Note: This is the 2012–2013 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
This Major concentration represents an indepth introduction to computer science and its subareas. Students that are interested in further study in Computer Science can combine the Major Concentration Computer Science with the Supplementary Minor in Computer Science to constitute a program very close to the Major Computer Science offered by the Faculty of Science. For further information, please consult the Program Adviser.
Students with two programs in the same department/unit must have a third program in a different department/unit to be eligible to graduate. Please refer to the Faculty of Arts regulations for "Faculty Degree Requirements," "About Program Requirements," and "Departmental Programs" for the Multitrack System options.
Required Courses (21 credits)
MATH 133, MATH 140, and MATH 141 (or their equivalents) should be completed prior to taking courses in this program.
Notes for the list below:
* Students who have sufficient knowledge in a programming language do not need to take COMP 202 and should replace it with an additional computer science complementary course.

COMP 202 Foundations of Programming (3 credits) *
Overview
Computer Science (Sci) : Introduction to programming in a modern highlevel language, modular software design and debugging. Programming concepts are illustrated using a variety of application areas.
Terms: Fall 2012, Winter 2013, Summer 2013
Instructors: Ioannis Rekleitis, Daniel Pomerantz, Xue Liu (Fall) Jorg Andreas Kienzle, Daniel Pomerantz (Winter) Daniel Pomerantz (Summer)
3 hours
Prerequisite: a CEGEP level mathematics course
Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250

COMP 206 Introduction to Software Systems (3 credits)
Overview
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2012, Winter 2013
Instructors: Joseph P Vybihal, Gregory L Dudek (Fall) Wenbo He, Gregory L Dudek (Winter)

COMP 250 Introduction to Computer Science (3 credits)
Overview
Computer Science (Sci) : An introduction to the design of computer algorithms, including basic data structures, analysis of algorithms, and establishing correctness of programs. Overview of topics in computer science.
Terms: Fall 2012, Winter 2013
Instructors: Michael Langer (Fall) Mathieu Blanchette (Winter)

COMP 251 Algorithms and Data Structures (3 credits)
Overview
Computer Science (Sci) : Introduction to algorithm design and analysis. Graph algorithms, greedy algorithms, data structures, dynamic programming, maximum flows.
Terms: Fall 2012, Winter 2013
Instructors: Prakash Panangaden (Fall) Clark Verbrugge (Winter)

COMP 273 Introduction to Computer Systems (3 credits)
Overview
Computer Science (Sci) : Number representations, combinational and sequential digital circuits, MIPS instructions and architecture datapath and control, caches, virtual memory, interrupts and exceptions, pipelining.
Terms: Fall 2012, Winter 2013
Instructors: Joseph P Vybihal, Xue Liu (Fall) Joseph P Vybihal (Winter)
3 hours
Corequisite: COMP 206.

MATH 222 Calculus 3 (3 credits)
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2012, Winter 2013, Summer 2013
Instructors: Wilbur Jonsson, Mathew Donald Rogers (Fall) Wilbur Jonsson, Yaiza Canzani Garcia (Winter) Eric Cormier (Summer)

MATH 240 Discrete Structures 1 (3 credits)
Overview
Mathematics & Statistics (Sci) : Mathematical foundations of logical thinking and reasoning. Mathematical language and proof techniques. Quantifiers. Induction. Elementary number theory. Modular arithmetic. Recurrence relations and asymptotics. Combinatorial enumeration. Functions and relations. Partially ordered sets and lattices. Introduction to graphs, digraphs and rooted trees.
Terms: Fall 2012
Instructors: Dana Louis AddarioBerry (Fall)
Complementary Courses (15 credits)
15 credits selected as follows:
36 credits from:

MATH 223 Linear Algebra (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2012, Winter 2013
Instructors: Layan El Hajj, Wilbur Jonsson (Fall) Wilbur Jonsson, Hehui Wu (Winter)

MATH 318 Mathematical Logic (3 credits)
Overview
Mathematics & Statistics (Sci) : Propositional calculus, truthtables, switching circuits, natural deduction, first order predicate calculus, axiomatic theories, set theory.
Terms: Fall 2012
Instructors: Diana Dubrovsky (Fall)
Fall
Restriction: Not open to students who are taking or have taken PHIL 210

MATH 323 Probability (3 credits)
Overview
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2012, Winter 2013, Summer 2013
Instructors: Masoud AsgharianDastenaei (Fall) David B Wolfson (Winter) Djivede Kelome (Summer)

MATH 324 Statistics (3 credits)
Overview
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2012, Winter 2013
Instructors: William J Anderson (Fall) David B Wolfson (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.

MATH 340 Discrete Structures 2 (3 credits)
Overview
Mathematics & Statistics (Sci) : Review of mathematical writing, proof techniques, graph theory and counting. Mathematical logic. Graph connectivity, planar graphs and colouring. Probability and graphs. Introductory group theory, isomorphisms and automorphisms of graphs. Enumeration and listing.
Terms: Winter 2013
Instructors: Frederick Shepherd (Winter)
At least 3 credits from:

COMP 330 Theory of Computation (3 credits)
Overview
Computer Science (Sci) : Mathematical models of computers, finite automata, Turing machines, counter machines, pushdown machines, computational complexity.
Terms: Fall 2012
Instructors: Claude Crepeau (Fall)
3 hours
Prerequisite: COMP 251.

COMP 350 Numerical Computing (3 credits)
Overview
Computer Science (Sci) : Computer representation of numbers, IEEE Standard for Floating Point Representation, computer arithmetic and rounding errors. Numerical stability. Matrix computations and software systems. Polynomial interpolation. Leastsquares approximation. Iterative methods for solving a nonlinear equation. Discretization methods for integration and differential equations.
Terms: This course is not scheduled for the 20122013 academic year.
Instructors: There are no professors associated with this course for the 20122013 academic year.

COMP 360 Algorithm Design (3 credits)
Overview
Computer Science (Sci) : Advanced algorithm design and analysis. Linear programming, complexity and NPcompleteness, advanced algorithmic techniques.
Terms: Fall 2012, Winter 2013
Instructors: Hamed Hatami (Fall) Adrian Roshan Vetta (Winter)
At least 3 credits from:

COMP 302 Programming Languages and Paradigms (3 credits)
Overview
Computer Science (Sci) : Programming language design issues and programming paradigms. Binding and scoping, parameter passing, lambda abstraction, data abstraction, type checking. Functional and logic programming.
Terms: Fall 2012, Winter 2013
Instructors: Brigitte Pientka (Fall) Andrew Cave, Francisco Ferreira Ruiz (Winter)

COMP 303 Software Development (3 credits)
Overview
Computer Science (Sci) : Principles, mechanisms, techniques, and tools for objectoriented software development: encapsulation, design patterns, unit testing, etc.
Terms: Fall 2012
Instructors: Martin Robillard (Fall)
The remaining credits are selected from COMP 230 and COMP courses at the 300 level or above (except COMP 364, COMP 396, COMP 400).