The Future of Biodiversity: Science and Solutions

Dr. Andrew Gonzalez

Department of Biology
"Human actions are fundamentally, and to a significant extent irreversibly, changing the diversity of life on Earth, and most of these changes represent a loss of biodiversity."

Millenium Ecosystem Assessment (2006)

Species globally threatened with extinction as a proportion of total described (2006)

łS! 7 pəy NOnI :woat ełec

Global Impact of Human Agriculture

Climate Warming and Shifting Habitat

Temperature anomalies over the last 127 years

Video: http://svs.gsfc.nasa.gov/vis/a000000/a003300/a003375/index.html

We left sustainability behind in the late 70s

Human

modification of the
Biosphere

Climate
 Change

 \uparrowPollution

Land Use \rightarrow Adaptation \longrightarrow Biodiversity
Speciation
\uparrow

Extinction

Plan

1) What do we know about biodiversity?
2) What do we know about extinction?
3) How do we predict future extinction?
4) What are the solutions?

What is Biodiversity?

"The variability among living organisms from all sources including, inter alia, terestial, marine and other aquatic ecosytems of which they are part this includes diversity within species, between species and ecosystems," Convention for Biological Diversity (1992)

The Majority of Earth's Biodiversity remains undescribed

Roughly 1.5 million species have been described out of an estimated total of ~ 10 million species.

The Species-scape

The size of the organism corresponds to the relative diversity of each group.

Measuring Biodiversity

Sample A

Sample B

Hotspots of Biodiversity

25 regions contain 44% of plant and 35% of terrestrial vertebrate biodiversity in 1.4% of land area.

Hotspots of Threatened Biodiversity

Areas with high numbers of threatened bird species: partial but not complete overlap with diversity hotspots (Grenyer et al. 2006)

Quebec's hotspots of threatened diversity

From: Québec biodiversity Atlas

Biodiversity Loss

Includes not just the loss of species, but any change in the mix of genotypes, populations, species and ecosystems that compromises their structure and function.

What do we know about Extinction?

Extinction: a concept invented by Georges Cuvier

The modern concept of extinction is only 200 years old!
"Discours sur les révolutions de la surface du globe, et sur les changements qu'elles ont produits dans le règne animal." (1825)

Life on earth: ever present extinction

The background extinction rate in the fossil record is 0.1-10 species per year.

Recovery from Extinction is Slow

Extinction: Essential Ideas

Extirpation: The loss of a population from part of a species' range.

Extinction: The loss of all the populations of a species across its' global range.

Courtesy of Dr. Brian McGill

Population Size Predicts Extirpation

Linking Extirpation to Extinction

Emmigration from large populations in the centre, sustains small populations at the periphery.

There are on average ~200 populations per species

Decline and Extirpation of the Loggerhead Shrike in Québec

Range Size and Endemicity

Species with small ranges have higher risk of extinction

5 Major Causes of Extinction

Deforestation

Landsat images of forest loss (60\%) over a 25 year period in Rondonia state, Brazil.

Video: http://svs.gsfc.nasa.gov/vis/a000000/a002100/a002116/index.html

Deforestation

50% of the world's $14-18$ million km^{2} of tropical rainforest have fallen.

Estimates of deforestation of tropical forest for the 1990s range from $55,630 \mathrm{~km}^{2}$ to $120,000 \mathrm{~km}^{2}$ each year.

At this rate, all tropical forests may be gone within 100 years.

How do we predict extinction in the future?

Forest Destruction \& Fragmentation

1) Loss of original habitat area
2) Reduction in size of fragments
3) Increasing isolation of fragments

CHOPPING DOWN ALL OF THE TREES GIVES YOU A CLEAR VIEW OF THE DEVASTATION CAUSED BY CHOPPING DOWN ALL OF THE TREES.

The Number of Species Increases with Habitat Area

Species $=c(\text { Area })^{\mathrm{z}}$

The Number of Species Increases with Habitat Area

The Species-Area Relationship

Predicting Extinctions With The SpeciesArea Relationship

```
species \(=c A^{z}\)
```


But it is not so simple...

Delayed increase in the slope (\mathbf{z}) of the species-area relation reflects loss of species in small forest fragments.

Delayed loss = Extinction "Debt" in Fragmented Habitats

Calculating Extinction

Expression for original species richness:

$$
S_{0}=c A_{0}{ }^{z}
$$

$$
S_{n}=c A_{n}{ }^{2}
$$

A little algebra:

$$
\frac{S_{n}}{S_{0}}=\frac{c A_{n}^{z}}{c A_{0}^{z}}=\left(\frac{A_{n}}{A_{0}}\right)^{z}
$$

Impact of Deforestation to Date

8 of 16 million km^{2} (50\%) of tropical forest removed.

$$
\frac{S_{n}}{S_{o}}=\left(\frac{A_{n}}{A_{o}}\right)^{Z}=(0.5)^{0.25}=0.84
$$

16% of tropical forest species (endemics) have been committed to extinction so far.

Extinction: initially gradual but then abrupt

Future Extinction Rates

The peak is 1000-10 000x the background rate!

What are the solutions?

Solutions

- Consolidate global protected area network (currently 11.5%), that includes viable (large) populations of as many species as possible.
- Prevent the protected areas from becoming too fragmented.
- Habitat corridors can reconnect fragmented landscapes.

Global Protected Area Network for Hotspots

In 17 tropical forest areas designated as hotspots, only 12% of the original primary vegetation remains.

Québec's Protected Area Network

 ($\sim 3 \%$ of land)Protected areas
Private Property
Threatened
species found
outside the PAN
are found on
private property

From: Québec biodiversity Atlas

Habitat Corridors as a Conservation Strategy

Corridors increase the effective area of a fragmented landscape:

1-Facilitate movement between feeding and breeding habitats

2-Facilitate dispersal and genetic exchange between populations

Habitat Corridors near Sorel-Tracy, Quebec

- Forest corridors segments
\square Anthropic habitat
Farmiand habitat
Aguatic habitat Natural habitat
(2) Segment number
- Optimal route of the forest corridor

Mesoamerican Corridor Project

The corridor, represented by the colour red in the map, contains 5\% of known global biodiversity

Some Conclusions

1) Local and global extinction is occurring at an unprecedented rate ($100-1000 \mathrm{x}$) due to the economic activities of human societies.
2) Data show that biodiversity loss is delayed, and coming decades will see a significant extinction debt paid. These changes are irreversible from a human perspective.
3) Mitigation of biodiversity loss requires both local and global conservation initiatives.
