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Some of the most intricate temporal sequences that 
humans produce are the sounds they use to communi-
cate, including speech and music. People precisely 
coordinate their movements with sound; speakers pre-
pare for their turn to talk, and musicians time their 
tones to synchronize or align with sound. Even young 
toddlers spontaneously drum or sway in response to 
auditory rhythms, which suggests that humans are 
predisposed to synchronize movement with sound. 
Because movement preparation is often slower (100–
250 ms) than the rate of musical events (up to 8–10 
tones/s), individuals must anticipate future musical 
events in order to prepare their movements. A striking 
feature of musical synchronization is the tendency peo-
ple show to produce musical events prior to the sound 
with which they intend to synchronize; musicians pro-
duce tones about 30 to 50 ms sooner than a regular 
auditory beat, and nonmusicians anticipate even sooner 
(50–80 ms before the beat; Repp & Siu, 2015). This 
behavior is referred to as anticipatory synchronization, 
a cornerstone of human synchrony.

Several key variables influence individuals’ ability to 
synchronize actions with musical sound. One is musical 
training, which reduces the anticipatory synchrony, 
defined as negative mean asynchrony (when individu-
als’ produced actions precede stimulus onsets, such as 
when they clap to music and their claps precede the 
onsets of the musical tones). Another factor is sensory 

feedback; the more feedback available from self- 
generated and external auditory outcomes, the smaller 
the asynchrony (Repp & Siu, 2015). A third factor is the 
predictability of auditory sequences; the more regular 
a sequence, the smaller the observed variability in asyn-
chrony. Measures of the mean and variance of asyn-
chrony are used by synchronization models in different 
ways, as we discuss below.

Two prominent theories offer relevant mechanisms for 
musical synchronization. One is predictive coding (PC), 
and the other is dynamical systems (DS). We compare 
these theories as applied to anticipatory synchronization 
and discuss their assumptions, computations, and limita-
tions (see Table 1 for a summary of key definitions).

Predictive Coding

Origins

Early origins of the concept of predictive coding have 
been traced back to Helmholtz, whose account of learn-
ing was based on hierarchical layers of representation 
(as described in Friston, 2009). More recent precursors 
to predictive coding include internal models of motor 
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commands (Wolpert et  al., 1995) and mental simula-
tions of partners’ joint actions (Sebanz & Knoblich, 
2009), according to which internal modeling of future 
events is based on representations of the mapping 
between one’s perceptions and actions (Clark, 2013). 
Internal models of motor control predict the sensory 
consequences of actions by simulating behavior and 
compensating for time delays in sensorimotor systems 
(Wolpert & Flanagan, 2001). Internal models have been 
applied to poor-pitch singing through comparison of 
emulations of vocal-fold tension with auditory feedback 
from resulting pitches (Pfordresher & Mantell, 2014). 
Extensions to interpersonal, or joint, action propose 

that a partner’s actions are simulated through the use 
of internal models to generate predictions for upcoming 
events (Sebanz & Knoblich, 2009). A musical applica-
tion of joint action combines simulation of actions for 
oneself and for one’s partners, as well as imagining 
sounds produced by partners, with error correction 
(van der Steen & Keller, 2013).

Recent PC models compute the difference between 
an internal model and perceived events with a goal to 
minimize the entropy (the inverse of predictability)  
of predictions relative to future observed outcomes 
(Friston, 2009, 2018). Influenced by neurophysiological 
evidence of cascading processes among hierarchical 

Table 1.  Key Definitions

Predictive coding Dynamical systems

Oscillation: Waves of excitation and inhibition arising 
at different hierarchical levels and at different 
frequencies among brain networks (e.g., prediction 
errors propagated via gamma-frequency oscillations, 
predictions propagated via beta-frequency oscillations; 
Heilbron & Chait, 2018).

Oscillation: A periodic, recurring time series with 
an associated amplitude and frequency (Pikovsky 
et al., 2001), such as the movement of a swing at a 
playground. Often self-sustaining (i.e., continuing in 
the absence of input), oscillations are modeled with 
mathematical equations.

Predictive timing: The use of past information to generate 
an internal model capable of anticipating the timing of 
future events (Ravignani et al., 2014). Predictive timing 
is often contrasted with reactive timing.

Anticipatory synchronization: Behavior of an oscillator 
that maintains a stable negative (anticipatory) phase 
relationship relative to another oscillator or stimulus. 
This oscillatory behavior demonstrates anticipatory 
synchronization in the absence of internal models 
(Stepp & Turvey, 2010).

Free energy: Energy available for a system to perform 
work or cause change. Based on thermodynamics 
principles, free energy is an information-theory measure 
that constrains surprise arising from model-based 
prediction (Friston, 2009).

Prediction error: The divergence of the sensory input from 
the expectation (i.e., the prior). Prediction error is used 
to update the prior probabilities (Clark, 2013).

Energy expenditure: The amount of energy used to 
implement change. States of least energy expenditure 
define steady (stable) states to which a system returns 
(Strogatz, 1994), such as runners’ preferred rates that 
minimize oxygen consumption.

Phase: Position within one cycle of a periodic oscillation. 
The phase relationship between two oscillations is often 
measured as a proportion of (divided by) the period  
(1/frequency) of the oscillations. Phase can be measured 
in radians or in degrees.

Prior (probability): In Bayesian inference, the expected 
probability of a hypothesized outcome before it is 
known. In common variations of the term, the word 
“prior” is followed by “probability,” “distribution” 
(or “statistical information”), “belief,” “knowledge,” 
“assumption,” or “expectancy.” The word often refers 
to internal a priori “knowledge accumulated through 
experience” (Vuust & Witek, 2014, p. 3).

Coupling: A parameter that defines how oscillators 
influence each other (share information) or how a 
stimulus influences an oscillator. Coupling can cause 
oscillators to match in their phase, their frequency, or 
both (Pikovsky et al., 2001).

Posterior (probability): In Bayesian inference, the updated 
probability after the outcome is known. The posterior 
probability is calculated as the likelihood that the 
hypothesis predicts the input multiplied by the prior 
probability of the hypothesis (Denham & Winkler, 
2020, p. 1157). Common variants of the term parallel 
the common variants of “prior” (e.g., “posterior” may 
be followed by “probability,” “distribution,” “belief,” 
“knowledge,” “assumption,” or “expectancy”).

Delay coupling: An oscillator model that contains a coupling 
term combined with a time delay and that is implemented 
in differential equations (Voss, 2000). The time delay can 
refer to different functional properties (transmission delay, 
delay of sensory feedback) of the oscillator.
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levels in the visual system (Rao & Ballard, 1999), recent 
PC models rely on Bayesian inference to update internal 
models and have been applied to explain binocular 
rivalry (i.e., alternating perception of different images 
presented to the two eyes) and bistable visual percepts 
(i.e., percepts with two stable states; see Clark, 2013, 
for a review). Applications of PC models to auditory 
perception have recently been assessed (Denham & 
Winkler, 2020; Heilbron & Chait, 2018).

Assumptions

One key assumption of this approach is that an internal 
model is used to predict future behavior. Comparison 
of perceptual input with the prediction generates a 
difference (prediction error) that is used to adjust the 
internal model and then discarded. There is no need 
to store the original perceptual input or the prediction 
error, and thus the required representation is parsimoni-
ous. A second assumption is a hierarchical organization 
of brain networks in which lower areas receive sensory 
input that is projected to higher cortical areas. A hier-
archy is formed by forward excitatory connections from 
sensory areas to association areas and by backward 
inhibitory connections downward, as well as by lateral 
interactions between units within layers. The hierarchi-
cal system permits the computation of prediction error 
at one level while the internal model is updated at 
another level; the computations occur in a cascaded 
fashion. Although the temporal properties of this cas-
cade of forward, backward, and lateral connections are 
not well specified, the spatial projections are proposed 
to include the auditory network from brain stem to 
cortex (Koelsch et al., 2019).

Computations

To create accurate predictions of future states, PC mod-
els minimize prediction error over iterations, on the 
basis of Bayesian inference. The bottom layer of the 
hierarchy contains error units that sense the incoming 
information and compute the prediction error, which 
is sent to higher layers. The top layer encodes the prior 
probabilities, that is, the likelihoods that given sensory 
inputs correspond to predicted states. This is the inter-
nal model. State units in the top layer (actively) gener-
ate the prediction signal and send it downward to  
the error units. In addition, units within a level are  
connected laterally. Error units and state units have 
bidirectional signals: Forward connections convey pre-
diction error to state units, and reciprocal backward 
connections send the predictions to error units. These 
bottom-up and top-down messages serve to minimize 
the use of free energy (Friston, 2009). Minimizing free 

energy corresponds to maximizing the probability that 
the sensory input matches the predicted outcome, given 
the internal model. Over successive iterations, the state 
units’ prior probabilities (existing beliefs before new 
evidence is introduced) become closer to the error 
units’ posterior probabilities (i.e., updated beliefs after 
new evidence is introduced). Eventually, when prior 
probabilities match posterior probabilities, the internal 
model is stable.

Applications to music

Vuust and Witek (2014) proposed a PC model to explain 
perception of musical syncopation. Syncopation, the 
occurrence of musical tones in unexpected metrical 
locations, is typical of groove music and often causes 
listeners to move, sway, or dance. Musical meter, a 
hierarchy of regular pulses that form patterns of strong 
and weak beats, provides the prior experience that 
tones will occur more often on strong beats. A listener’s 
internal model of meter generates predictions that 
include the movements needed to produce the synco-
pated rhythm, while suppressing the listener’s tendency 
toward overt action. This suppressed tendency to move 
arises from predictions of when the beat is expected 
to occur (see Koelsch et al., 2019, for related neuro-
physiological evidence). Prediction errors have two 
important parameters: a mean value and a variance 
associated with the mean. Vuust et al. (2018) observed 
that high amounts of syncopation are associated with 
high variance in prediction error (low precision). The 
more precise the prediction error, the more impact that 
error is expected to have. Only prediction errors associ-
ated with small variances cause the higher-level predic-
tions to be adjusted; prediction errors with large 
variances are ignored (Vuust et al., 2018), a claim that 
is testable in synchronization tasks.

Two studies have tested PC models of anticipatory 
synchronization. The first study (Heggli, Konvalinka, 
et al., 2019) tested dyadic partners’ internal models as 
they synchronized with each other while they tapped 
identical duration patterns. Each partner heard over 
headphones a metrical context that was either the same 
one their partner heard (which created similar shared 
internal models with matched top-down predictions) 
or a different one (which created dissimilar internal 
models with unmatched top-down predictions). These 
matched and mismatched metrical contexts manipu-
lated the top-down prior beliefs for when the partners’ 
taps should occur. Some of the contexts created poly-
rhythms (i.e., when participants tapped three times to 
every 4 context beats) that could be perceived as ambig-
uous. Small mean negative asynchronies were observed 
on average. Asynchronies became more variable when 
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the two partners’ metrical contexts differed (although 
partners recovered quickly within trials), which was 
interpreted as evidence for prediction errors resulting 
from the discrepancy in the partners’ different internal 
models.

The second study that tested PC models of anticipa-
tory synchronization (Elliott et al., 2014) involved indi-
vidual participants who were presented with two 
auditory cues that created ambiguous percepts with 
which they tried to synchronize. The two stimulus cues 
were altered in their asynchrony (relative phase) and 
temporal regularity across trials. Participants’ large mean 
negative asynchronies decreased (i.e., moved toward 0) 
as the two cues’ relative phase increased (i.e., diverged 
from 0). Participants used different strategies depending 
on the cues’ relative phase: They synchronized to the 
integrated (combined) cues when the cues’ phase dif-
ference was small, but they synchronized with one cue 
or the other when the phase difference was large. Mod-
els fitted to the asynchrony variabilities provided sup-
port for a Bayesian causal inference model with four 
free parameters that captured prior probabilities associ-
ated with the auditory cues; prediction errors indicated 
that participants attempted to minimize the variance in 
asynchrony and extract a temporally regular beat.

Remaining issues

PC applications to musical synchrony to date have tar-
geted ambiguous percepts in order to demonstrate the 
internal model’s impact. One open question is whether 
PC models can predict anticipatory synchrony (cap-
tured by mean behavior). Another is whether an inter-
nal model can change only in the presence of prediction 
error (when contextual information is available), or if 
it will also change in the absence of novel information. 
A final question is, what are the time costs of imple-
menting a hierarchy that relies on several steps between 
layers for prediction error to be computed and sent 
upward and for prediction signals to be adjusted and 
sent downward?

Dynamical Systems

Origins

DS theories, which explain how systems change over 
time, have their origins in analysis of physical synchrony 
among pendulum clocks (Huygens, 1665, described in 
Pikovsky et al., 2001) as well as biological synchrony 
in circadian rhythms, cardiac rhythms, and motor coor-
dination (Haken et al., 1985; Winfree, 1967). Synchro-
nization arises when oscillators (alternating waveforms 
that repeat) that are self-sustaining (continue in the 

absence of external input) share information via cou-
pling, which causes them to adapt to each other or to 
a stimulus (see Table 1). Their self-sustaining nature is 
supported by neural (magnetoencephalographic) rep-
resentations of musical pulse that develop at a beat 
frequency despite the absence of stimulus energy at that 
frequency (Tal et  al., 2017). When an oscillator is 
momentarily disturbed by input, it soon returns to its 
original frequency, its stable state of minimum energy 
expenditure. An oscillator will resonate (respond with 
increased amplitude) to a stimulus when its natural fre-
quency is close to the stimulus frequency or when the 
coupling between oscillator and stimulus is high. Linear 
oscillators synchronize 1:1 with stimulus events; non-
linear oscillators additionally synchronize at higher reso-
nances (e.g., 1:2; 1:3). The perception of hierarchical 
meter thus arises from higher-order resonances; internal 
models are not required (Large, 2008).

Anticipatory synchronization arises in delay-coupled 
systems when a driven oscillator (i.e., an oscillator 
affected by external input) compares its own time-
delayed memory of a previous state with the current 
input (Voss, 2000). Delay coupling refers to coupling 
between two or more oscillators that is modulated by 
time delay from at least one oscillator. Stepp and Turvey 
(2010) described delay coupling as “strong” anticipa-
tion: Anticipated future states are based on present and 
past information already in the system without the need 
for internal models. Machado and Matias (2020) dem-
onstrated the biological plausibility of delay-coupled 
models by simulating delay coupling in spike neuronal 
populations that lead to bistable visual percepts. Time 
delays in DS models have been implemented to account 
for intrabrain synchronization dynamics (Deco et al., 
2009, 2011) as well as interpersonal synchronization 
(Varlet et al., 2012).

Assumptions

DS theories of human synchrony assume that behavior 
arises in a system composed of coupled subsystems of 
oscillators whose emergent processes explain percep-
tion and cognition. Individual oscillations arise from 
the joint activity between coupled excitatory and inhibi-
tory neurons and are modeled either at the biophysical 
level or, more commonly, by using oscillator models 
with simplifying assumptions. Oscillatory time series 
arise from neuronal interactions, as well as from neu-
rons interacting with external quasiperiodic stimuli, 
such as musical sequences. Most DS theories assume 
continuous change over time, but they can also be 
modeled discretely, as in the case of musical pulse 
(Large, 2008). Time delay in DS models, often imple-
mented as a constant for simplicity, is assumed to 
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represent the synaptic transmission rate in a neural 
system (Machado & Matias, 2020).

Computations

Delay-coupled DS models have been proposed to 
account for anticipatory synchronization. Based on self-
sustaining oscillators, the coupling term in these models 
is often adapted from the Kuramoto model (Strogatz, 
2000) which assumes that each oscillator has an intrin-
sic frequency that can be tuned during development 
via Hebbian learning (strengthened connections 
between simultaneously firing neurons; Tichko et al., 
2021). Oscillators adapt their phase on the basis of how 
much they differ from incoming stimulus onsets, modu-
lated by the coupling strength; higher coupling means 
more phase correction and faster synchronization. Time 
delay compares the oscillator’s past (at a constant delay) 
with the current input (Voss, 2000), thus providing a 
type of self-feedback. Most critical is that the oscillator’s 
past incorporates the past of the stimulus; thus, the 
oscillator (passively) reacts to present events as a func-
tion of present and past states of both stimulus and 
oscillator.

Applications to music

Roman et al. (2019) tested synchronization patterns of 
individuals who tapped to a metronome, using a single 
Hopf oscillator (an oscillator whose intrinsic frequency 
can adapt to a stimulus frequency) with time delay to 
represent unidirectional coupling with the metronome. 
The model, designed to mimic neural oscillations and 
adapt its frequency, simulated the neural delays neces-
sary to account for the observed tappers’ negative mean 
asynchrony. The model successfully predicted the dif-
ference in the degree of anticipatory synchronization 
between musicians and nonmusicians who tapped at a 
range of metronome rates.

Demos et al. (2019) applied a bidirectional delay-
coupled model, adapted from the Kuramoto model, to 
the more complex case of asymmetric anticipatory syn-
chronization between partners playing musical duets. 
Each partner was modeled as a simple oscillator with 
parameters for time delay, coupling, and intrinsic fre-
quency. Each oscillator could be driven by or could 
drive the other oscillator, depending on whether one 
partner heard feedback, both partners heard feed-
back, or neither partner heard feedback. The model 
accounted for anticipatory synchrony under experimen-
tal conditions that manipulated auditory feedback to 
shift the oscillators from bidirectional to unidirectional 
information transmission. The use of delay-coupling 
terms successfully predicted the driven partner’s mean 

anticipatory synchronization (e.g., the driven partner 
performed earlier than the driver partner) when the 
driver partner could not hear the driven partner; this 
was the first delay-coupling implementation to extend 
beyond single-person models of musical synchrony to 
interpersonal interaction.

Heggli, Cabral, et al. (2019) examined how partners 
alter their synchronization in a tapping task, using bidi-
rectional coupling but with no time delay. Two oscillators 
modeled each individual’s perception and action as cou-
pled; in addition, bidirectional coupling linked each per-
son’s action to the partner’s perception. The model 
captured different patterns of synchronization variability, 
such as when partners showed mutual adaptation 
(increased coupling) or when both partners tried to lead 
at the same time (reduced coupling). Similar coupled 
oscillator networks without time delay can produce antic-
ipatory synchronization (Pyragiene

.
 & Pyragas, 2015).

Remaining issues

The delay-coupling term in DS models accounts for 
both individual and dyadic anticipatory synchroniza-
tion. One question is how time delays map to neural 
features, such as synaptic transmission (Machado & 
Matias, 2020), and to functional properties of neural 
networks (Deco et  al., 2011). Another question is 
whether the delay is constrained by the individual, task, 
or social context. Finally, how can these parameters be 
interpreted and connected back to behavior given the 
complexity of their nonlinear interactions?

Model Comparisons

Although assumptions and computations differ between 
PC and DS models, they have similarities, too. Both 
classes of models rely on interconnections between 
excitatory and inhibitory neurons. The primary differ-
ences concern the role of time and the organizational 
architecture: The hierarchical representations in PC 
models include several layers, more types of nodes than 
DS models (only PC models include modulatory nodes), 
and more connections than the bottom-up DS oscilla-
tions, which are based solely on excitatory-inhibitory 
interactions. These computational distinctions suggest 
that the models diverge in parsimony. These distinc-
tions parallel differences in the synchrony behaviors 
accounted for: The PC models’ Bayesian properties 
account for variability in synchrony, whereas the DS 
models’ delay-coupled differential equations account 
for mean (directional) synchrony. Although these theo-
ries are not mutually exclusive, important paradigmatic 
and architectural differences prevent an easy merger of 
them: PC models, evolved from information theory and 
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systems neuroscience, make top-down/bottom-up dis-
tinctions (such as in Heggli, Konvalinka et al.’s, 2019, 
mismatched internal models of musical partners). In 
contrast, DS models, evolved from physics and math-
ematical biology, include interactions across multiple 
spatiotemporal scales (such as unidirectional and bidi-
rectional coupling within and across ensemble musi-
cians). In short, predictive coding explains synchrony 
by generating predictions based on prior learning; 
dynamical systems explain synchrony by coupling 
already existing oscillations without a need to generate 
predictions.

Conclusions

PC and DS models of musical synchronization share 
similarities, including the goal to minimize energy; reli-
ance on differences between expected and observed 
outcomes; and grounding in neurophysiological models 
of excitatory and inhibitory activation. The models have 
important differences in how much they rely on prior 
knowledge about the resulting output, how previous 
adaptations to stimuli are retained, and whether they 
are intended to account for the mean or variability of 
synchrony. To date, only DS theories have successfully 
modeled anticipatory synchronization.

Future research directions include modeling noisy 
conditions; explaining roles of contextual learning, 
musical pleasure, and reward; and scaling up to larger 
groups. Advances are likely to be assisted by machine 
learning and other mathematical tools for capturing 
musical synchrony.
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