
</tr>
<tr>
<td>MIME 250</td>
<td>(3)</td>
<td>Introduction to Extractive Metallurgy</td>
</tr>
<tr>
<td>MIME 261</td>
<td>(3)</td>
<td>Structure of Materials</td>
</tr>
<tr>
<td>MIME 280</td>
<td>(2)</td>
<td>Industrial Training 1</td>
</tr>
<tr>
<td>MIME 311</td>
<td>(3)</td>
<td>Modelling and Automatic Control</td>
</tr>
<tr>
<td>MIME 317</td>
<td>(3)</td>
<td>Analytical and Characterization Techniques</td>
</tr>
<tr>
<td>MIME 341</td>
<td>(3)</td>
<td>Introduction to Mineral Processing</td>
</tr>
<tr>
<td>MIME 345</td>
<td>(3)</td>
<td>Applications of Polymers</td>
</tr>
<tr>
<td>MIME 350</td>
<td>(3)</td>
<td>Extractive Metallurgical Engineering</td>
</tr>
<tr>
<td>MIME 352</td>
<td>(3)</td>
<td>Hydrochemical Processing</td>
</tr>
<tr>
<td>MIME 356</td>
<td>(4)</td>
<td>Heat, Mass and Fluid Flow</td>
</tr>
<tr>
<td>MIME 360</td>
<td>(3)</td>
<td>Phase Transformations: Solids</td>
</tr>
<tr>
<td>MIME 362</td>
<td>(3)</td>
<td>Mechanical Properties</td>
</tr>
<tr>
<td>MIME 380</td>
<td>(2)</td>
<td>Industrial Training 2</td>
</tr>
<tr>
<td>MIME 452</td>
<td>(4)</td>
<td>Process and Materials Design</td>
</tr>
<tr>
<td>MIME 455</td>
<td>(3)</td>
<td>Advanced Process Engineering</td>
</tr>
<tr>
<td>MIME 456</td>
<td>(3)</td>
<td>Steelmaking and Steel Processing</td>
</tr>
<tr>
<td>MIME 465</td>
<td>(3)</td>
<td>Metallic and Ceramic Powders Processing</td>
</tr>
<tr>
<td>MIME 467</td>
<td>(3)</td>
<td>Electronic Properties of Materials</td>
</tr>
<tr>
<td>MIME 470</td>
<td>(3)</td>
<td>Engineering Biomaterials</td>
</tr>
<tr>
<td>MIME 473</td>
<td>(3)</td>
<td>Introduction to Computational Materials Design</td>
</tr>
<tr>
<td>MIME 480</td>
<td>(2)</td>
<td>Industrial Training 3</td>
</tr>
</tbody>
</table>

Complementary Courses

15 credits

Technical Complementaries

9 credits

6-9 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 515*</td>
<td>(3)</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
<tr>
<td>CIVE 512</td>
<td>(3)</td>
<td>Advanced Civil Engineering Materials</td>
</tr>
<tr>
<td>MECH 530</td>
<td>(3)</td>
<td>Mechanics of Composite Materials</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MIME 410</td>
<td>(3)</td>
<td>Research Project</td>
</tr>
<tr>
<td>MIME 442</td>
<td>(3)</td>
<td>Analysis, Modelling and Optimization in Mineral Processing</td>
</tr>
<tr>
<td>MIME 512</td>
<td>(3)</td>
<td>Corrosion and Degradation of Materials</td>
</tr>
<tr>
<td>MIME 515*</td>
<td>(3)</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
<tr>
<td>MIME 526</td>
<td>(3)</td>
<td>Mineral Economics</td>
</tr>
<tr>
<td>MIME 542</td>
<td>(3)</td>
<td>Transmission Electron Microscopy</td>
</tr>
<tr>
<td>MIME 544</td>
<td>(3)</td>
<td>Analysis: Mineral Processing Systems 1</td>
</tr>
<tr>
<td>MIME 545</td>
<td>(3)</td>
<td>Analysis: Mineral Processing Systems 2</td>
</tr>
<tr>
<td>MIME 551</td>
<td>(3)</td>
<td>Electrochemical Processing</td>
</tr>
<tr>
<td>MIME 553</td>
<td>(3)</td>
<td>Impact of Materials Production</td>
</tr>
<tr>
<td>MIME 556</td>
<td>(3)</td>
<td>Sustainable Materials Processing</td>
</tr>
<tr>
<td>MIME 558</td>
<td>(3)</td>
<td>Engineering Nanomaterials</td>
</tr>
<tr>
<td>MIME 559</td>
<td>(3)</td>
<td>Aluminum Physical Metallurgy</td>
</tr>
<tr>
<td>MIME 560</td>
<td>(3)</td>
<td>Joining Processes</td>
</tr>
<tr>
<td>MIME 561</td>
<td>(3)</td>
<td>Advanced Materials Design</td>
</tr>
<tr>
<td>MIME 563</td>
<td>(3)</td>
<td>Hot Deformation of Metals</td>
</tr>
<tr>
<td>MIME 565</td>
<td>(3)</td>
<td>Aerospace Metallic-Materials and Manufacturing Processes</td>
</tr>
<tr>
<td>MIME 568</td>
<td>(3)</td>
<td>Topics in Advanced Materials</td>
</tr>
<tr>
<td>MIME 569</td>
<td>(3)</td>
<td>Electron Beam Analysis of Materials</td>
</tr>
<tr>
<td>MIME 570</td>
<td>(3)</td>
<td>Micro- and Nano-Fabrication Fundamentals</td>
</tr>
<tr>
<td>MIME 571</td>
<td>(3)</td>
<td>Surface Engineering</td>
</tr>
<tr>
<td>MIME 572</td>
<td>(3)</td>
<td>Computational Thermodynamics</td>
</tr>
<tr>
<td>MIME 580</td>
<td>(3)</td>
<td>Additive Manufacturing Using Metallic and Ceramic Materials</td>
</tr>
</tbody>
</table>

* Students choose either CHEE 515 or MIME 515, offered in alternate years.

0-3 credits may be taken from courses outside of the Department of Mining and Materials Engineering, with departmental approval.

Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 212</td>
<td>(3)</td>
<td>Anthropology of Development</td>
</tr>
<tr>
<td>BTEC 502</td>
<td>(3)</td>
<td>Biotechnology Ethics and Society</td>
</tr>
<tr>
<td>CIVE 469</td>
<td>(3)</td>
<td>Infrastructure and Society</td>
</tr>
<tr>
<td>ECON 225</td>
<td>(3)</td>
<td>Economics of the Environment</td>
</tr>
<tr>
<td>ECON 347</td>
<td>(3)</td>
<td>Economics of Climate Change</td>
</tr>
<tr>
<td>ENVR 201</td>
<td>(3)</td>
<td>Society, Environment and Sustainability</td>
</tr>
<tr>
<td>GEOG 200</td>
<td>(3)</td>
<td>Geographical Perspectives: World Environmental Problems</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>(3)</td>
<td>Environmental Systems</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>(3)</td>
<td>Global Change: Past, Present and Future</td>
</tr>
<tr>
<td>GEOG 302</td>
<td>(3)</td>
<td>Environmental Management 1</td>
</tr>
<tr>
<td>MGPO 440*</td>
<td>(3)</td>
<td>Strategies for Sustainability</td>
</tr>
<tr>
<td>PHIL 343</td>
<td>(3)</td>
<td>Biomedical Ethics</td>
</tr>
</tbody>
</table>
RELG 270 (3) Religious Ethics and the Environment
SOCI 235 (3) Technology and Society
SOCI 312 (3) Sociology of Work and Industry
URBP 201 (3) Planning the 21st Century City

* Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams building, Room 22) or email an adviser.

Note regarding language courses: Language course are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.
12.7.5 About Mining Engineering

12.7.5.1 Mining Engineering (Co-op)

McGill is proud to be the host of the oldest mining engineering program in Canada, which started in 1871. The program is known for the excellence of its courses as well as the training it provides in mining science and technology, mineral economics, strategic mine planning, rock mechanics, renewable energy, and mine design. Mining offers excellent career opportunities in Canada and around the world. There have been rapid technological developments in recent years, presenting numerous challenges to students with strong interest in engineering and a taste for innovation.

The Department offers a co-operative program leading to an accredited B.Eng. degree in Mining Engineering. It includes three paid industrial work terms. The program is offered in one of two streams: English Stream for non-CEGEP students and Bilingual Stream (six courses in French) for CEGEP students, in collaboration with the mining engineering program at École Polytechnique in Montreal. Students in the Bilingual Stream take six mining courses, designated by subject code MPMC, at École Polytechnique in the latter part of the program.

A wide range of scholarships is available to new and continuing students from the Department, Faculty of Engineering, as well as from industry. When taking a Co-op work term, students must register for MIME 290, MIME 291, or MIME 392; thus, Co-op work terms appear on the student transcript. Interested students may also take a fourth work term.

12.7.5.2 Student Advising

Each student in the mining engineering program is assigned an academic adviser at the start of their study at McGill and for the duration of his/her undergraduate degree. Academic advising is mandatory for each undergraduate student of the mining engineering program and as such, each student will meet with the academic advisor at least once per academic year to discuss his/her progress through the curriculum and path towards graduation.

For more information, please refer to the Academic Advising section of our website.

12.7.5.3 Bachelor of Engineering (B.Eng.) - Mining Engineering (144 credits)

Enrolment in this program is subject to departmental approval, please consult with an Academic Advisor within the appropriate program further to discuss your suitability in this program.

The Department offers a Major in Mining Engineering leading to an accredited B.Eng. degree in Mining Engineering. The program is offered in one of two streams: English Stream for non-CEGEP students and Bilingual Stream (six courses in French) for CEGEP students, in collaboration with the mining engineering program at Ecole Polytechnique in Montreal. Students in the Bilingual Stream are required to take six mining courses, designated by subject code MPMC, at Ecole Polytechnique in the latter part of the program. In addition to regular courses and laboratories, the curriculum of the Major in Mining Engineering programs include seminars, colloquia, and student projects reinforced by field trips to industrial operations.

B.Eng.; Major in Mining Engineering

Program credit weight: 144-145 credits

Program credit weight for CEGEP students: 115-116 credits

Entry into the Major in Mining Engineering

Students in Mining can be admitted only into the B.Eng.; Co-op in Mining Engineering. There is no direct entry to the Major in Mining Engineering (which does not include the work terms required for the Co-op program).

Students may enter the Major in Mining Engineering if they wish at any point in time during their study.

To transfer into the Major program, students must obtain approval from the department adviser and submit a Request for Course Authorization form to the McGill Engineering Student Centre (Frank Dawson Adams, Room 22).

Required Year 0 (Freshman) Courses

29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 115- to 116-credit program.

- CHEM 110 (4) General Chemistry 1
- CHEM 120 (4) General Chemistry 2
- MATH 133 (3) Linear Algebra and Geometry
- MATH 140 (3) Calculus 1
- MATH 141 (4) Calculus 2
- PHYS 131 (4) Mechanics and Waves
- PHYS 142 (4) Electromagnetism and Optics
AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies and Law, listed below under Complementary Studies (Group B).

Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Non-Departmental Courses (37 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 205</td>
<td>3</td>
<td>Statics</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>4</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>ECSE 461</td>
<td>3</td>
<td>Electric Machinery</td>
</tr>
<tr>
<td>EPSC 221</td>
<td>3</td>
<td>General Geology</td>
</tr>
<tr>
<td>EPSC 225</td>
<td>1</td>
<td>Properties of Minerals</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>0</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>3</td>
<td>Advanced Calculus for Engineers</td>
</tr>
<tr>
<td>MECH 289</td>
<td>3</td>
<td>Design Graphics</td>
</tr>
</tbody>
</table>

* Note: FACC (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Mining Engineering Courses (44 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 200</td>
<td>3</td>
<td>Introduction to the Minerals Industry</td>
</tr>
<tr>
<td>MIME 203</td>
<td>2</td>
<td>Mine Surveying</td>
</tr>
<tr>
<td>MIME 209</td>
<td>3</td>
<td>Mathematical Applications</td>
</tr>
<tr>
<td>MIME 260</td>
<td>3</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>MIME 322</td>
<td>3</td>
<td>Rock Fragmentation</td>
</tr>
<tr>
<td>MIME 323</td>
<td>3</td>
<td>Rock and Soil Mass Characterization</td>
</tr>
<tr>
<td>MIME 325</td>
<td>3</td>
<td>Mineral Industry Economics</td>
</tr>
<tr>
<td>MIME 333</td>
<td>3</td>
<td>Materials Handling</td>
</tr>
<tr>
<td>MIME 340</td>
<td>3</td>
<td>Applied Fluid Dynamics</td>
</tr>
<tr>
<td>MIME 341</td>
<td>3</td>
<td>Introduction to Mineral Processing</td>
</tr>
<tr>
<td>MIME 419</td>
<td>3</td>
<td>Surface Mining</td>
</tr>
<tr>
<td>MIME 422</td>
<td>3</td>
<td>Mine Ventilation</td>
</tr>
<tr>
<td>MIME 426</td>
<td>6</td>
<td>Mine Design and Prefeasibility Study</td>
</tr>
<tr>
<td>MPMC 328*</td>
<td>3</td>
<td>Environnement et gestion des rejets miniers</td>
</tr>
</tbody>
</table>

* Mining courses taken at Ecole Polytechnique

Complementary Courses

34-35 credits

14 credits from one of Stream A or Stream B

Stream A - CEGEP Students

CEGEP students must take the following courses:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 321*</td>
<td>(3)</td>
<td>Mécanique des roches et contrôle des terrains</td>
</tr>
<tr>
<td>MIME 326*</td>
<td>(3)</td>
<td>Recherche opérationnelle I</td>
</tr>
<tr>
<td>MIME 329*</td>
<td>(2)</td>
<td>Géologie minière</td>
</tr>
<tr>
<td>MIME 330*</td>
<td>(3)</td>
<td>Géotechnique minière</td>
</tr>
<tr>
<td>MIME 421*</td>
<td>(3)</td>
<td>Exploitation en souterrain</td>
</tr>
</tbody>
</table>

* Mining courses taken at Ecole Polytechnique

Stream B - Non-CEGEP Students

Non-CEGEP students must take the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 208</td>
<td>(3)</td>
<td>Civil Engineering System Analysis</td>
</tr>
<tr>
<td>MIME 329</td>
<td>(2)</td>
<td>Mining Geology</td>
</tr>
<tr>
<td>MIME 330</td>
<td>(3)</td>
<td>Mining Geotechnics</td>
</tr>
<tr>
<td>MIME 421</td>
<td>(3)</td>
<td>Rock Mechanics</td>
</tr>
<tr>
<td>MIME 424</td>
<td>(3)</td>
<td>Underground Mining Methods</td>
</tr>
</tbody>
</table>

Technical Complementaries

14-15 credits

3-6 credits from the following - these courses are offered in alternate years; students are required to take one of these two courses or they may take both:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 413</td>
<td>(3)</td>
<td>Strategic Mine Planning With Uncertainty</td>
</tr>
<tr>
<td>MIME 425</td>
<td>(3)</td>
<td>Applied Stochastic Orebody Modelling</td>
</tr>
</tbody>
</table>

8-12 credits can be chosen from the following or from any other approved technical courses in Engineering, Management or Science.

Note: Not all course are given annually; see the "Courses" section of this publication to know if a course is offered.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFIN 410</td>
<td>(3)</td>
<td>Investment and Portfolio Management</td>
</tr>
<tr>
<td>CIVE 416</td>
<td>(3)</td>
<td>Geotechnical Engineering</td>
</tr>
<tr>
<td>CIVE 421</td>
<td>(3)</td>
<td>Municipal Systems</td>
</tr>
<tr>
<td>CIVE 514</td>
<td>(3)</td>
<td>Structural Mechanics</td>
</tr>
<tr>
<td>CIVE 584</td>
<td>(3)</td>
<td>Groundwater Engineering</td>
</tr>
<tr>
<td>EPSC 320</td>
<td>(3)</td>
<td>Elementary Earth Physics</td>
</tr>
<tr>
<td>EPSC 549</td>
<td>(3)</td>
<td>Hydrogeology</td>
</tr>
<tr>
<td>FINE 482</td>
<td>(3)</td>
<td>International Finance 1</td>
</tr>
<tr>
<td>MIME 290</td>
<td>(2)</td>
<td>Industrial Work Period 1</td>
</tr>
<tr>
<td>MIME 320</td>
<td>(3)</td>
<td>Extraction of Energy Resources</td>
</tr>
<tr>
<td>MIME 442</td>
<td>(3)</td>
<td>Analysis, Modelling and Optimization in Mineral Processing</td>
</tr>
<tr>
<td>MIME 484</td>
<td>(3)</td>
<td>Mining Project</td>
</tr>
<tr>
<td>MIME 511</td>
<td>(3)</td>
<td>Advanced Subsurface Ventilation and Air Conditioning</td>
</tr>
<tr>
<td>MIME 520</td>
<td>(3)</td>
<td>Stability of Rock Slopes</td>
</tr>
<tr>
<td>MIME 527</td>
<td>(3)</td>
<td>Selected Topics in Mineral Resource Engineering</td>
</tr>
<tr>
<td>MIME 544</td>
<td>(3)</td>
<td>Analysis: Mineral Processing Systems 1</td>
</tr>
<tr>
<td>MIME 545</td>
<td>(3)</td>
<td>Analysis: Mineral Processing Systems 2</td>
</tr>
<tr>
<td>MIME 588</td>
<td>(3)</td>
<td>Reliability Analysis of Mining Systems</td>
</tr>
<tr>
<td>MIME 320*</td>
<td>(3)</td>
<td>CAO et informatique pour les mines</td>
</tr>
</tbody>
</table>
* Mining courses taken at Ecole Polytechnique.

Complementary Studies (6 credits)

Group A - Impact of Technology on Society

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 212</td>
<td>3</td>
<td>Anthropology of Development</td>
</tr>
<tr>
<td>BTEC 502</td>
<td>3</td>
<td>Biotechnology Ethics and Society</td>
</tr>
<tr>
<td>CIVE 469</td>
<td>3</td>
<td>Infrastructure and Society</td>
</tr>
<tr>
<td>ECON 225</td>
<td>3</td>
<td>Economics of the Environment</td>
</tr>
<tr>
<td>ECON 347</td>
<td>3</td>
<td>Economics of Climate Change</td>
</tr>
<tr>
<td>ENVR 201</td>
<td>3</td>
<td>Society, Environment and Sustainability</td>
</tr>
<tr>
<td>GEOG 200</td>
<td>3</td>
<td>Geographical Perspectives: World Environmental Problems</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>3</td>
<td>Environmental Systems</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>3</td>
<td>Global Change: Past, Present and Future</td>
</tr>
<tr>
<td>GEOG 302</td>
<td>3</td>
<td>Environmental Management 1</td>
</tr>
<tr>
<td>MGPO 440*</td>
<td>3</td>
<td>Strategies for Sustainability</td>
</tr>
<tr>
<td>PHIL 343</td>
<td>3</td>
<td>Biomedical Ethics</td>
</tr>
<tr>
<td>RELG 270</td>
<td>3</td>
<td>Religious Ethics and the Environment</td>
</tr>
<tr>
<td>SOCI 235</td>
<td>3</td>
<td>Technology and Society</td>
</tr>
<tr>
<td>SOCI 312</td>
<td>3</td>
<td>Sociology of Work and Industry</td>
</tr>
<tr>
<td>URBP 201</td>
<td>3</td>
<td>Planning the 21st Century City</td>
</tr>
</tbody>
</table>

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Human and Social Sciences, Management Studies and Law

3 credits at the 200-level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 528</td>
<td>3</td>
<td>History of Housing</td>
</tr>
<tr>
<td>BUSA 465*</td>
<td>3</td>
<td>Technological Entrepreneurship</td>
</tr>
<tr>
<td>CLAS 203</td>
<td>3</td>
<td>Greek Mythology</td>
</tr>
<tr>
<td>ENVR 203</td>
<td>3</td>
<td>Knowledge, Ethics and Environment</td>
</tr>
<tr>
<td>ENVR 400</td>
<td>3</td>
<td>Environmental Thought</td>
</tr>
<tr>
<td>FACC 220</td>
<td>3</td>
<td>Law for Architects and Engineers</td>
</tr>
</tbody>
</table>
FACC 500 (3) Technology Business Plan Design
FACC 501 (3) Technology Business Plan Project
HISP 225 (3) Hispanic Civilization 1
HISP 226 (3) Hispanic Civilization 2
INDR 294* (3) Introduction to Labour-Management Relations
INTG 201** (3) Integrated Management Essentials 1
INTG 202** (3) Integrated Management Essentials 2
MATH 338 (3) History and Philosophy of Mathematics
MGCR 222* (3) Introduction to Organizational Behaviour
MGCR 352* (3) Principles of Marketing
ORBG 321* (3) Leadership
ORBG 423* (3) Human Resources Management

* Note: Management courses have limited enrolment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

** Note: INTG 201 and INTG 202 are not open to students who have taken certain Management courses. Please see the INTG 201 and INTG 202 course information for a list of these courses.

*** If you are uncertain whether or not a course principally imparts language skills, please see an adviser in the McGill Engineering Student Centre (Frank Dawson Adams Building, Room 22) or email an adviser.

Note regarding language courses: Language courses are not accepted to satisfy the Complementary Studies Group B requirement, effective for students who entered the program as of Fall 2017.

12.7.5.4 Bachelor of Engineering (B.Eng.) - Co-op in Mining Engineering (150 credits)
Program credit weight: 150-151 credits
Program credit weight for Quebec CEGEP students: 121-122 credits

The Department offers a Co-op in Mining Engineering and a Mining Engineering program (without required co-op terms), both leading to an accredited B.Eng. degree in Mining Engineering. The co-op program includes three paid industrial work terms. The co-op program is offered in one of two streams: English Stream for non-CEGEP students and Bilingual Stream (six courses in French) for CEGEP students, in collaboration with the mining engineering program at Ecole Polytechnique in Montreal. Students in the Bilingual Stream are required to take six mining courses, designated by subject code MPMC, at Ecole Polytechnique in the latter part of the program.

Students must register for each work term (MIME 290, MIME 291, MIME 292) and pay associated fees by the Course Change (add/drop) registration deadline. Before registering for any work term course, students must contact the Mining Co-op Liaison Officer for approval.

In addition to regular courses and laboratories, the curriculum of the B.Eng. Co-op in Mining Engineering includes seminars, colloquia, and student projects reinforced by field trips to industrial operations.

Required Year 0 (Freshman) Courses
29 credits

Generally, students admitted to Engineering from Quebec CEGEPs are granted transfer credit for these Year 0 (Freshman) courses and enter a 121- to 123-credit program.

CHEM 110 (4) General Chemistry 1
CHEM 120 (4) General Chemistry 2
MATH 133 (3) Linear Algebra and Geometry
MATH 140 (3) Calculus 1
MATH 141 (4) Calculus 2
PHYS 131 (4) Mechanics and Waves
PHYS 142 (4) Electromagnetism and Optics

AND 3 credits selected from the approved list of courses in Humanities and Social Sciences, Management Studies, and Law, listed below under Complementary Studies (Group B)
Required Non-Departmental Courses
37 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCOM 206</td>
<td>3</td>
<td>Communication in Engineering</td>
</tr>
<tr>
<td>CIVE 205</td>
<td>3</td>
<td>Statics</td>
</tr>
<tr>
<td>CIVE 207</td>
<td>4</td>
<td>Solid Mechanics</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>ECSE 461</td>
<td>3</td>
<td>Electric Machinery</td>
</tr>
<tr>
<td>EPSC 221</td>
<td>3</td>
<td>General Geology</td>
</tr>
<tr>
<td>EPSC 225</td>
<td>1</td>
<td>Properties of Minerals</td>
</tr>
<tr>
<td>FACC 100*</td>
<td>1</td>
<td>Introduction to the Engineering Profession</td>
</tr>
<tr>
<td>FACC 250</td>
<td>0</td>
<td>Responsibilities of the Professional Engineer</td>
</tr>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
<tr>
<td>FACC 400</td>
<td>1</td>
<td>Engineering Professional Practice</td>
</tr>
<tr>
<td>MATH 262</td>
<td>3</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 263</td>
<td>3</td>
<td>Ordinary Differential Equations for Engineers</td>
</tr>
<tr>
<td>MATH 264</td>
<td>3</td>
<td>Advanced Calculus for Engineers</td>
</tr>
<tr>
<td>MECH 289</td>
<td>3</td>
<td>Design Graphics</td>
</tr>
</tbody>
</table>

* Note: FACC 100 (Introduction to the Engineering Profession) must be taken during the first year of study.

Required Mining Engineering Courses
50 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 200</td>
<td>3</td>
<td>Introduction to the Minerals Industry</td>
</tr>
<tr>
<td>MIME 203</td>
<td>2</td>
<td>Mine Surveying</td>
</tr>
<tr>
<td>MIME 209</td>
<td>3</td>
<td>Mathematical Applications</td>
</tr>
<tr>
<td>MIME 260</td>
<td>3</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>MIME 290</td>
<td>2</td>
<td>Industrial Work Period 1</td>
</tr>
<tr>
<td>MIME 291</td>
<td>2</td>
<td>Industrial Work Period 2</td>
</tr>
<tr>
<td>MIME 322</td>
<td>3</td>
<td>Rock Fragmentation</td>
</tr>
<tr>
<td>MIME 323</td>
<td>3</td>
<td>Rock and Soil Mass Characterization</td>
</tr>
<tr>
<td>MIME 325</td>
<td>3</td>
<td>Mineral Industry Economics</td>
</tr>
<tr>
<td>MIME 333</td>
<td>3</td>
<td>Materials Handling</td>
</tr>
<tr>
<td>MIME 340</td>
<td>3</td>
<td>Applied Fluid Dynamics</td>
</tr>
<tr>
<td>MIME 341</td>
<td>3</td>
<td>Introduction to Mineral Processing</td>
</tr>
<tr>
<td>MIME 392</td>
<td>2</td>
<td>Industrial Work Period 3</td>
</tr>
<tr>
<td>MIME 419</td>
<td>3</td>
<td>Surface Mining</td>
</tr>
<tr>
<td>MIME 422</td>
<td>3</td>
<td>Mine Ventilation</td>
</tr>
<tr>
<td>MIME 426</td>
<td>6</td>
<td>Mine Design and Prefeasibility Study</td>
</tr>
<tr>
<td>MPMC 328*</td>
<td>3</td>
<td>Environnement et gestion des rejets miniers</td>
</tr>
</tbody>
</table>

* Mining courses taken at École Polytechnique

Complementary Courses
34-35 credits
14 credits from one of Stream A or Stream B

Stream A - CEGEP Students

CEGEP students must take the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPMC 321*</td>
<td>3</td>
<td>Mécanique des roches et contrôle des terrains</td>
</tr>
<tr>
<td>MPMC 326*</td>
<td>3</td>
<td>Recherche opérationnelle I</td>
</tr>
<tr>
<td>MPMC 329*</td>
<td>2</td>
<td>Géologie minière</td>
</tr>
<tr>
<td>MPMC 330*</td>
<td>3</td>
<td>Géotechnique minière</td>
</tr>
<tr>
<td>MPMC 421*</td>
<td>3</td>
<td>Exploitation en souterrain</td>
</tr>
</tbody>
</table>

* Mining courses taken at École Polytechnique

Stream B - Non-CEGEP Students

Non-CEGEP students must take the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 208</td>
<td>3</td>
<td>Civil Engineering System Analysis</td>
</tr>
<tr>
<td>MIME 329</td>
<td>2</td>
<td>Mining Geology</td>
</tr>
<tr>
<td>MIME 330</td>
<td>3</td>
<td>Mining Geotechnics</td>
</tr>
<tr>
<td>MIME 421</td>
<td>3</td>
<td>Rock Mechanics</td>
</tr>
<tr>
<td>MIME 424</td>
<td>3</td>
<td>Underground Mining Methods</td>
</tr>
</tbody>
</table>

Technical Complementaries

14-15 credits

3-6 credits from the following - these courses are offered in alternate years; students are required to take one of these two courses or they may take both:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 413</td>
<td>3</td>
<td>Strategic Mine Planning With Uncertainty</td>
</tr>
<tr>
<td>MIME 425</td>
<td>3</td>
<td>Applied Stochastic Orebody Modelling</td>
</tr>
</tbody>
</table>

8-12 credits can be chosen from the following or from any other approved technical courses in Engineering, Management, or Science (including mathematics courses).

Note: Not all courses are given annually; see the "Courses" section of this eCalendar to know if a course is offered.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFIN 410</td>
<td>3</td>
<td>Investment and Portfolio Management</td>
</tr>
<tr>
<td>CIVR 416</td>
<td>3</td>
<td>Geotechnical Engineering</td>
</tr>
<tr>
<td>CIVE 421</td>
<td>3</td>
<td>Municipal Systems</td>
</tr>
<tr>
<td>CIVE 514</td>
<td>3</td>
<td>Structural Mechanics</td>
</tr>
<tr>
<td>CIVE 584</td>
<td>3</td>
<td>Groundwater Engineering</td>
</tr>
<tr>
<td>EPSC 320</td>
<td>3</td>
<td>Elementary Earth Physics</td>
</tr>
<tr>
<td>EPSC 549</td>
<td>3</td>
<td>Hydrogeology</td>
</tr>
<tr>
<td>FINE 482</td>
<td>3</td>
<td>International Finance I</td>
</tr>
<tr>
<td>MIME 320</td>
<td>3</td>
<td>Extraction of Energy Resources</td>
</tr>
<tr>
<td>MIME 442</td>
<td>3</td>
<td>Analysis, Modelling and Optimization in Mineral Processing</td>
</tr>
<tr>
<td>MIME 484</td>
<td>3</td>
<td>Mining Project</td>
</tr>
<tr>
<td>MIME 494</td>
<td>2</td>
<td>Industrial Work Period 4</td>
</tr>
<tr>
<td>MIME 511</td>
<td>3</td>
<td>Advanced Subsurface Ventilation and Air Conditioning</td>
</tr>
<tr>
<td>MIME 520</td>
<td>3</td>
<td>Stability of Rock Slopes</td>
</tr>
<tr>
<td>MIME 527</td>
<td>3</td>
<td>Selected Topics in Mineral Resource Engineering</td>
</tr>
</tbody>
</table>
Complementary Studies

6 credits

Group A - Impact of Technology on Society

3 credits from the following:

- ANTH 212 (3) Anthropology of Development
- BTEC 502 (3) Biotechnology Ethics and Society
- CIVE 469 (3) Infrastructure and Society
- ECON 225 (3) Economics of the Environment
- ECON 347 (3) Economics of Climate Change
- ENVR 201 (3) Society, Environment and Sustainability
- GEOG 200 (3) Geographical Perspectives: World Environmental Problems
- GEOG 203 (3) Environmental Systems
- GEOG 205 (3) Global Change: Past, Present and Future
- GEOG 302 (3) Environmental Management 1
- MGPO 440* (3) Strategies for Sustainability
- PHIL 343 (3) Biomedical Ethics
- RELG 270 (3) Religious Ethics and the Environment
- SOCI 235 (3) Technology and Society
- SOCI 312 (3) Sociology of Work and Industry
- URBP 201 (3) Planning the 21st Century City

* Note: Management courses have limited enrollment and registration dates. See Important Dates at http://www.mcgill.ca/importantdates.

Group B - Humanities and Social Sciences, Management Studies, and Law

3 credits at the 200 level or higher from the following departments:

- Anthropology (ANTH)
- Economics (any 200- or 300-level course excluding ECON 227 and ECON 337)
- History (HIST)
- Philosophy (excluding PHIL 210 and PHIL 310)
- Political Science (POLI)
- Psychology (excluding PSYC 204 and PSYC 305, but including PSYC 100)
- Religious Studies (RELG) (excluding courses that principally impart language skills, such as Sanskrit, Tibetan, Tamil, New Testament Greek, and Biblical Hebrew) ***
- School of Social Work (SWRK)
- Sociology (excluding SOCI 350)

OR 3 credits from the following:

- ARCH 528 (3) History of Housing
- BUSA 465* (3) Technological Entrepreneurship
Urban planning can be described as the collective management of urban development. It is concerned with the welfare of communities, control of the use of land, design of the built environment, including transportation and communication networks, and protection and enhancement of the natural environment. It is at once a technical and a political process that brings together actors from the public, private, and community spheres. Planners participate in this process in a variety of ways, as designers and analysts, advocates and mediators, facilitating the search for equitable and efficient solutions to problems of urban change and development.

Modern urban planning developed into a profession largely as a response to the appalling sanitary, social, and economic conditions of rapidly developing industrial cities. Initially, the disciplines of architecture, landscape architecture, civil engineering, and public health provided the nucleus of concerned professionals; beautification schemes and infrastructure works marked the early stages of public intervention in the 19th century. Architects, engineers, and public health specialists were joined by economists, sociologists, lawyers, and geographers as the complexities of the city's problems came to be more fully understood and public pressure mounted for their solution. Contemporary urban and regional planning techniques for survey, analysis, design, and implementation developed from an interdisciplinary synthesis of these various fields. This multidisciplinarity is still a hallmark of planning practice and of planning education.
McGill was the first university in Canada to offer a planning degree, starting in 1947. The School of Urban Planning itself was established as an independent unit in 1972. Today, it brings together students from various fields (such as those mentioned above) and different parts of the world in a professional master's program. Key features of the work done at the school are the use of real-world projects for learning, a focus on policy-relevant research, and strong engagement with the community, both in Canada and abroad.

The School has a long track record of research, capacity-building and consulting in developing regions as well as in Montreal and other Canadian cities. Faculty and students collaborate actively with members of other McGill departments, notably Architecture, Geography, Civil Engineering, and Law, and with colleagues at other institutions in Canada and abroad. Alumni of the School work as planners and designers at various levels of government, in non-profit organizations, and with private consulting firms. Their expertise ranges from urban design to transportation planning, from housing policy to computer modelling. They devote their efforts in increasing numbers to environmental planning and sustainable development.

The objective of the School is to enable young urban planners to exercise leadership in the public, private, and community sectors. Training is provided at the graduate level. The main degree offered is the Master of Urban Planning (M.U.P.). Many specializations are possible within the program, e.g., Transportation Planning; and Urban Development and Urban Design. M.U.P. students in the core program may also opt to spend a semester in Barbados as part of the Barbados Field Study Semester, which focuses on global environmental issues. Details concerning each of these concentrations can be found at www.mcgill.ca/urbanplanning/programs/mup-transportation-planning (see also tram.mcgill.ca), www.mcgill.ca/urbanplanning/programs/mup-urban-development-and-urban-design, and at www.mcgill.ca/bfss, respectively. Upon completion of the two-year program of studies, graduates are expected to have acquired basic planning skills, a broad understanding of urban issues, and specialized knowledge in a field of their own choice.

The professional program of study offered by the School is fully recognized by the Ordre des Urbanistes du Québec (O.U.Q.) and the Canadian Institute of Planners (C.I.P.). Graduates may become full members of the O.U.Q. and other provincial planning associations, and therefore of C.I.P., by completing their respective internship and examination requirements. For details of the M.U.P. admission requirements and curriculum, consult the School's website, as well as Faculty of Engineering > Graduate > Browse Academic Units & Programs > Urban Planning.

Although the M.U.P. program is primarily a professional degree program, it has a very important research component. The work done on the Supervised Research Project in the course of the second year of study qualifies for funding by federal and provincial funding agencies such as SSHRC, NSERC, and FQRSC/FQRNT. Some students enter the M.U.P. program with fellowships from these agencies; others obtain them after joining the School, for their second year of study.

The School of Urban Planning hosts a number of events that are open to undergraduate students and to the public: the Brenda and Samuel Gewurz Lectures in Urban Design bring speakers of international calibre to McGill; the Transportation Research Group at McGill holds seminars on issues pertaining to various aspects of urban and regional transportation; and the "urban.studies@mcgill" seminars bring speakers from academia, the profession and the community to talk about contemporary urban issues.

For details of the M.U.P. admission requirements and curriculum, consult the Faculty of Engineering section for Graduate and Postdoctoral Studies.

12.8.3 Undergraduate Courses in Urban Planning

The following courses taught by faculty in the School of Urban Planning are open to undergraduate students:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 520</td>
<td>Montreal: Urban Morphology</td>
</tr>
<tr>
<td>URBP 201</td>
<td>Planning the 21st Century City</td>
</tr>
<tr>
<td>URBP 501</td>
<td>Principles and Practice 1</td>
</tr>
<tr>
<td>URBP 504</td>
<td>Planning for Active Transportation</td>
</tr>
<tr>
<td>URBP 505</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>URBP 506</td>
<td>Environmental Policy and Planning</td>
</tr>
<tr>
<td>URBP 507</td>
<td>Planning and Infrastructure</td>
</tr>
<tr>
<td>URBP 514</td>
<td>Community Design Workshop</td>
</tr>
<tr>
<td>URBP 519</td>
<td>Sustainable Development Plans</td>
</tr>
<tr>
<td>URBP 520</td>
<td>Globalization: Planning and Change</td>
</tr>
<tr>
<td>URBP 530</td>
<td>Urban Environmental Planning</td>
</tr>
<tr>
<td>URBP 536</td>
<td>Current Issues in Transportation 1</td>
</tr>
<tr>
<td>URBP 537</td>
<td>Current Issues in Transportation 2</td>
</tr>
<tr>
<td>URBP 541</td>
<td>Selected Topics in Planning</td>
</tr>
<tr>
<td>URBP 542</td>
<td>Selected Topics in Visual Analysis</td>
</tr>
<tr>
<td>URBP 551</td>
<td>Urban Design and Planning</td>
</tr>
<tr>
<td>URBP 553</td>
<td>Urban Governance</td>
</tr>
<tr>
<td>URBP 555</td>
<td>Real Estate and Planning</td>
</tr>
</tbody>
</table>
Undergraduate Courses in Urban Planning

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>URBP 556</td>
<td>3</td>
<td>Urban Economy: A Spatial Perspective</td>
</tr>
<tr>
<td>URBP 557</td>
<td>3</td>
<td>The City in History</td>
</tr>
</tbody>
</table>

12.8.4 Urban Planning Faculty

Director

Richard Shearmur

Emeritus Professors

David Farley; B.Arch.(McG.), M.Arch., M.C.P.(Harv.)

Jane Matthews-Glenn; B.A., LL.B.(Qu.), D. en droit(Stras.)

Post-Retirement Professor

David Brown; B.A.(Bishop's), M.U.P.(McG.), Ph.D.(Sheff.)

Professors

Ahmed Elgeneidy; B.A.A., M.Arch.(Alexandria), Ph.D.(Port. St.)

Richard Shearmur; B.A.(Camb.), M.U.P.(McG.), Ph.D.(Montr.)

Associate Professors

Madhav G. Badami; B.Tech., M.S.(IIT, Madras) M.E.Des.(Calg.), Ph.D.(Br. Col.)

Lisa Bornstein; B.Sc.(Calif., Berk.), M.R.P.(Cornell), Ph.D.(Calif., Berk.)

Raphaël Fischler; B.Eng.(Eindhoven), M.Sc., M.C.P.(MIT), Ph.D.(Calif., Berk.)

Nik Luka; B.A.A.(Ryerson), M.Arch.(Laval), Ph.D.(Tor.)

Assistant Professor

David Wachsmuth; B.A.(McG.), M.Sc.(Tor.), Ph.D.(NYU)

Adjunct Professors

Nilson Espino; B.Arch.(Catolica Santa Maria La Antigua), M.Sc.(Ariz.), Ph.D.(Rice)

Murtaza Haider; B.Sc.(NWFP UET-Pesh.), M.A.Sc., Ph.D.(Tor.)

Paul LeCavalier; B.Sc., M.U.P.(McG.), M.R.P.(Wat.)

Marc-André Lechasseur; L.L.B.(Sher.), L.L.M.(Montr.)

Mario Polèse; B.A.(CUNY), M.A., Ph.D.(Penn.)

Ray Tomalty; B.A., M.P.A.(Qu.), Ph.D.(Wat.)

Associate Member

Cameron Charlebois; B.Sc.(Arch.), B.Arch., M.B.A.(McG.)

Instructors

Malaka Ackaoui, Julian Agyeman, Suzanne Doucet, Gorka Espiau, Martin Wexler
12.9 Other Engineering Related Programs

12.9.1 Bioresource Engineering

The Faculty of Engineering cooperates with the Faculty of Agricultural and Environmental Sciences in providing courses of instruction for a curriculum in agricultural and biosystems engineering to meet requirements for a professional degree awarded in the Faculty of Agricultural and Environmental Sciences. For details, refer to the B.Eng.(Bioresource) program requirements in Faculty of Agricultural & Environmental Sciences > Undergraduate > Browse Academic Programs > Bachelor of Engineering (Bioresource) – B.Eng.(Bioresource).

Some of the courses offered by the Department of Bioresource Engineering (subject code BREE) may be of interest to students in the Faculty of Engineering.

The Department of Bioresource Engineering is located in the Faculty of Agricultural and Environmental Sciences on the Macdonald campus:

Department of Bioresource Engineering
Macdonald-Stewart Building, Room MS1-028
21,111 Lakeshore Road
Sainte-Anne-de-Bellevue QC H9X 3V9
Telephone: 514-398-7773
Fax: 514-398-7990
Website: www.mcgill.ca/bioeng

12.9.2 Biomedical Engineering

Lyman Duff Medical Sciences Building
3775 University Street, Room 316
Montreal QC H3A 2B4
Telephone: 514-398-6736
Website: www.mcgill.ca/bme

Some of the courses offered by the Department of Biomedical Engineering (subject code BMDE) may be of interest to Engineering students, and may be approved as complementary courses. The Faculty of Engineering also offers a Minor in Biomedical Engineering; for more information, see section 12.10.3: Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits).

12.10 Minor Programs

This section includes general information concerning minors that are designed for students in the Faculty of Engineering.

Minors are coherent sequences of courses taken in addition to the courses required for the B.Eng. or B.Sc.(Arch.) degree. Minors normally consist of 18–24 credits, allowing 9–12 credits of overlap with the degree program (see individual minor program requirements for specific information regarding course overlap). The real credit cost to the student is typically 9–15 credits, representing one term beyond the B.Eng. or B.Sc.(Arch.) degree program. All courses in a minor must be passed with a grade of C or better.

Engineering students choose from a considerable variety of complementary courses under the categories of technical and complementary studies. Students should refer to their department for information concerning selection of complementary courses, and should see their departmental adviser. Departments also publish information regarding the choice of courses in this publication and in separate documents.

Note: Students are also permitted to register for minor concentrations offered by departments in the Faculty of Arts. To register in one of these minor concentrations, students must submit a Request for Course Authorization form to the McGill Engineering Student Centre (Student Affairs Office; Frank Dawson Adams Building, Room 22) to obtain approval from the Faculty of Engineering. The Faculty of Engineering allows up to 9 credits of overlap with the degree program for Engineering students taking Arts minor concentrations.

Minor Programs:

- section 12.10.1: Bachelor of Engineering (B.Eng.) - Minor Aerospace Engineering (24 credits)
- section 12.10.2: Bachelor of Engineering (B.Eng.) - Minor Arts (24 credits)
- section 12.10.3: Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits)
- section 12.10.4: Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits)
- section 12.10.5: Bachelor of Engineering (B.Eng.) - Minor Chemistry (25 credits)
- section 12.10.6: Computer Science Courses and Minor Program
- section 12.10.7: Bachelor of Engineering (B.Eng.) - Minor Construction Engineering and Management (24 credits)
- section 12.10.8: Bachelor of Engineering (B.Eng.) - Minor Economics (18 credits)
12.10.1 Bachelor of Engineering (B.Eng.) - Minor Aerospace Engineering (24 credits)

** NEW PROGRAM **

The Minor will prepare an engineering student for a career in aerospace engineering. The required courses in the Minor cover fundamental aircraft and spacecraft design and the certification process. The student can then further specialize in aerodynamics and propulsion, structural analysis, materials and processes, spacecraft engineering and systems and avionics by choosing the appropriate technical stream. A capstone aerospace design project is offered in the last year of the program in collaboration with the local aerospace companies.

Minor Adviser: Prof. Pascal Hubert, Macdonald Engineering Building, Room 361.

The Minor in Aerospace Engineering is offered by the McGill Institute of Aerospace Engineering and is open to all students in Engineering ONLY.

A maximum of 15 credits of coursework in the student's major may double-count with the Minor.

Required Courses (6 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 401</td>
<td>Introduction to Aerospace Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>AERO 410</td>
<td>Aerospace Design and Certification Process</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Complementary Courses (18 credits)

18 credits from one of the following streams:

Aerodynamics and Propulsion Stream

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 463D1*</td>
<td>Design 3: Mechanical Engineering Project</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 463D2*</td>
<td>Design 3: Mechanical Engineering Project</td>
<td>(3)</td>
</tr>
</tbody>
</table>

* An aerospace engineering project will be defined for students enrolled in the Minor AND

12 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 447</td>
<td>Combustion</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 532</td>
<td>Aircraft Performance, Stability and Control</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 533</td>
<td>Subsonic Aerodynamics</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 535</td>
<td>Turbomachinery and Propulsion</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 539</td>
<td>Computational Aerodynamics</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 566</td>
<td>Fluid-Structure Interactions</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 579</td>
<td>Multidisciplinary Design Optimization</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Aircraft Structure Stream
* An aerospace engineering project will be defined for students enrolled in the Minor.

AND

12 credits from the following:

- MECH 530 (3) Mechanics of Composite Materials
- MECH 536 (3) Aerospace Structures
- MECH 543 (3) Design with Composite Materials
- MECH 544 (3) Processing of Composite Materials
- MECH 546 (3) Finite Element Methods in Solid Mechanics
- MECH 550 (3) Vibrations of Continuous Systems
- MECH 551 (3) Nonlinear Dynamics of Shell Structures
- MECH 567 (3) Structural Dynamics of Turbomachines
- MIME 560 (3) Joining Processes
- MIME 565 (3) Aerospace Metallic-Materials and Manufacturing Processes

Spacecraft and Systems Stream

- MECH 463D1* (3) Design 3: Mechanical Engineering Project
- MECH 463D2* (3) Design 3: Mechanical Engineering Project

* An aerospace engineering project will be defined for students enrolled in the Minor.

AND

12 credits from the following:

- GEOG 308 (3) Principles of Remote Sensing
- MECH 513 (3) Control Systems
- MECH 536 (3) Aerospace Structures
- MECH 542 (3) Spacecraft Dynamics
- MECH 546 (3) Finite Element Methods in Solid Mechanics
- MECH 550 (3) Vibrations of Continuous Systems
- MECH 559 (3) Engineering Systems Optimization
- MIME 565 (3) Aerospace Metallic-Materials and Manufacturing Processes
- PHYS 214 (3) Introductory Astrophysics

Material and Processes Stream

- AERO 460D1 (3) Aerospace Project
- AERO 460D2 (3) Aerospace Project

AND

12 credits from the following:

- CHEE 515* (3) Material Surfaces: A Biomimetic Approach
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 541</td>
<td>3</td>
<td>Electrochemical Engineering</td>
</tr>
<tr>
<td>CHEE 543</td>
<td>3</td>
<td>Plasma Engineering</td>
</tr>
<tr>
<td>MECH 544</td>
<td>3</td>
<td>Processing of Composite Materials</td>
</tr>
<tr>
<td>MIME 512</td>
<td>3</td>
<td>Corrosion and Degradation of Materials</td>
</tr>
<tr>
<td>MIME 515*</td>
<td>3</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
<tr>
<td>MIME 559</td>
<td>3</td>
<td>Aluminum Physical Metallurgy</td>
</tr>
<tr>
<td>MIME 560</td>
<td>3</td>
<td>Joining Processes</td>
</tr>
<tr>
<td>MIME 563</td>
<td>3</td>
<td>Hot Deformation of Metals</td>
</tr>
<tr>
<td>MIME 565</td>
<td>3</td>
<td>Aerospace Metallic-Materials and Manufacturing Processes</td>
</tr>
<tr>
<td>MIME 571</td>
<td>3</td>
<td>Surface Engineering</td>
</tr>
<tr>
<td>MIME 580</td>
<td>3</td>
<td>Additive Manufacturing Using Metallic and Ceramic Materials</td>
</tr>
</tbody>
</table>

* Students may choose only one of CHEE 515 or MIME 515.

Avionics Stream

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 456*</td>
<td>3</td>
<td>ECSE Design Project 1</td>
</tr>
<tr>
<td>ECSE 457*</td>
<td>3</td>
<td>ECSE Design Project 2</td>
</tr>
</tbody>
</table>

* An aerospace engineering project will be defined for students enrolled in the Minor.

AND

12 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 403</td>
<td>4</td>
<td>Control</td>
</tr>
<tr>
<td>ECSE 408</td>
<td>4</td>
<td>Communication Systems</td>
</tr>
<tr>
<td>ECSE 412</td>
<td>3</td>
<td>Discrete Time Signal Processing</td>
</tr>
<tr>
<td>ECSE 420</td>
<td>3</td>
<td>Parallel Computing</td>
</tr>
<tr>
<td>ECSE 421</td>
<td>3</td>
<td>Embedded Systems</td>
</tr>
<tr>
<td>ECSE 422</td>
<td>3</td>
<td>Fault Tolerant Computing</td>
</tr>
<tr>
<td>ECSE 425</td>
<td>3</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>ECSE 427</td>
<td>3</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>ECSE 429</td>
<td>3</td>
<td>Software Validation</td>
</tr>
<tr>
<td>ECSE 436</td>
<td>3</td>
<td>Signal Processing Hardware</td>
</tr>
<tr>
<td>ECSE 444</td>
<td>4</td>
<td>Microprocessors</td>
</tr>
<tr>
<td>ECSE 450</td>
<td>3</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>ECSE 465</td>
<td>3</td>
<td>Power Electronic Systems</td>
</tr>
<tr>
<td>ECSE 501</td>
<td>3</td>
<td>Linear Systems</td>
</tr>
<tr>
<td>ECSE 507</td>
<td>3</td>
<td>Optimization and Optimal Control</td>
</tr>
<tr>
<td>ECSE 511</td>
<td>3</td>
<td>Introduction to Digital Communication</td>
</tr>
<tr>
<td>ECSE 512</td>
<td>3</td>
<td>Digital Signal Processing 1</td>
</tr>
<tr>
<td>ECSE 513</td>
<td>3</td>
<td>Robust Control Systems</td>
</tr>
<tr>
<td>ECSE 516</td>
<td>3</td>
<td>Nonlinear and Hybrid Control Systems</td>
</tr>
<tr>
<td>ECSE 524</td>
<td>3</td>
<td>Interconnects and Signal Integrity</td>
</tr>
<tr>
<td>ECSE 565</td>
<td>3</td>
<td>Introduction to Power Electronics</td>
</tr>
<tr>
<td>ECSE 593</td>
<td>3</td>
<td>Antennas and Propagation</td>
</tr>
</tbody>
</table>

2018-2019, Faculty of Engineering, including Peter Guo-hua Fu School of Architecture and School of Urban Planning, McGill University (Published August 21, 2018)
12.10.2 Bachelor of Engineering (B.Eng.) - Minor Arts (24 credits)

Minor Adviser: Faculty Student Adviser in the Engineering Student Centre (Frank Dawson Adams Building, Room 22)

B.Sc.(Arch.), and B.Eng., students may obtain the Arts Minor as part of their B.Eng., or B.Sc.(Arch.) degree by completing 24 credits, as described below. Students must select courses for this Minor in consultation with one of the Advisers indicated above. All courses in the Minor must be passed with a grade of C or better.

Requirements

24 credits as follows:

a) At least two areas of concentration in the Faculty of Arts must be chosen, with a minimum of 6 credits in any one area.

b) At least 12 credits must be at the 300 level or higher.

In general, B.Eng. students may use courses from the Complementary Studies lists (Group A and Group B) in their program that are offered by the Faculty of Arts to satisfy some of these requirements. No more than 9 credits of these courses can be credited toward the Arts Minor.

12.10.3 Bachelor of Engineering (B.Eng.) - Minor Biomedical Engineering (21 credits)

Minor Advisers: Prof. R. Leask (Wong Building, Room 4120), Prof. R. Mongrain (Macdonald Engineering Building, Room 369), or Prof. G. Mitsis (Macdonald Engineering Building, Room 384).

Note: Open to all students in the Faculty of Engineering.

Minor program credit weight: 21-25 credits

The Biomedical Engineering Minor allows access to courses in basic life sciences and is intended to expose students to the interdisciplinary tools used in biomedicine.

To complete this Minor, students must obtain a grade of C or better in all approved courses and satisfy the requirements of both the Major program and the Minor.

Students considering this Minor should contact the Minor Advisers listed above.

Complementary Introductory Courses in Life Sciences

3-7 credits

One or two courses from the following list (equivalents can be approved):

- ANAT 212 (3) Molecular Mechanisms of Cell Function
- BIOC 212 (3) Molecular Mechanisms of Cell Function
- BIOL 200 (3) Molecular Biology
- BIOL 201 (3) Cell Biology and Metabolism
- CHEM 212 (4) Introductory Organic Chemistry 1
- PHGY 209 (3) Mammalian Physiology 1
- PHGY 210 (3) Mammalian Physiology 2

Specialization Courses

12-18 credits from the following:

Students must select 6 credits from courses outside their department and at least one BMDE course. These BMDE courses are best taken near the end of the program, when prerequisites have been satisfied.

Physiological Systems, Artificial Cells and Organs

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 505</td>
<td>(3)</td>
<td>Cell and Tissue Engineering</td>
</tr>
<tr>
<td>PHGY 311</td>
<td>(3)</td>
<td>Channels, Synapses and Hormones</td>
</tr>
<tr>
<td>PHGY 312</td>
<td>(3)</td>
<td>Respiratory, Renal, & Cardiovascular Physiology</td>
</tr>
<tr>
<td>PHGY 313</td>
<td>(3)</td>
<td>Blood, Gastrointestinal, & Immune Systems Physiology</td>
</tr>
<tr>
<td>PHGY 517</td>
<td>(3)</td>
<td>Artificial Internal Organs</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>PHGY 518</td>
<td>3</td>
<td>Artificial Cells</td>
</tr>
</tbody>
</table>

Bioinformatics, Genomics and Proteomics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 365*</td>
<td>3</td>
<td>Cellular Trafficking</td>
</tr>
<tr>
<td>ANAT 458</td>
<td>3</td>
<td>Membranes and Cellular Signaling</td>
</tr>
<tr>
<td>BIOC 311</td>
<td>3</td>
<td>Metabolic Biochemistry</td>
</tr>
<tr>
<td>BIOC 312</td>
<td>3</td>
<td>Biochemistry of Macromolecules</td>
</tr>
<tr>
<td>BIOC 458*</td>
<td>3</td>
<td>Membranes and Cellular Signaling</td>
</tr>
<tr>
<td>BMDE 506</td>
<td>3</td>
<td>Molecular Biology Techniques</td>
</tr>
<tr>
<td>BMDE 509</td>
<td>3</td>
<td>Quantitative Analysis and Modelling of Cellular Processes</td>
</tr>
<tr>
<td>COMP 302</td>
<td>3</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>COMP 360</td>
<td>3</td>
<td>Algorithm Design</td>
</tr>
<tr>
<td>COMP 421</td>
<td>3</td>
<td>Database Systems</td>
</tr>
<tr>
<td>COMP 424</td>
<td>3</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>COMP 462</td>
<td>3</td>
<td>Computational Biology Methods</td>
</tr>
<tr>
<td>COMP 526</td>
<td>3</td>
<td>Probabilistic Reasoning and AI</td>
</tr>
</tbody>
</table>

* Students choose either ANAT 365 or BIOC 458

Biomaterials, Biosensors, and Nanotechnology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 504</td>
<td>3</td>
<td>Biomaterials and Bioprocessing</td>
</tr>
<tr>
<td>BMDE 505</td>
<td>3</td>
<td>Cell and Tissue Engineering</td>
</tr>
<tr>
<td>BMDE 508</td>
<td>3</td>
<td>Introduction to Micro and Nano-Bioengineering</td>
</tr>
<tr>
<td>CHEE 380</td>
<td>3</td>
<td>Materials Science</td>
</tr>
<tr>
<td>ECSE 424</td>
<td>3</td>
<td>Human-Computer Interaction</td>
</tr>
<tr>
<td>MECH 553</td>
<td>3</td>
<td>Design and Manufacture of Microdevices</td>
</tr>
<tr>
<td>MIME 360</td>
<td>3</td>
<td>Phase Transformations: Solids</td>
</tr>
<tr>
<td>MIME 362</td>
<td>3</td>
<td>Mechanical Properties</td>
</tr>
<tr>
<td>MIME 470</td>
<td>3</td>
<td>Engineering Biomaterials</td>
</tr>
<tr>
<td>PHYS 534</td>
<td>3</td>
<td>Nanoscience and Nanotechnology</td>
</tr>
</tbody>
</table>

Biomechanics and Prosthetics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 503</td>
<td>3</td>
<td>Biomedical Instrumentation</td>
</tr>
<tr>
<td>CHEE 561</td>
<td>3</td>
<td>Introduction to Soft Tissue Biophysics</td>
</tr>
<tr>
<td>CHEE 563*</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>MECH 315</td>
<td>4</td>
<td>Mechanics 3</td>
</tr>
<tr>
<td>MECH 321</td>
<td>3</td>
<td>Mechanics of Deformable Solids</td>
</tr>
<tr>
<td>MECH 530</td>
<td>3</td>
<td>Mechanics of Composite Materials</td>
</tr>
<tr>
<td>MECH 561</td>
<td>3</td>
<td>Biomechanics of Musculoskeletal Systems</td>
</tr>
<tr>
<td>MECH 563*</td>
<td>3</td>
<td>Biofluids and Cardiovascular Mechanics</td>
</tr>
<tr>
<td>MIME 360</td>
<td>3</td>
<td>Phase Transformations: Solids</td>
</tr>
<tr>
<td>MIME 362</td>
<td>3</td>
<td>Mechanical Properties</td>
</tr>
</tbody>
</table>

* Students choose either CHEE 563 or MECH 563.
Medical Physics and Imaging

- BMDE 519 (3) Biomedical Signals and Systems
- COMP 302 (3) Programming Languages and Paradigms
- COMP 360 (3) Algorithm Design
- COMP 424 (3) Artificial Intelligence
- COMP 558 (3) Fundamentals of Computer Vision
- ECSE 303 (3) Signals and Systems 1
- ECSE 304 (3) Signals and Systems 2
- ECSE 412 (3) Discrete Time Signal Processing
- PHYS 557 (3) Nuclear Physics

Neural Systems and Biosignal Processing

- BMDE 501 (3) Selected Topics in Biomedical Engineering
- BMDE 502 (3) BME Modelling and Identification
- BMDE 503 (3) Biomedical Instrumentation
- BMDE 519 (3) Biomedical Signals and Systems
- ECSE 517 (3) Neural Prosthetic Systems
- ECSE 526 (3) Artificial Intelligence
- PHYS 413 (3) Physical Basis of Physiology

Complementary Courses

0-6 credits

Up to 6 credits in the B.Eng., or B.Sc.(Arch.) program can also be credited to the Minor, with the permission of the Departmental Adviser and approval of the Minor Adviser. In particular, courses at the 200 level or higher that are prerequisites for certain specialization courses would be eligible, with permission of the Minor Adviser. By careful selection of complementary courses, the Minor can be satisfied with 9 additional credits in the student's major program or a maximum of 12 credits of overlap with the major program.

12.10.4 Bachelor of Engineering (B.Eng.) - Minor Biotechnology (for Engineering Students) (24 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

For advising regarding Science courses, contact Nancy Nelson, Undergraduate Adviser, Department of Biology, Faculty of Science.

This Minor is offered by the Faculty of Engineering and the Faculty of Science for students who wish to take biotechnology courses that are complementary to their area. It has been designed specifically for Chemical Engineering students; other Engineering students who are interested in the Minor should contact a Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

To obtain the Biotechnology Minor, students must complete 24 credits, 18 of which must be exclusively for the Minor. Approved substitutions must be made for any of the required courses that are part of the student's major program.

The Department of Chemical Engineering permits students taking this Minor to complete BIOT 505 (Selected Topics in Biotechnology) as one of their technical complementary courses. Chemical Engineering students complete 15 credits beyond their 141-credit (115-credit for CEGEP students) B.Eng. program to obtain this Minor.

Required Courses

12 credits

- BIOT 505 (3) Selected Topics in Biotechnology
- CHEE 200 (3) Chemical Engineering Principles 1
- CHEE 204 (3) Chemical Engineering Principles 2
- CHEE 474 (3) Biochemical Engineering

OR
Alternative Required Courses (for Chemical Engineering students)

A Chemical Engineering student may complete the Biotechnology Minor by taking the courses below plus one course from the list of complementary courses, not including FACC 300.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>3</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>3</td>
<td>Cell Biology and Metabolism</td>
</tr>
<tr>
<td>BIOL 202</td>
<td>3</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>BIOT 505</td>
<td>3</td>
<td>Selected Topics in Biotechnology</td>
</tr>
<tr>
<td>MIMM 211</td>
<td>3</td>
<td>Introductory Microbiology</td>
</tr>
</tbody>
</table>

Complementary Courses

12 credits selected from courses outside the Department of the student’s major program and/or from the lists below. If courses are chosen from the lists below, at least three courses must be taken from one area of concentration as grouped.

Biomedicine

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 541</td>
<td>3</td>
<td>Cell and Molecular Biology of Aging</td>
</tr>
<tr>
<td>EXMD 504</td>
<td>3</td>
<td>Biology of Cancer</td>
</tr>
<tr>
<td>PATH 300</td>
<td>3</td>
<td>Human Disease</td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 482</td>
<td>3</td>
<td>Organic Chemistry: Natural Products</td>
</tr>
<tr>
<td>CHEM 502</td>
<td>3</td>
<td>Advanced Bio-Organic Chemistry</td>
</tr>
<tr>
<td>CHEM 552</td>
<td>3</td>
<td>Physical Organic Chemistry</td>
</tr>
</tbody>
</table>

General

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACC 300</td>
<td>3</td>
<td>Engineering Economy</td>
</tr>
</tbody>
</table>

Immunology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 261</td>
<td>4</td>
<td>Introduction to Dynamic Histology</td>
</tr>
<tr>
<td>BIOC 503</td>
<td>3</td>
<td>Immunochemistry</td>
</tr>
<tr>
<td>MIMM 214</td>
<td>3</td>
<td>Introductory Immunology: Elements of Immunity</td>
</tr>
<tr>
<td>MIMM 414</td>
<td>3</td>
<td>Advanced Immunology</td>
</tr>
<tr>
<td>PHGY 513</td>
<td>3</td>
<td>Cellular Immunology</td>
</tr>
</tbody>
</table>

Management

Note: Engineering students may not use these courses to count toward a Management minor, nor toward the Complementary Studies requirement.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 208</td>
<td>3</td>
<td>Microeconomic Analysis and Applications</td>
</tr>
<tr>
<td>MGCR 211</td>
<td>3</td>
<td>Introduction to Financial Accounting</td>
</tr>
<tr>
<td>MGCR 341</td>
<td>3</td>
<td>Introduction to Finance</td>
</tr>
<tr>
<td>MGCR 352</td>
<td>3</td>
<td>Principles of Marketing</td>
</tr>
<tr>
<td>MGCR 472</td>
<td>3</td>
<td>Operations Management</td>
</tr>
<tr>
<td>Course Code</td>
<td>Credits</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>MIMM 323</td>
<td>3</td>
<td>Microbial Physiology</td>
</tr>
<tr>
<td>MIMM 324</td>
<td>3</td>
<td>Fundamental Virology</td>
</tr>
<tr>
<td>MIMM 413</td>
<td>3</td>
<td>Parasitology</td>
</tr>
<tr>
<td>MIMM 465</td>
<td>3</td>
<td>Bacterial Pathogenesis</td>
</tr>
<tr>
<td>MIMM 466</td>
<td>3</td>
<td>Viral Pathogenesis</td>
</tr>
</tbody>
</table>

Molecular Biology (Biology)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 300</td>
<td>3</td>
<td>Molecular Biology of the Gene</td>
</tr>
<tr>
<td>BIOL 314</td>
<td>3</td>
<td>Molecular Biology of Oncogenes</td>
</tr>
<tr>
<td>BIOL 520</td>
<td>3</td>
<td>Gene Activity in Development</td>
</tr>
<tr>
<td>BIOL 524</td>
<td>3</td>
<td>Topics in Molecular Biology</td>
</tr>
<tr>
<td>BIOL 551</td>
<td>3</td>
<td>Principles of Cellular Control</td>
</tr>
</tbody>
</table>

Molecular Biology (Biochemistry)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 311</td>
<td>3</td>
<td>Metabolic Biochemistry</td>
</tr>
<tr>
<td>BIOC 312</td>
<td>3</td>
<td>Biochemistry of Macromolecules</td>
</tr>
<tr>
<td>BIOC 450</td>
<td>3</td>
<td>Protein Structure and Function</td>
</tr>
<tr>
<td>BIOC 454</td>
<td>3</td>
<td>Nucleic Acids</td>
</tr>
<tr>
<td>PSYT 455</td>
<td>3</td>
<td>Neurochemistry</td>
</tr>
</tbody>
</table>

Physiology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXMD 401</td>
<td>3</td>
<td>Physiology and Biochemistry Endocrine Systems</td>
</tr>
<tr>
<td>EXMD 502</td>
<td>3</td>
<td>Advanced Endocrinology 1</td>
</tr>
<tr>
<td>EXMD 503</td>
<td>3</td>
<td>Advanced Endocrinology 02</td>
</tr>
<tr>
<td>PHAR 562</td>
<td>3</td>
<td>Neuropharmacology</td>
</tr>
<tr>
<td>PHAR 563</td>
<td>3</td>
<td>Endocrine Pharmacology</td>
</tr>
<tr>
<td>PHGY 517</td>
<td>3</td>
<td>Artificial Internal Organs</td>
</tr>
<tr>
<td>PHGY 518</td>
<td>3</td>
<td>Artificial Cells</td>
</tr>
</tbody>
</table>

Pollution

Note: Engineering students may not use these courses to count toward the Environmental Engineering Minor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 225</td>
<td>4</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>CIVE 430</td>
<td>3</td>
<td>Water Treatment and Pollution Control</td>
</tr>
<tr>
<td>CIVE 557</td>
<td>3</td>
<td>Microbiology for Environmental Engineering</td>
</tr>
</tbody>
</table>

12.10.5 Bachelor of Engineering (B.Eng.) - Minor Chemistry (25 credits)

Minor Adviser (program coordinator): Dr. Samuel Sewall (Director of Undergraduate Studies, Chemistry)

Program credit weight: 25 credits

A passing grade for courses in the Minor is a C.

Required Courses

10 credits
CHEE 310* (3) Physical Chemistry for Engineers
CHEM 212 (4) Introductory Organic Chemistry 1
CHEM 233* (3) Topics in Physical Chemistry
CHEM 234** (3) Topics in Organic Chemistry

* Students choose either CHEM 233 or CHEE 310
** or CEGEP equivalent

Complementary Courses
15 credits from the following lists, two courses of which must be laboratory courses (* indicates lab).

Note that CHEM 212 is a prerequisite for most of the courses listed below, and CHEM 213 (Introductory Physical Chemistry 1) and CHEM 273 (Introductory Physical Chemistry 2) or their equivalents are prerequisites for the Physical Chemistry courses. If students take CHEM 222 (Introductory Organic Chemistry 2), which includes a lab, instead of CHEM 234, they will receive credit for one of the two required laboratory courses, but they must complete a total of 25 credits in chemistry for the Minor.

Inorganic Chemistry
CHEM 281 (3) Inorganic Chemistry 1
CHEM 371* (2) Inorganic Chemistry Laboratory
CHEM 381 (3) Inorganic Chemistry 2
CHEM 591 (3) Bioinorganic Chemistry

Analytical Chemistry
CHEM 267 (3) Introductory Chemical Analysis
CHEM 367 (3) Instrumental Analysis 1
CHEM 377 (3) Instrumental Analysis 2

Organic Chemistry
CHEM 302 (3) Introductory Organic Chemistry 3
CHEM 362* (2) Advanced Organic Chemistry Laboratory
CHEM 482 (3) Organic Chemistry: Natural Products

Physical Chemistry
CHEM 345 (3) Introduction to Quantum Chemistry
CHEM 355 (3) Applications of Quantum Chemistry
CHEM 493* (2) Advanced Physical Chemistry Laboratory
CHEM 574 (3) Introductory Polymer Chemistry

12.10.6 Computer Science Courses and Minor Program

The School of Computer Science offers an extensive range of courses for students in the Faculty of Engineering who are interested in computers. Students in the Faculty of Engineering may obtain a **Computer Science Minor** by completing 24 credits of courses, passed with a grade of C or better.

Students interested in this Minor should contact:

Liette Chin
Undergraduate Program Coordinator
School of Computer Science
McConnell Engineering Building, Room 320
Telephone: 514-398-7071, ext. 00118
and the Minor Adviser in the School of Computer Science.

12.10.6.1 Computer Science Courses in Engineering Programs

The School of Computer Science offers an extensive range of courses for students in the Faculty of Engineering who are interested in computers. The course taken by students in most B.Eng. programs (COMP 208) and other courses included in the core of the various B.Eng. programs are listed below.

Search All Courses for other courses offered by the School of Computer Sciences (subject code COMP).

Computer Science Courses in Engineering Programs

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 206</td>
<td>3</td>
<td>Introduction to Software Systems</td>
</tr>
<tr>
<td>COMP 208</td>
<td>3</td>
<td>Computers in Engineering</td>
</tr>
<tr>
<td>COMP 250</td>
<td>3</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>COMP 251</td>
<td>3</td>
<td>Algorithms and Data Structures</td>
</tr>
<tr>
<td>COMP 302</td>
<td>3</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>COMP 360</td>
<td>3</td>
<td>Algorithm Design</td>
</tr>
<tr>
<td>COMP 421</td>
<td>3</td>
<td>Database Systems</td>
</tr>
</tbody>
</table>

12.10.6.2 Bachelor of Engineering (B.Eng.) - Minor Computer Science (24 credits)

Minor Adviser: Students interested in this Minor should see Liette Chin, Undergraduate Program Coordinator, in the School of Computer Science (Lorne Trotier Building, Room 2060) to obtain the appropriate forms, and should see both the Minor Adviser in Computer Science and their department adviser for approval of their course selection. Forms must be submitted and approved before the end of the Course Change (drop/add) period of the student's final term.

Note: This Minor is open to B.Eng. and B.Sc.(Arch.) students in Engineering.

Engineering students may obtain the Minor in Computer Science as part of their B.Eng. or B.Sc.(Arch.) degree by completing the 24 credits of courses passed with a grade of C or better. In general, some complementary courses within B.Eng. programs may be used to satisfy some of these requirements, but the Minor will require at least 12 extra credits from Computer Science (COMP) courses beyond those needed for the B.Eng. degree. Students should consult their departments about the use of complementaries, and credits that can be double counted.

Note: COMP 202 and COMP 208 (compulsory for some Engineering students) do not form part of the Minor in Computer Science.

For more information, see the School of Computer Science website: http://www.cs.mcgill.ca.

Required Courses

6 credits

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 206</td>
<td>3</td>
<td>Introduction to Software Systems</td>
</tr>
<tr>
<td>COMP 250</td>
<td>3</td>
<td>Introduction to Computer Science</td>
</tr>
</tbody>
</table>

Complementary Courses

18 credits

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 302</td>
<td>3</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>COMP 303</td>
<td>3</td>
<td>Software Design</td>
</tr>
</tbody>
</table>

3 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 273</td>
<td>3</td>
<td>Introduction to Computer Systems</td>
</tr>
<tr>
<td>ECSE 221</td>
<td>3</td>
<td>Introduction to Computer Engineering</td>
</tr>
</tbody>
</table>
3-4 credits from the following:

- CIVE 320 (4) Numerical Methods
- COMP 350 (3) Numerical Computing
- ECSE 443 (3) Introduction to Numerical Methods in Electrical Engineering
- MATH 317 (3) Numerical Analysis
- MECH 309 (3) Numerical Methods in Mechanical Engineering

0-3 credits from the following:

- COMP 251 (3) Algorithms and Data Structures

6-9 credits chosen from other Computer Science courses at the 300 level or higher.

Notes:
A. COMP 208 may be taken before COMP 250; however, it cannot be taken for credit in the same term or afterward.
B. COMP 396 (Undergraduate Research Project) cannot be taken for credit toward this Minor.

Courses that make considerable use of computing from other departments may also be selected, with the approval of the School of Computer Science. Students should consult with their advisers about counting specific courses.

12.10.7 Bachelor of Engineering (B.Eng.) - Minor Construction Engineering and Management (24 credits)

Minor Adviser: Prof. L. Chouinard, Macdonald Engineering Building, Room 491 (Telephone: 514-398-6446)
Minor program credit weight: 24-25 credits
Note: This Minor is particularly designed for Civil Engineering students, but is open to all B.Eng. and B.Sc.(Arch.) students.
All courses in the Minor must be passed with a grade of C or better.

Prerequisites

- CIVE 208 (3) Civil Engineering System Analysis
- CIVE 302 (3) Probabilistic Systems
- COMP 208 (3) Computers in Engineering
- FAC 300 (3) Engineering Economy

Required Courses: Management and Law

15 credits

- CIVE 324 (3) Sustainable Project Management
- FAC 220 (3) Law for Architects and Engineers
- INDR 294 (3) Introduction to Labour-Management Relations
- MGC 211 (3) Introduction to Financial Accounting
- MGC 341 (3) Introduction to Finance

Complementary Courses

3-4 credits (4 credits from List A OR 3 credits from List B)

List A - Building Structures
4 credits from the following:

- ARCH 447 (2) Lighting
ARCH 451 (2) Building Regulations and Safety
CIVE 492 (2) Structures

OR

List B - Heavy Construction
3 credits from the following:
MIME 322 (3) Rock Fragmentation
MIME 333 (3) Materials Handling

Construction-Related Complementary Courses
6 credits from the following:
BUSA 462 (3) Management of New Enterprises
CIVE 446 (3) Construction Engineering
CIVE 527 (3) Renovation and Preservation: Infrastructure
ECSE 461 (3) Electric Machinery
FINE 445 (3) Real Estate Finance
MIME 520 (3) Stability of Rock Slopes
MIME 521 (3) Stability of Underground Openings
MPMC 321* (3) Mécanique des roches et contrôle des terrains

* Course offered in French at École Polytechnique in Montreal

12.10.8 Bachelor of Engineering (B.Eng.) - Minor Economics (18 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

Program credit weight: 18 credits

This Minor consists of 18 credits of required and complementary courses given in the Economics Department. In addition, it is presumed that all Engineering students will have a sufficient background in statistics. Engineering Economy, FACC 300, does not form part of this Minor. Engineering students who want to complete a minor in economics are required to complete the following program rather than one of the minor concentrations offered by the Department of Economics in the Faculty of Arts section of this eCalendar, unless they have obtained permission from the Faculty of Engineering.

All courses in the Minor must be passed with a grade of C or better.

Required Courses
9 credits
ECON 209* (3) Macroeconomic Analysis and Applications
ECON 230D1** (3) Microeconomic Theory
ECON 230D2** (3) Microeconomic Theory

* This requirement is waived for students who choose ECON 330D1/ECON 330D2 from the list of complementary courses. Students may not take both ECON 209 and ECON 330D1/ECON 330D2.
** Students may, with consent of the instructor, take ECON 250D1/ECON 250D2 Introduction to Economic Theory: Honours, in place of ECON 230D1/ECON 230D2.

Complementary Courses
9 credits from:
ECON 225 (3) Economics of the Environment
ECON 303 (3) Canadian Economic Policy
ECON 304 (3) Financial Instruments & Institutions
ECON 305 (3) Industrial Organization
ECON 306 (3) Labour Markets and Wages
ECON 308 (3) Governmental Policy Towards Business
ECON 313 (3) Economic Development 1
ECON 314 (3) Economic Development 2
ECON 316 (3) The Underground Economy
ECON 326 (3) Ecological Economics
ECON 330D1 (3) Macroeconomic Theory
ECON 330D2 (3) Macroeconomic Theory
ECON 335 (3) The Japanese Economy
ECON 336 (3) The Chinese Economy
ECON 337 (3) Introductory Econometrics 1
ECON 344 (3) Industrial Revolution and Economic Development
ECON 345 (3) The International Economy since 1914
ECON 347 (3) Economics of Climate Change
ECON 405 (3) Natural Resource Economics
ECON 406 (3) Topics in Economic Policy
ECON 408 (3) Public Sector Economics 1
ECON 409 (3) Public Sector Economics 2
ECON 411 (3) Economic Development: A World Area
ECON 416 (3) Topics in Economic Development 2
ECON 420 (3) Topics in Economic Theory
ECON 426 (3) Labour Economics
ECON 434 (3) Current Economic Problems
ECON 440 (3) Health Economics
ECON 468 (3) Econometrics 1 - Honours
ECON 469 (3) Econometrics 2 - Honours
ECON 525 (3) Project Analysis
ECON 546 (3) Game Theory

Note: Mining Engineering students are permitted to include MIME 526 Mineral Economics among the Complementary Courses.

12.10.9 Minor in Environment

Environmental studies focus on the interactions between humans and their natural and technological environments. Environmental problems are complex, and their satisfactory solutions require the synthesis of social, scientific, and institutional knowledge.

The Minor in Environment is offered and administered by the McGill School of Environment (MSE).

Since the program comprises a total of 18 credits for the Minor, additional credits beyond those needed for the B.Eng. degree are required. Students wishing to complete the Minor should prepare a program and have it approved by both their regular Engineering departmental adviser and the MSE Adviser. For program details, see McGill School of Environment > Undergraduate > Browse Academic Programs > Minor in Environment.

Note: Engineering students interested in this Minor must submit a completed Course Authorization Form to the McGill Engineering Student Centre (Student Affairs Office; Frank Dawson Adams Building, Room 22).

Minor Adviser: Students interested in this Minor should contact:

Kathy Roulet
McGill School of Environment Program Adviser
Telephone: 514-398-4306
12.10.10 Bachelor of Engineering (B.Eng.) - Minor Environmental Engineering (21 credits)

Minor Adviser: Prof. S. Ghoshal, Macdonald Engineering Building, Room 569C

Minor program credit weight: 21-22 credits

The Environmental Engineering Minor is administered by the Department of Civil Engineering and Applied Mechanics and is offered for all students in Engineering and in the Department of Bioresource Engineering wishing to pursue studies in this area.

A maximum of 12 credits of coursework in the student's major may double-count with the Minor.

To complete the Minor in Environmental Engineering, students must obtain a grade of C or better in all approved courses in the Minor, and satisfy the requirements of both the Minor and their major program.

Note: Not all courses listed are offered every year. Students should see the "Courses" section of this eCalendar to know if a course is offered.

Complementary Courses

21-22 credits

18 credits from Stream A, B, or C below

and

One course (3-4 credits) from the following list:

- BREE 327 (3) Bio-Environmental Engineering
- CHEE 230 (3) Environmental Aspects of Technology
- CIVE 225 (4) Environmental Engineering

Stream A

15 credits* from the Engineering Course List and 3 credits from the Non-Engineering Course List below

* A minimum of 6 credits must be from outside the student's department. A maximum of 6 credits of research project courses may be counted toward this category, provided the project has sufficient environmental engineering content (project requires approval of project supervisor and coordinator of the Minor).

Stream B

15 credits of courses that make up the "Barbados Field Study Semester" below, provided the project for CIVE/AGRI/URBP 519 Sustainable Development Plans has sufficient environmental engineering content (project requires approval of the Coordinator of the Minor);

AND

One course (3-4 credits) chosen from the Engineering Course List below, excluding CHEE 496.

Barbados Field Study Courses

Required Courses

6 credits

- URBP 507 (3) Planning and Infrastructure
- URBP 520 (3) Globalization: Planning and Change

Complementary Courses

9 credits

One of the following cross-listed courses (3 credits):

- AGRI 452 (3) Water Resources in Barbados
- CIVE 452 (3) Water Resources in Barbados

AND

One of the following cross-listed project courses (6 credits):
Stream C

9 credits of courses specified from the "Barbados Interdisciplinary Tropical Studies (BITS)" field semester below, provided the project has sufficient environmental engineering content (project requires approval of the Coordinator of the Minor):

- AEBI 425 (3) Tropical Energy and Food
- AEBI 427 (6) Barbados Interdisciplinary Project

AND

9 credits chosen from the Engineering Course List below, excluding CHEE 496.

Engineering Course List

Courses offered at the Macdonald campus:
- BREE 217* (3) Hydrology and Water Resources
- BREE 322 (3) Organic Waste Management
- BREE 416 (3) Engineering for Land Development
- BREE 518 (3) Ecological Engineering

* Not open to students who have passed CIVE 323.

Courses offered at the Downtown campus:
- ARCH 377 (3) Energy, Environment and Buildings
- ARCH 515 (3) Sustainable Design
- CHEE 351 (3) Separation Processes
- CHEE 370 (3) Elements of Biotechnology
- CHEE 496 (3) Environmental Research Project
- CHEE 591 (3) Environmental Bioremediation
- CHEE 592 (3) Industrial Air Pollution Control
- CHEE 593 (3) Industrial Water Pollution Control
- CIVE 225 (4) Environmental Engineering
- CIVE 323** (3) Hydrology and Water Resources
- CIVE 421 (3) Municipal Systems
- CIVE 428 (3) Water Resources and Hydraulic Engineering
- CIVE 430 (3) Water Treatment and Pollution Control
- CIVE 451 (3) Geoenvironmental Engineering
- CIVE 550 (3) Water Resources Management
- CIVE 555 (3) Environmental Data Analysis
- CIVE 557 (3) Microbiology for Environmental Engineering
- CIVE 572 (3) Computational Hydraulics
- CIVE 573 (3) Hydraulic Structures
- CIVE 574 (3) Fluid Mechanics of Water Pollution
- CIVE 577 (3) River Engineering
- CIVE 584 (3) Groundwater Engineering
<table>
<thead>
<tr>
<th>Course Code</th>
<th>(Units)</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 447</td>
<td>(3)</td>
<td>Combustion</td>
</tr>
<tr>
<td>MECH 526</td>
<td>(3)</td>
<td>Manufacturing and the Environment</td>
</tr>
<tr>
<td>MECH 534</td>
<td>(3)</td>
<td>Air Pollution Engineering</td>
</tr>
<tr>
<td>MECH 535</td>
<td>(3)</td>
<td>Turbomachinery and Propulsion</td>
</tr>
<tr>
<td>MIME 422</td>
<td>(3)</td>
<td>Mine Ventilation</td>
</tr>
<tr>
<td>MIME 512</td>
<td>(3)</td>
<td>Corrosion and Degradation of Materials</td>
</tr>
<tr>
<td>MIME 528</td>
<td>(3)</td>
<td>Environnement et gestion des rejets miniers</td>
</tr>
<tr>
<td>URBP 506</td>
<td>(3)</td>
<td>Environmental Policy and Planning</td>
</tr>
</tbody>
</table>

** Not open to students who have passed BREE 217.

Non-Engineering Course List

Courses offered at the Macdonald campus:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>(Units)</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSCI 230+</td>
<td>(3)</td>
<td>Introductory Microbiology</td>
</tr>
<tr>
<td>MICR 331+</td>
<td>(3)</td>
<td>Microbial Ecology</td>
</tr>
<tr>
<td>MICR 341</td>
<td>(3)</td>
<td>Mechanisms of Pathogenicity</td>
</tr>
<tr>
<td>RELG 270</td>
<td>(3)</td>
<td>Religious Ethics and the Environment</td>
</tr>
<tr>
<td>SOIL 210++</td>
<td>(3)</td>
<td>Principles of Soil Science</td>
</tr>
<tr>
<td>SOIL 331</td>
<td>(3)</td>
<td>Environmental Soil Physics</td>
</tr>
<tr>
<td>WILD 375</td>
<td>(3)</td>
<td>Issues: Environmental Sciences</td>
</tr>
<tr>
<td>WILD 415</td>
<td>(2)</td>
<td>Conservation Law</td>
</tr>
<tr>
<td>WOOD 420</td>
<td>(3)</td>
<td>Environmental Issues: Forestry</td>
</tr>
</tbody>
</table>

+ Not open to students who have passed CHEE 370.

++ Not part of the Minor for Agricultural Engineering students.

Courses offered at the Downtown campus:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>(Units)</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTH 206</td>
<td>(3)</td>
<td>Environment and Culture</td>
</tr>
<tr>
<td>BIOL 205</td>
<td>(3)</td>
<td>Biology of Organisms</td>
</tr>
<tr>
<td>BIOL 432</td>
<td>(3)</td>
<td>Limnology</td>
</tr>
<tr>
<td>CMPL 580</td>
<td>(3)</td>
<td>Environment and the Law</td>
</tr>
<tr>
<td>ECON 225</td>
<td>(3)</td>
<td>Economics of the Environment</td>
</tr>
<tr>
<td>ECON 326</td>
<td>(3)</td>
<td>Ecological Economics</td>
</tr>
<tr>
<td>ECON 347</td>
<td>(3)</td>
<td>Economics of Climate Change</td>
</tr>
<tr>
<td>EPSC 549</td>
<td>(3)</td>
<td>Hydrogeology</td>
</tr>
<tr>
<td>GEOG 200</td>
<td>(3)</td>
<td>Geographical Perspectives: World Environmental Problems</td>
</tr>
<tr>
<td>GEOG 201</td>
<td>(3)</td>
<td>Introductory Geo-Information Science</td>
</tr>
<tr>
<td>GEOG 203</td>
<td>(3)</td>
<td>Environmental Systems</td>
</tr>
<tr>
<td>GEOG 205</td>
<td>(3)</td>
<td>Global Change: Past, Present and Future</td>
</tr>
<tr>
<td>GEOG 302</td>
<td>(3)</td>
<td>Environmental Management 1</td>
</tr>
<tr>
<td>GEOG 308</td>
<td>(3)</td>
<td>Principles of Remote Sensing</td>
</tr>
<tr>
<td>GEOG 321</td>
<td>(3)</td>
<td>Climatic Environments</td>
</tr>
<tr>
<td>GEOG 404</td>
<td>(3)</td>
<td>Environmental Management 2</td>
</tr>
<tr>
<td>MIMM 211</td>
<td>(3)</td>
<td>Introductory Microbiology</td>
</tr>
</tbody>
</table>
12.10.11 Minor Programs in Finance, Management, Marketing, and Operations Management

Prerequisite: None

Minors for Non-Management Students: Students considering one of these Minor programs should consult a Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office; Frank Dawson Adams Building, Room 22) before applying to the Desautels Faculty of Management.

Many engineers begin to assume management functions within a few years of graduation. They can, at this stage, take up the study of economics, behavioural science, and other management subjects. Students wishing to include such studies in their undergraduate program can take suitable courses from Engineering and Management.

Each Minor comprises 18 credits of courses available from the core program of the Desautels Faculty of Management (subject to timetable requirements). Some courses from the Management core program have considerable overlap with Engineering courses and thus are not available to Engineering students. Students embarking on a minor must be prepared to take credits additional to their Engineering program. Students in a B.Eng. program may be able to count up to 6 credits of Complementary Studies Group B courses (Humanities and Social Sciences, Management Studies, and Law courses) toward both their Engineering major program and a Management minor where applicable. More information about Complementary Studies is given in each individual academic program listing for the B.Eng. degree (see section 12: Browse Academic Units & Programs).

Admission requirements for the Management Minors change annually. Please consult the Desautels Faculty of Management website for more details.

Students planning to take any course with statistics as a prerequisite must have completed MGCR 271 (Business Statistics) or an equivalent course approved by the BCom Student Affairs Office.

Application and Program Requirements

Detailed information on the following Minor programs can be found in Desautels Faculty of Management > Undergraduate > Overview of Programs Offered by the Desautels Faculty of Management > Minors for Non-Management Students:

- Bachelor of Commerce (B.Com.) - Minor Finance (For Non-Management Students) (18 credits)
- Bachelor of Commerce (B.Com.) - Minor Management (For Non-Management Students) (18 credits)
- Bachelor of Commerce (B.Com.) - Minor Marketing (For Non-Management Students) (18 credits)
- Bachelor of Commerce (B.Com.) - Minor Operations Management (For Non-Management Students) (18 credits)

Further information can also be found at www.mcgill.ca/engineering/students/current-students/undergraduate/advising-programs/academic-program-curriculum/minor-programs.

12.10.12 Bachelor of Engineering (B.Eng.) - Minor Materials Engineering (24 credits)

Minor Adviser: Prof. Richard Chromik (Minor Coordinator), Wong Building, Room 2620

Engineering students may obtain a Materials Engineering Minor by completing 24 credits chosen from the required and complementary courses listed below. By a careful selection of complementary courses, Engineering students may obtain this Minor with a minimum of 15 additional credits.

Required Courses

15 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 380*</td>
<td>3</td>
<td>Materials Science</td>
</tr>
<tr>
<td>CHEE 484</td>
<td>3</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>MIME 260*</td>
<td>3</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>MIME 345</td>
<td>3</td>
<td>Applications of Polymers</td>
</tr>
<tr>
<td>MIME 465</td>
<td>3</td>
<td>Metallic and Ceramic Powders Processing</td>
</tr>
<tr>
<td>MIME 467</td>
<td>3</td>
<td>Electronic Properties of Materials</td>
</tr>
</tbody>
</table>

* Students choose either CHEE 380 or MIME 260.

Complementary Courses

9 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 587</td>
<td>3</td>
<td>Chemical Processing: Electronics Industry</td>
</tr>
<tr>
<td>ECSE 545</td>
<td>3</td>
<td>Microelectronics Technology</td>
</tr>
<tr>
<td>MECH 530</td>
<td>3</td>
<td>Mechanics of Composite Materials</td>
</tr>
<tr>
<td>MIME 360</td>
<td>3</td>
<td>Phase Transformations: Solids</td>
</tr>
<tr>
<td>MIME 512</td>
<td>3</td>
<td>Corrosion and Degradation of Materials</td>
</tr>
</tbody>
</table>
12.10.13 Bachelor of Engineering (B.Eng.) - Minor Mathematics (24 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22) AND an adviser designated by the Department of Mathematics and Statistics, normally beginning in the U2 year (please consult the Department of Mathematics and Statistics for this adviser). Selection of courses must be done in conjunction with the Minor advisers.

Note: The Mathematics Minor is open to all students in the Faculty of Engineering (B.Eng. and B.Sc.(Arch.)).

Engineering students must obtain a grade of C or better in courses approved for this Minor.

Course Selection

At least 18 credits must be chosen from the Mathematics and Statistics courses approved for the Mathematics Major or Honours program, or from the following courses:

- MATH 249 (3) Honours Complex Variables
- MATH 363 (3) Discrete Mathematics
- MATH 381 (3) Complex Variables and Transforms

The remaining credits may be chosen from mathematically-allied courses.

The following courses cannot be used toward the Minor:

- MATH 222 (3) Calculus 3
- MATH 223 (3) Linear Algebra
- MATH 247 (3) Honours Applied Linear Algebra
- MATH 248 (3) Honours Advanced Calculus
- MATH 262 (3) Intermediate Calculus
- MATH 263 (3) Ordinary Differential Equations for Engineers
- MATH 264 (3) Advanced Calculus for Engineers
- MATH 270 (3) Applied Linear Algebra
- MATH 271 (3) Linear Algebra and Partial Differential Equations
- MATH 314 (3) Advanced Calculus
- MATH 315 (3) Ordinary Differential Equations
- MATH 319 (3) Introduction to Partial Differential Equations
- MATH 325 (3) Honours Ordinary Differential Equations

12.10.14 Bachelor of Engineering (B.Eng.) - Minor Mining Engineering (23 credits)

Minor Adviser: Prof. Mustafa Kumral (Minor Coordinator)
Frank Dawson Adams Building, Room 119

Program credit weight: 23 credits

One of the required courses is a work term for which enrolment may be limited.

Required Courses

14 credits

- MIME 200 (3) Introduction to the Minerals Industry
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 291</td>
<td>(2)</td>
<td>Industrial Work Period 2</td>
</tr>
<tr>
<td>MIME 322</td>
<td>(3)</td>
<td>Rock Fragmentation</td>
</tr>
<tr>
<td>MIME 325</td>
<td>(3)</td>
<td>Mineral Industry Economics</td>
</tr>
<tr>
<td>MIME 333</td>
<td>(3)</td>
<td>Materials Handling</td>
</tr>
</tbody>
</table>

Complementary Courses

9 credits

List A: Mining Engineering

3-9 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME 320</td>
<td>(3)</td>
<td>Extraction of Energy Resources</td>
</tr>
<tr>
<td>MIME 323</td>
<td>(3)</td>
<td>Rock and Soil Mass Characterization</td>
</tr>
<tr>
<td>MIME 341</td>
<td>(3)</td>
<td>Introduction to Mineral Processing</td>
</tr>
<tr>
<td>MIME 419</td>
<td>(3)</td>
<td>Surface Mining</td>
</tr>
<tr>
<td>MIME 422</td>
<td>(3)</td>
<td>Mine Ventilation</td>
</tr>
<tr>
<td>MIME 520</td>
<td>(3)</td>
<td>Stability of Rock Slopes</td>
</tr>
<tr>
<td>MIME 521</td>
<td>(3)</td>
<td>Stability of Underground Openings</td>
</tr>
<tr>
<td>MIME 526</td>
<td>(3)</td>
<td>Mineral Economics</td>
</tr>
<tr>
<td>MIME 588</td>
<td>(3)</td>
<td>Reliability Analysis of Mining Systems</td>
</tr>
</tbody>
</table>

List B: Mechanical Engineering

0-6 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 497</td>
<td>(3)</td>
<td>Value Engineering</td>
</tr>
<tr>
<td>MECH 557</td>
<td>(3)</td>
<td>Mechatronic Design</td>
</tr>
<tr>
<td>MECH 572</td>
<td>(3)</td>
<td>Introduction to Robotics</td>
</tr>
<tr>
<td>MECH 573</td>
<td>(3)</td>
<td>Mechanics of Robotic Systems</td>
</tr>
<tr>
<td>MECH 577</td>
<td>(3)</td>
<td>Optimum Design</td>
</tr>
</tbody>
</table>

List C: Civil Engineering

0-6 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVE 416</td>
<td>(3)</td>
<td>Geotechnical Engineering</td>
</tr>
<tr>
<td>CIVE 451</td>
<td>(3)</td>
<td>Geoenvironmental Engineering</td>
</tr>
<tr>
<td>CIVE 462</td>
<td>(3)</td>
<td>Design of Steel Structures</td>
</tr>
<tr>
<td>CIVE 463</td>
<td>(3)</td>
<td>Design of Concrete Structures</td>
</tr>
<tr>
<td>CIVE 527</td>
<td>(3)</td>
<td>Renovation and Preservation: Infrastructure</td>
</tr>
</tbody>
</table>

List D: Chemical Engineering

0-6 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 453</td>
<td>(4)</td>
<td>Process Design</td>
</tr>
<tr>
<td>CHEE 455</td>
<td>(3)</td>
<td>Process Control</td>
</tr>
<tr>
<td>CHEE 484</td>
<td>(3)</td>
<td>Materials Engineering</td>
</tr>
</tbody>
</table>

List E: Electrical Engineering
0-6 credits from the following:

- ECSE 404 (3) Control Systems
- ECSE 426 (3) Microprocessor Systems
- ECSE 436 (3) Signal Processing Hardware
- ECSE 451 (3) EM Transmission and Radiation
- ECSE 464 (3) Power Systems Analysis

12.10.15 Minor in Musical Science and Technology

The Musical Science and Technology Minor focuses on interdisciplinary topics in science and technology applied to music. The goal of the program is to help prepare students for commercial jobs in the audio technology sector and/or for subsequent graduate research study. Enrolment in the MST Minor is limited to students with existing scientific backgrounds from all faculties at McGill University. Selection is based on prior experience in math, computer programming, and related sciences; expressed interest in the program; and Cumulative Grade Point Average (CGPA).

Engineering students may apply for admission to the **Minor in Musical Science and Technology**. Detailed information on this program can be found in [Schulich School of Music > Undergraduate > Browse Academic Units & Programs > Department of Music Research: Composition; Music Education; Music History; Theory; Faculty Program > : Bachelor of Music (B.Mus.) - Minor Musical Science and Technology (18 credits)](www.mcgill.ca/music/programs/minor/mst). Enrolment in Music Technology programs is highly restricted.

Application forms will be available at www.mcgill.ca/music/programs/minor/mst and should be submitted to the Department of Music Research either by email research.music@mcgill.ca or in person (Strathcona Music Building, Room A726C). Application forms must be completed and submitted to the Department of Music Research by May 15. Late applications will be accepted at the discretion of the Department. Successful applicants will be notified by the end of June. Registration will be limited to available lab space.

For further information about this Minor, please contact:

- Department of Music Research
 - Telephone: 514-398-4540
 - Email: research.music@mcgill.ca
 - Website: www.mcgill.ca/music/programs/minor/mst

12.10.16 Bachelor of Engineering (B.Eng.) - Minor Nanotechnology (21 credits)

Through courses already offered in the Faculties of Science, Engineering, and Medicine, depending on the courses completed, undergraduate students will acquire knowledge in some of the following areas related to nanotechnology:

- Nanomaterial synthesis and processing approaches
- Physicochemistry and quantum behavior of nanomaterials
- State-of-the-art techniques for nanomaterial characterization and detection
- Applications of nanomaterials in engineered solutions
- Nanomaterials in medicine and pharmacology
- Nanomaterials in electronics and energy
- Environmental, health, and social impacts of nanomaterials

Minor program credit weight: 21-22 credits

Minor Adviser: Prof. N. Tufenkji, Wong Building, Room 4300

Students must complete 21 credits of courses as indicated below. A maximum of 12 credits of courses in the student’s major may double-count with the Minor.

Students who have not taken the listed prerequisites for any of these courses should ensure that they have the adequate background and/or meet with the instructor before registering for the course. Permission from the instructor and/or department may be required.

The program is open to undergraduate students that are in Year 2 or higher.

Complementary Courses (21-22 credits)

Group A

Students must complete a minimum of 3 credits from the following list of courses:

- BIEN 510 (3) Engineered Nanomaterials for Biomedical Applications
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit Hours</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMDE 508</td>
<td>(3)</td>
<td>Introduction to Micro and Nano-Bioengineering</td>
</tr>
<tr>
<td>CHEE 521*</td>
<td>(3)</td>
<td>Nanomaterials and the Aquatic Environment</td>
</tr>
<tr>
<td>CHEM 534*</td>
<td>(3)</td>
<td>Nanoscience and Nanotechnology</td>
</tr>
<tr>
<td>CIVE 521*</td>
<td>(3)</td>
<td>Nanomaterials and the Aquatic Environment</td>
</tr>
<tr>
<td>ECSE 535**</td>
<td>(3)</td>
<td>Nanoelectronic Devices</td>
</tr>
<tr>
<td>MIME 570</td>
<td>(3)</td>
<td>Micro- and Nano-Fabrication Fundamentals</td>
</tr>
<tr>
<td>PHYS 534*</td>
<td>(3)</td>
<td>Nanoscience and Nanotechnology</td>
</tr>
</tbody>
</table>

Group B

Students will be required to take up to 18-19 credits of courses from Group B, depending on how many courses from Group A were taken.

Bioengineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit Hours</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 520</td>
<td>(3)</td>
<td>High Throughput Bioanalytical Devices</td>
</tr>
<tr>
<td>BIEN 550</td>
<td>(3)</td>
<td>Biomolecular Devices</td>
</tr>
</tbody>
</table>

Chemical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit Hours</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEE 380*</td>
<td>(3)</td>
<td>Materials Science</td>
</tr>
<tr>
<td>CHEE 515*</td>
<td>(3)</td>
<td>Material Surfaces: A Biomimetic Approach</td>
</tr>
<tr>
<td>CHEE 543</td>
<td>(3)</td>
<td>Plasma Engineering</td>
</tr>
<tr>
<td>CHEE 582</td>
<td>(3)</td>
<td>Polymer Science & Engineering</td>
</tr>
<tr>
<td>CHEE 585</td>
<td>(3)</td>
<td>Foundations of Soft Matter</td>
</tr>
<tr>
<td>CHEE 587</td>
<td>(3)</td>
<td>Chemical Processing: Electronics Industry</td>
</tr>
</tbody>
</table>

Chemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit Hours</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 334</td>
<td>(3)</td>
<td>Advanced Materials</td>
</tr>
<tr>
<td>CHEM 531</td>
<td>(3)</td>
<td>Chemistry of Inorganic Materials</td>
</tr>
<tr>
<td>CHEM 582</td>
<td>(3)</td>
<td>Supramolecular Chemistry</td>
</tr>
<tr>
<td>CHEM 585</td>
<td>(3)</td>
<td>Colloid Chemistry</td>
</tr>
<tr>
<td>CHEM 587</td>
<td>(3)</td>
<td>Topics in Modern Analytical Chemistry</td>
</tr>
</tbody>
</table>

Electrical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credit Hours</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSE 423</td>
<td>(3)</td>
<td>Fundamentals of Photonics</td>
</tr>
<tr>
<td>ECSE 430</td>
<td>(3)</td>
<td>Photonic Devices and Systems</td>
</tr>
<tr>
<td>ECSE 433</td>
<td>(4)</td>
<td>Physical Basis of Transistor Devices</td>
</tr>
<tr>
<td>ECSE 519**</td>
<td>(3)</td>
<td>Semiconductor Nanostructures and Nanophotonic Devices</td>
</tr>
<tr>
<td>ECSE 536**</td>
<td>(3)</td>
<td>RF Microelectronics</td>
</tr>
<tr>
<td>ECSE 571**</td>
<td>(3)</td>
<td>Optoelectronic Devices</td>
</tr>
<tr>
<td>ECSE 596**</td>
<td>(3)</td>
<td>Optical Waveguides</td>
</tr>
<tr>
<td>MIME 262*</td>
<td>(3)</td>
<td>Properties of Materials in Electrical Engineering</td>
</tr>
</tbody>
</table>

Mechanical Engineering
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 500***</td>
<td>Selected Topics in Mechanical Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 553</td>
<td>Design and Manufacture of Microdevices</td>
<td>(3)</td>
</tr>
<tr>
<td>MECH 556</td>
<td>Microfluidics and BioMEMS</td>
<td>(3)</td>
</tr>
<tr>
<td>MIME 260*</td>
<td>Materials Science and Engineering</td>
<td>(3)</td>
</tr>
<tr>
<td>MIME 261*</td>
<td>Structure of Materials</td>
<td>(3)</td>
</tr>
<tr>
<td>MIME 467</td>
<td>Electronic Properties of Materials</td>
<td>(3)</td>
</tr>
<tr>
<td>MIME 515*</td>
<td>Material Surfaces: A Biomimetic Approach</td>
<td>(3)</td>
</tr>
<tr>
<td>MIME 542</td>
<td>Transmission Electron Microscopy</td>
<td>(3)</td>
</tr>
<tr>
<td>MIME 558</td>
<td>Engineering Nanomaterials</td>
<td>(3)</td>
</tr>
<tr>
<td>MIME 569</td>
<td>Electron Beam Analysis of Materials</td>
<td>(3)</td>
</tr>
<tr>
<td>MIME 571</td>
<td>Surface Engineering</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Materials Engineering

- **MIME 260**, **MIME 261**, **MIME 262** or **CHEE 380**
- **CHEE 515** or **MIME 515**
- **CHEE 521** or **CIVE 521**
- **CHEM 534** or **PHYS 534**
- **Biol 319** or **PHYS 319**

Students can take only one course from each set of the following courses:

Physics

- **BIOL 319*** (3) Introduction to Biophysics
- **PHYS 319*** (3) Introduction to Biophysics
- **PHYS 446** (3) Majors Quantum Physics
- **PHYS 558** (3) Solid State Physics

Pharmacology

- **PHAR 504** (3) Drug Discovery and Development 2

Students in Honours Electrical Engineering may obtain this Minor as part of their B.Eng. degree by completing 18 credits of Physics courses, as listed below.

Required Courses

9 credits

- **PHYS 253** (3) Thermal Physics
- **PHYS 357** (3) Honours Quantum Physics 1
- **PHYS 457** (3) Honours Quantum Physics 2

12.10.17 Bachelor of Engineering (B.Eng.) - Minor Physics (18 credits)

Minor Adviser: Prof. G. Holder, Department of Physics, undergraduate.advisor@physics.mcgill.ca. For names and other contact information, see http://www.physics.mcgill.ca/ugrads/advsched.html.

Students in Honours Electrical Engineering may obtain this Minor as part of their B.Eng. degree by completing 18 credits of Physics courses, as listed below.

Required Courses

9 credits

- **PHYS 253** (3) Thermal Physics
- **PHYS 357** (3) Honours Quantum Physics 1
- **PHYS 457** (3) Honours Quantum Physics 2
Complementary Courses

9 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 351</td>
<td>3</td>
<td>Honours Classical Mechanics 2</td>
</tr>
<tr>
<td>PHYS 362</td>
<td>3</td>
<td>Statistical Mechanics</td>
</tr>
<tr>
<td>PHYS 432</td>
<td>3</td>
<td>Physics of Fluids</td>
</tr>
<tr>
<td>PHYS 514</td>
<td>3</td>
<td>General Relativity</td>
</tr>
<tr>
<td>PHYS 551</td>
<td>3</td>
<td>Quantum Theory</td>
</tr>
<tr>
<td>PHYS 557</td>
<td>3</td>
<td>Nuclear Physics</td>
</tr>
<tr>
<td>PHYS 558</td>
<td>3</td>
<td>Solid State Physics</td>
</tr>
<tr>
<td>PHYS 559</td>
<td>3</td>
<td>Advanced Statistical Mechanics</td>
</tr>
<tr>
<td>PHYS 562</td>
<td>3</td>
<td>Electromagnetic Theory</td>
</tr>
<tr>
<td>PHYS 567</td>
<td>3</td>
<td>Particle Physics</td>
</tr>
</tbody>
</table>

Bachelor of Engineering (B.Eng.) - Minor Software Engineering (18 credits)

Revision, May 2018. Start of revision.

Minor Adviser: Undergraduate Program Office, Department of Electrical and Computer Engineering (Lorne Trottier Building, Room 2070)

The Software Engineering Minor will prepare engineering students for a career in software engineering. It will provide a foundation in basic computer science, computer programming, and software engineering practice.

The Minor program does not carry professional recognition.

Up to two courses (6 credits) may be double-counted towards a degree program.

Required Courses

12 credits

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 250</td>
<td>3</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>ECSE 223</td>
<td>3</td>
<td>Model-Based Programming</td>
</tr>
<tr>
<td>ECSE 321</td>
<td>3</td>
<td>Introduction to Software Engineering</td>
</tr>
<tr>
<td>ECSE 428</td>
<td>3</td>
<td>Software Engineering Practice</td>
</tr>
</tbody>
</table>

Complementary Courses

6 credits from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 302</td>
<td>3</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>COMP 409</td>
<td>3</td>
<td>Concurrent Programming</td>
</tr>
<tr>
<td>COMP 421</td>
<td>3</td>
<td>Database Systems</td>
</tr>
<tr>
<td>COMP 424</td>
<td>3</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>COMP 527</td>
<td>3</td>
<td>Logic and Computation</td>
</tr>
<tr>
<td>ECSE 326</td>
<td>3</td>
<td>Software Requirements Engineering</td>
</tr>
<tr>
<td>ECSE 420</td>
<td>3</td>
<td>Parallel Computing</td>
</tr>
<tr>
<td>ECSE 421</td>
<td>3</td>
<td>Embedded Systems</td>
</tr>
<tr>
<td>ECSE 422</td>
<td>3</td>
<td>Fault Tolerant Computing</td>
</tr>
<tr>
<td>ECSE 424</td>
<td>3</td>
<td>Human-Computer Interaction</td>
</tr>
<tr>
<td>ECSE 425</td>
<td>3</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>ECSE 427</td>
<td>3</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>ECSE 429</td>
<td>3</td>
<td>Software Validation</td>
</tr>
</tbody>
</table>
Software Language Engineering (3) ECSE 439*
Realistic Image Synthesis (3) ECSE 446*
Artificial Intelligence (3) ECSE 526*+
Advanced Software Language Engineering (4) ECSE 539*+
Advanced Image Synthesis (4) ECSE 546*+

* Students may choose only one course in each of the following sets:
- COMP 424 and ECSE 526
- ECSE and ECSE 539
- ECSE 446 and ECSE 546

+ Restricted to Honours students or Computer Engineering or Electrical Engineering students with CGPA of at least 3.0 and B+ or better in prerequisites

Revision, May 2018. End of revision.

12.10.19 Bachelor of Engineering (B.Eng.) - Minor Technological Entrepreneurship (18 credits)

Minor Adviser: Faculty Student Adviser in the McGill Engineering Student Centre (Student Affairs Office) (Frank Dawson Adams Building, Room 22).

This Minor is a collaboration of the Faculty of Engineering and Desautels Faculty of Management and is designed to provide Engineering (B.Eng. and B.Sc. (Arch.)) students with an understanding of how to conceptualize, develop, and manage successful new ventures – including for-profit private companies, social enterprises, and cooperatives as well as intrapreneurship initiatives. The program covers the essentials of management and is multidisciplinary and integrative. Many courses in the Minor will address a mix of students from across multiple McGill faculties.

B.Eng. students may double-count up to two courses (6 credits) of Complementary Studies (Group B., Humanities, and Social Science courses) toward the Minor. B.Eng. Mechanical Engineering students may double-count up to 6 credits of Complementary Studies Group B courses and/or Elective courses (for Mechanical Engineering students from a CEGEP background) toward the Minor.

This Minor is restricted to students in Year 2 or higher. Students in this Minor are not permitted to take the Desautels Minors in Management, Marketing, Finance or Operations Management (for non-Management students).

Required Courses (12 credits)

FACC 500 (3) Technology Business Plan Design
INTG 201 (3) Integrated Management Essentials 1
INTG 202 (3) Integrated Management Essentials 2
MGPO 362 (3) Fundamentals of Entrepreneurship

Complementary Courses (6 credits)

3-6 credits from the following:
FACC 501 (3) Technology Business Plan Project
MGPO 364 (3) Entrepreneurship in Practice

0-3 credits from the following:
BUS 465 (3) Technological Entrepreneurship
LAW 570 (3) Innovation for Non-Law Students
MGPO 438 (3) Social Entrepreneurship and Innovation
ORGB 321 (3) Leadership