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Abstract
Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic

activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are
ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an
inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic
effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not
inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to
compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Fur-
thermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites
within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly
enhanced the tumor growth–inhibitory actions of biguanide treatment. Our results define a dietary
manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell
energy metabolism. Cancer Res; 74(24); 7521–33. �2014 AACR.

Introduction
There is evidence that metformin, like other biguanides,

inhibits complex I of the mitochondrial electron transport
chain (1, 2). In the liver, this causes energetic stress, resulting
in inhibition of hepatic gluconeogenesis and reduction in the
hyperglycaemia and hyperinsulemia associated with type II
diabetes (3, 4). Pharmacoepidemiologic studies have gener-
ated the hypothesis that there are novel indications for
metformin in oncology by associating its use for diabetes
treatment with reductions in cancer risk and improvements
in cancer prognosis (reviewed in refs. 5, 6). These findings led
to investigation of metformin in preclinical cancer models,
most of which demonstrate clear antineoplastic effects that
are attributable to direct action on neoplastic cells and/or

indirect effects resulting from alterations in the hormonal
milieu (2, 5–7). However, the methodology used in some of
the pharmacoepidemiologic studies is controversial (8), and
most laboratory models involve drug exposure levels consid-
erably higher than those used in diabetes treatment (9). Thus, it
is uncertain whether conventional antidiabetic doses of met-
formin as a single agent have useful antineoplastic activity, and
this possibility is being examined in ongoing clinical trials.
However, in view of evidence that biguanides may have mul-
tiple mechanisms of action (for example, refs. 10–14) and that
sensitivity to biguanides varies with tumor characteristics
(15–17), nutrient conditions (17, 18), and other factors (19,
20), it is important to define metabolic conditions that influ-
ence the action of biguanides.

Cancer cells are metabolically adapted to meet the bio-
energetics and biosynthetic demands of proliferation. Dys-
regulated metabolism in cancer cells presents potential
therapeutic targets (21). Enzymatic imbalance in the metab-
olism of serine in cancer has been shown almost two
decades ago (22), and was confirmed by more recent studies
highlighting increased expression of serine synthesis path-
way enzymes in breast cancer and melanoma (23, 24). In
addition, serine starvation causes decreased proliferation
and survival (25, 26) and induces metabolic reprogramming
by inhibiting glycolysis (25–27). As cancer cells treated with
biguanides have a particularly stringent reliance on glycol-
ysis to compensate for the inhibition of mitochondrial
ATP production and reduced glucose carbon flux to the
citric acid cycle, we investigated the influence of serine
deprivation on the antiproliferative effects of metformin
and phenformin.
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Materials and Methods
Cell lines, tissue culture, viral infections, and lentiviral
shRNA silencing and proliferation assays

H1299, A549, MCF10A, and PrEC were purchased from and
authenticated by the ATCC using identifiable short tandem
repeat loci. MC38 cell line was generously provided by Dr.
Pnina Brodt (McGill University, Montreal, QC, Canada) and
authenticated by her laboratory. H1299 with AMPKa1/2 stable
knockdown and control cells were a generous gift from Dr.
Russell Jones (McGill University) and authenticated by his
laboratory (28). All the cell lines were used within 6 months
of resuscitation. H1299, A549, and MC38 cell lines were cul-
tured in RPMI-1640 with 10% (v/v) FBS (Wisent) and genta-
mycin. MCF10A were cultured in media supplemented with
10mg/mL insulin, 20 ng/mLEGF, 100 ng/mL cholera toxin, and
0.5 mg/mL hydrocortisone; DMEM/F12 5% FBSmedia were use
for regular cell culture and RPMI 5% dialyzed FBS media
without serine were used for serine deprivation experiments.
Primary prostate epithelial cells (PrEC) were cultured inmedia
supplemented with the Prostate Epithelial Cell Growth Kit
(ATCC); prostate epithelial cell basalmedium (ATCC)was used
for regular culture, and RPMI media without serine were used
for serine deprivation experiments.

All lentiviral shRNA vectors were retrieved from the
arrayed Mission TRC genome-wide shRNA collections pur-
chased from Sigma-Aldrich Corporation. Additional infor-
mation about the shRNA vectors can be found at http://
www.sigmaaldrich.com/life-science/functional-genomics-and-
rnai/shrna/library-information.html or http://www.broad.mit.
edu/genome_bio/trc/rnai.html, using the TRCN number. The
following lentiviral shRNA vector targeting mouse PHGDH
was used: TRCN0000041627. The Non-Target shRNA Control
(Sigma: SHC002) was used as negative control. Lentiviral
supernatants were generated as described at http://www.
broadinstitute.org/rnai/public/resources/protocols. Superna-
tants were applied on target cells with polybrene (6 mg/mL).
Cells were reinfected the next day and, 2 days later, selected
with puromycin for 72 hours (4 mg/mL; Sigma).

To assess proliferation, cells were seeded in culture plates
and incubated for 24 hours to allow attachment. Subsequently,
seeding media were replaced with treatment media and cells
were grown for varying lengths of time, at the end of which they
were detached by trypsinization and collected. Cells were
stained with trypan blue and counted using an automated
cell counter (Invitrogen), which assessed the number of total
and viable cells. In each experiment, initial seeding density was
chosen to avoid confluence in fastest growth condition at the
intended time point.

For the bromodeoxyuridine (BrdUrd) incorporation assay
(Cell Proliferation ELISA BrdUrd Kit from Roche), cells were
seeded in 96-well plates (1,000 cells/well) and maintained as
indicated in the Fig. 1 legend for 72 hours. The assay was
performed as per the manufacturer's instruction. Absorbance
at 450 nm (reference wavelength 690 nm) was measured using
a FluoStar Optima microplate reader (BMG Labtech).

Viable cell count or BrdUrd incorporation values for the
indicated samples were normalized to those obtained for

vehicle-treated cells (control). Data are expressed as a per-
centage of inhibition relative to vehicle treated cells (control).
Cell death was estimated by trypan blue staining and data are
expressed as the ratio of trypan blue positive/total number of
cells.

Animals
All protocols were approved by the McGill University

Animal Care and Handling Committee. Male C57BL/6 mice
were purchased from Charles River Laboratories (Saint-
Constant, Qu�ebec, Canada) at 5 to 6 weeks of age. Animals
were acclimatized for 1 week, after which, they were divided
into two groups, one receiving a control diet and the other, a
diet lacking serine and glycine (ser�/gly�; Purchased from
TestDiet). The control diet (formulation #: 5CC7) consisted
of sucrose (25.9%), corn starch (41.8%), corn oil (5.0%), and
the following amino acids: glutamine (1.00%), asparagine
(1.00%) arginine (0.83%), histidine (0.49%), isoleucine (0.80%)
leucine (1.20%), lysine (1.12%), methionine (0.60%), cystine
(0.40%), phenylalanine (0.80%), tyrosine (0.40%), threonine
(0.78%), tryptophan (0.20%), valine (0.80%), alanine (1.00%),
aspartic acid (1.00%), glutamic acid (1.00%), glycine (0.99%),
proline (1.00%), serine (1.00%). The ser�/gly� diet (custom-
ized from 5CC7) was formulated identically; however,
serine and glycine were omitted from the amino acid
mixture. Animals were maintained on these diets for 2
weeks before the start of the allograft experiments to assess
acceptance of new diets and weight gain indicative of
adequate nutrition.

Allograft experiment
Animals were fed either control diet or serine and glycine

deficient diet throughout the experiment. MC38 cells (5 � 105

per animal) were implanted by s.c. injection into right flank
(day 0).Mice from each diet groupwere further subdivided into
treatment and vehicle groups (n ¼ 8). On day 5, treatment
groups began receiving twice-daily i.p. injections of 40 mg/kg
phenformin, a biguanide with greater in vivo bioavailability
thanmetformin,whereas control groups received twice-daily i.p.
saline injections. In 2-day intervals and on the sacrifice day,
mice were weighed and tumors were measured by electronic
calipers. On day 15, animals were sacrificed and their tumors
were excised, and flash-frozen in liquid nitrogen. For GC–MS
(gas chromatography–mass spectroscopy) analyses, tumors
were grounded in liquid nitrogen and 6 to 10 mg was
weighted in tubes kept on dry ice. Each tumor was extracted
independently three times with 80% (v/v) MeOH/milliQ
water kept on dry ice. Suspensions were vortexed and
sonicated for 10 to 20 minutes at 4�C (30 seconds ON and
30 seconds OFF, high setting, using Diagenode's Bioruptor),
vortexed, and cleared by centrifugation (21,000 � g, 10
minutes/4�C). Supernatants were transferred to prechilled
tubes and 800 ng of the internal standard myristic acid-D27

diluted in pyridine was added to each sample. Samples were
allowed to dry entirely in a Labconco CentriVap cold trap.
GC–MS procedure (see GC–MS section) was carried out
independently three times for the individual extraction.
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Plasma serine and glycine
Approximately 700 mL of blood obtained by cardiac punc-

ture from mice were transferred into BD Vacutainer Sodium
Heparin collection tubes (BD Biosciences) and plasma was
separated by centrifugation. Plasma samples were flash-frozen
and stored at�80�C. Plasma (2.5mL) thawed shortly on icewas
diluted in 300 mL 80% (v/v)MeOH/milliQ water kept on dry ice.
Samples were vortexed, sonicated, and cleared by centrifuga-
tion (21,000 � g, 10 minutes/4�C). Supernatants were trans-
ferred to prechilled tubes and 800 ng of the internal standard
myristic acid-D27 diluted in pyridinewas added to each sample.
Samples were allowed to dry entirely in a Labconco CentriVap
cold trap. The GC–MS procedure can be found in the GC–MS
section.

Immunoblots
For protein analysis, cells were seeded and cultured in

complete medium for 24 hours to obtain 30% confluence.
Culture medium was replaced with indicated treatment
media, and cells were cultured for various lengths of time,
after which they were washed with ice-cold PBS and lysed
in lysis buffer containing 10 mmol/L Tris-HCl (pH 7.3), 150
mmol/LNaCl, 1% sodiumdeoxycholate, 1%TritonX, 1mmol/L
EDTA, 10 mmol/L b-glycerophosphate, and 0.5 mmol/L NaF,
supplemented with protease inhibitor pills (Roche). The crude
lysates were centrifuged at 13,000 rpm for 15 minutes at 4�C
and the resulting soluble fractions were isolated. Protein
concentration was assessed using a bicinchoninic acid (BCA)
protein assay kit (Thermo Fisher Scientific). Loading buffer
was added to cleared lysates, which were subsequently boiled
for 5 minutes. Samples were loaded into SDS-polyacrylamide
gels, resolved by electrophoresis, transferred onto nitrocellu-
lose membranes, and probed using the indicated antibodies.
Protein bands were visualized with the ChemiDoc XRSþ Sys-
tem (Bio-Rad) using SuperSignal West Femto Chemilumines-
cent Substrate (ThermoFisher Scientific) or by using enhanced
chemiluminescence (GE Healthcare). Antibodies for PHGDH
were obtained fromNovus Biologicals and Sigma (HPA021241)
whereas those against phospho-S240/244 RPS6 (rpS6), phos-
pho-T389 RPS6KB1 (p70 S6K), phospho-T37/46 4E-BP1, phos-
pho-T172 PRKAA1 (AMPKa), phospho-S79 ACACA (ACC),
RPS6, p70 S6K, 4E-BP1, AMPK, ACC, and ACTB (b-actin) were
obtained from Cell Signaling Technology.

Glucose consumption and lactate production assays
Cells were seeded and cultured in complete medium for

24 hours to obtain 30% density. Medium was replaced with
indicated treatment media, and cells were cultured for 24
hours. Subsequently, supernatant sampleswere collected. Cells
were also collected, lysed, and assayed for protein content.
Measurement of glucose concentration in samples was done as
previously described (29). Total consumption was calculated
by subtracting results from baseline glucose concentration,
measured in samples from media incubated in identical con-
ditions, without cells. Lactate production was quantified using
a commercial lactate assay kit (BioVision). Both glucose con-
sumption and lactate production were normalized to protein
content as described previously (30). The magnitude of

changes in lactate production and glucose uptake over the
24-hour incubation was much larger than the changes in cell
number or in protein content. Cells were collected, lysed, and
protein content was determined using a BCA protein assay
kit by multiplying protein concentration by total volume of
lysate. Molar concentrations of metabolites (in mmol/L) were
multiplied by total media volume per well (2 mL) and data
expressed as nmol/mg of protein.

Stable isotope tracing experiments
MC38 cells grown up to 40% confluence in 35-mm plates

were subjected to 13C6-glucose (CML-1396; Cambridge Isotope
Laboratories, Inc.) or 13C5-glutamine (CML-1822; Cambridge
Isotope Laboratories, Inc.) pulse labeling alongwithmetformin
treatment, serine deprivation, or pyruvate supplementation for
24 hours (citrate isotopomer analyses), or pulsed for 6 hours in
the presence of 13C6-glucose after the 24 hours incubations
(serine isotopomer analyses). Basal medium used was RPMI-
1640 lacking glucose, glutamine, glutamate, serine, and glycine
(Wisent) and supplemented with 2% (v/v) dialyzed FBS
(Wisent). 13C6-glucose and 13C5-glutamine were used at half
the final concentration, with unlabeled counterparts kept at
5.55 mmol/L glucose and 2 mmol/L glutamine (citrate iso-
topomer analyses) or at final 5.55 mmol/L for 13C6-glucose
(serine isotopomer analyses). When used as supplements,
serine was added at 30 mg/mL and pyruvate was added at
1 mmol/L. Following incubations, cells were washed once with
2 mL 0.9% (w/v) NaCl/4�C on ice, then 300 mL 80%(v/v) MeOH
kept on dry ice was added to each well. Cells were removed
fromplates and transferred to prechilled tubes.MeOHquench-
ing and harvest were repeated one or two times to ensure
complete recovery. Suspensions were sonicated for 10 to
20 minutes at 4�C (30 seconds ON and 30 seconds OFF, high
setting, using Diagenode's Bioruptor), vortexed, and cleared by
centrifugation (21,000 � g, 10 minutes/4�C). Supernatants
were transferred to prechilled tubes and 800 ng of the internal
standard myristic acid-D27 diluted in pyridine was added to
each sample. Samples were allowed to dry entirely in a Lab-
conco CentriVap cold trap.

GC–MS
The GC–MS procedure was the same for plasma samples,

tumor extracts, and cell extracts. Pyridine (30 mL) containing
10mg/mLmethoxyamine hydrochloride (Sigma) was added to
dried samples. Samples were vortexed and sonicated, cleared
by centrifugation, and supernatants were heated at 70�C for 30
minutes in GC–MS injection vials. Samples were further incu-
bated for 1 hour after the addition of 70-mL N-Methyl-N-tert-
butyldimethylsilyltrifluoroacetamide (MTBSTFA; Sigma). One
mL was used per sample for GC–MS analysis. GC–MS installa-
tions and softwares were all fromAgilent. GC–MSmethods are
as previously described (31).

Mass isotopomer distribution analysis
Ion integration was done with the Agilent Chemstation

software. Integrations of all mþi ions, where m is the M-57
fragment of TBDMS derivatives and i, the number of possible
13C for this fragment, were transferred to a spreadsheet
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Figure 1. Serine deprivation enhances the antiproliferative effects of metformin in vitro. H1299 (A) and A549 (B) cells were treated for 72 hours
with vehicle (PBS) or metformin (2.5 mmol/L) in media with or without 30 mg/L serine. Viable cells were counted; data, shown as mean � SEM (n ¼ 3);
�, P < 0.001. Results are representative of at least three independent experiments. C, cell lysates from H1299 and A549 cells treated as shown for
24 hours were immunoblotted using the indicated antibodies. (Continued on the following page.)
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together with the integration of the internal standard myristic
acid-D27. A correction matrix was generated for each metab-
olite using an in-house algorithm adapted from ref. 32. Inte-
gration values for a given metabolite were multiplied by the
corresponding correction matrix to remove the abundances of
naturally occurring isotopes thatmask the labeling provided by
exogenous 13C-substrates. Values obtained for a given metab-
olite correspond to proportional isotopomer enrichment, for
example, the proportion of a labeled fraction within the pool of
total ions. To assess relative amounts of labeled ions, values of
the proportional labeling for a given metabolite were multi-
plied by the abundance of thismetabolite previously divided by
the integration of the internal standard and further divided by
cell number. Values obtained are presented as normalized ion
amounts, in which the proportions of labeled ions are adjusted
to the amount of the metabolite analyzed. For GC–MS data
corrected on cell number, cells counts were obtained on three
biological replicates using a TC10 counting device (Bio-Rad).

Statistical analyses
All experiments were independently performed at least three

times unless otherwise specified. When biological replicates
are shown, they are taken from a single experiment that was
representative of multiple independent experiments. Student t
tests were used for comparisons of individual treatments
versus control. Two-way ANOVA with Bonferroni posttests
was used for multiple comparisons. Statistical tests were
performedwithMicrosoft Excel, GraphPad Prism, or GraphPad
InStat.

Results
Cell proliferation is influenced by interactions between
serine availability, phosphoglycerate dehydrogenase
expression, and metformin exposure
Either directly or through conversion to glycine, serine

allows for the replenishment of one-carbon units, which play
an important role in DNA methylation, maintenance of redox
balance, and biosynthesis of nucleotides, phospholipids, and
other amino acids (33). Consequently, serine has been shown to
be indispensable for the growth and proliferation of certain
cancer cell lines, which must obtain it through uptake or
through de novo biosynthesis from glucose. Thus, strategies
combining serine deprivation and disruption of serine biosyn-
thesis are antiproliferative in vitro (23, 24, 34). We investigated
the impact of serine availability on the proliferative capacity of
the human cancer cell linesH1299 andA549. Serinewithdrawal
exerted a substantial inhibitory effect on the proliferation of
A549 cells, whereas it inhibited more weakly the proliferation
of H1299 cells (Fig. 1A and B). This led us to hypothesize that
these cell lines differ in their serine metabolism. As expected,

relative to H1299 cells, A549 cells show reduced expression of
PHGDH, the enzyme catalyzing the first step of the de novo
serine synthesis pathway (Fig. 1C). To confirm that robust
expression of PHGDH is key to sustaining proliferation in the
absence of serine, we used MC38 colon cancer cells, previously
demonstrated to be metformin-sensitive in vivo (11). We
depleted MC38 cells of PHGDH using shRNA (>90% depletion
as compared with control; Fig. 2A). Serine deprivation had a
drastic effect on cell proliferation in PHGDH-depleted cells
(Fig. 2B).

Cancer cells must coordinate the diversion of glucose metab-
olism into biosynthesis pathways to meet the macromolecular
synthesis requirements for proliferation (21). Given the impor-
tance of serine for many biosynthetic pathways, its intracellular
level may be an important indicator of cellular biosynthesis
needs. In addition, serine deprivation has been shown to reduce
the rate of glycolysis (25–27), which we hypothesized would
increase sensitivity to the metabolic stress induced by bigua-
nides. Therefore, we treated serine-deprived MC38 cells with
metformin. Inagreementwithour hypothesis, serinewithdrawal
increased the antiproliferative effectiveness of otherwise sub-
optimal doses of metformin (1–2.5 mmol/L) in MC38 cells
(Fig. 1D). At 2.5 mmol/L, metformin did not greatly hinder
proliferation of H1299 (Fig. 1A) or MC38 (Fig. 1E and F) cells
in serine–replete conditions. This contrasts with results
obtained with A549 cells (Fig. 1B) that are known to be sensitive
to biguanides through a separatemechanism related to a lack of
STK11 (LKB1) expression (15). Under serine deprivation, met-
formin caused a marked inhibition of proliferation in both
H1299 and MC38 cells that was not seen with either serine
deprivation alone or metformin treatment alone (Fig. 1A, E, and
F, respectively). Proliferation curves for MC38 under serine
deprivation combined with 2.5 mmol/L metformin revealed
that arrest occurs within the first 24 hours of treatment and
that neither serine deprivation nor the administration of
2.5 mmol/L metformin in the presence of serine affected the
proliferation rate ofMC38 cells (Fig. 1H). The observed decrease
in cell number caused by metformin and serine withdrawal
relative to control is primarily due to decreased proliferation
(Fig. 1F), whereas cell survival was only modestly decreased
under these conditions (Fig. 1G).

Importantly, although serine withdrawal or metformin
treatment reduced proliferation of nontransformed, im-
mortalized MCF10A cells, the combination did not significant-
ly further suppress proliferation (Fig. 1E, right side). This is in
direct contrast with the results obtained with transformed
MC38 cells (Fig. 1E, left side). Moreover, serine deprivation did
not bolster the antiproliferative effects of metformin on PrECs
(Fig. 1I). These findings provide evidence that serine with-
drawal potentiates the antiproliferative effects of metformin

(Continued.) D, metformin, at concentrations between 0.5 and 5 mmol/L, substantially inhibited proliferation in MC38 cells cultured for 72 hours without
serine. Data, mean � SEM (n ¼ 3; �, P < 0.01). E–G, MC38 cells and MCF10A cells were treated as indicated for 72 hours. Proliferation was
assessed by cell count (E) or BrdUrd incorporation (F) and cell death by trypan blue exclusion (G). Data, mean� SEM (n ¼ 3; �, P < 0.05). H, the
combination of serine deprivation and metformin (2.5 mmol/L) results in proliferation arrest within 24 hours of exposure in MC38 cells. Cells were
cultured as shown and were counted at the indicated times. Data, mean � SEM (n ¼ 3) �, P < 0.05 compared with control. I, PrECs were treated with
metformin in the absence of serine for 48 hours; viable cells were counted. Effect of serine deprivation was compared with data obtained for H1299,
MC38, and MCF10A cells in equivalent conditions. Data, mean � SEM (n ¼ 3; �, P < 0.05).
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on transformed cells to a greater extent than nontransformed
cells, which is likely a consequence of reduced capacity of
transformed cells to adapt to energetic stress.

Next, we investigated the effects of the attenuation of
de novo serine biosynthesis on metformin-induced inhibi-
tion of proliferation in MC38 cells (Fig. 2A). In the presence
of serine, PHGDH depletion did not significantly potentiate
the antiproliferative effects of 2.5 mmol/L metformin as
compared with control. Inhibition of proliferation induced
by a combination of PHGDH depletion and metformin
(�10% inhibition relative to metformin treated, control
shRNA infected cells) was lower in magnitude compared
with the combination of metformin and serine deprivation.
This is likely due to the compensatory increase in serine

uptake (see below) and/or the ability of remaining PHGDH
to support low levels of serine biosynthesis. Of note, com-
bined serine deprivation and PHGDH depletion induced
dramatic inhibition of proliferation (more than 95% of the
control), which rendered determination of the combined
effects of serine withdrawal, PHGDH depletion, and metfor-
min treatment unfeasible (Fig 2B). Collectively, these find-
ings suggest that intracellular serine levels influence anti-
neoplastic activity of biguanides.

Dietary restriction of serine and glycine increases in vivo
effectiveness of phenformin as an antineoplastic agent

It has been shown that a diet deficient in serine and glycine
significantly reduces the serum levels of these amino acids in
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mice (25). We sought to extend our in vitro findings by
creating a similar diet-induced serine and glycine deficiency
in C57BL/6 mice bearing MC38 allografts and treating them
with the more bioavailable biguanide phenformin (9). MC38
tumors grew rapidly regardless of the presence or absence of
serine and glycine in the diet. Phenformin, dosed at 40 mg/
kg by i.p. injection twice daily did not impair tumor growth
in mice fed the control diet. However, we observed a
significant reduction in the growth rate and in the final
size of the tumors in mice on the diet deficient in serine and
glycine combined with phenformin treatment (Fig. 3A). All
groups tolerated the combinations of diets and treatments
administered, and constant weight gain was seen in all
groups. To better understand the link between dietary
amino acids and tumor growth, plasma and tumor serine
and glycine levels were determined by GC–MS. Plasma of
mice on the serine/glycine-deficient diet showed reduced
concentration of these amino acids (Fig. 3B). Tumor serine
and glycine levels were also reduced in the serine/glycine-
deprived groups at the conclusion of the experiment (Fig.
3C). This observation provides pioneering evidence that
dietary amino acid intake manipulation can potentiate the
antineoplastic activity of biguanides in vivo.

Metformin does not inhibit serine biosynthesis
Given that high expression of the serine biosynthesis enzyme

PHGDH limits the impact of serine deprivation on cell prolif-
eration (Fig. 2B), we sought to determine whether the
enhanced effects of metformin or phenformin under serine
deprivation were due to inhibition of serine biosynthesis.

To evaluate the flux of glucose into serine under metformin
and/or serine deprivation, we performed stable isotope tracer
analysis using 13C6-glucose (Fig. 2C).

13C6-glucose is converted
to the glycolytic intermediate 3-phosphoglycerate (3-PG)mþ3,
which is further transformed into serine mþ3 through the
sequential reactions catalyzed by PHGDH, phosphoserine
aminotransferase and 3-phosphoserine phosphatase. Serine is
reversibly converted into glycine mþ2, Thus, total serine
isotopomers derived from 13C6-glucose will contain mþ1,
mþ2, and mþ3 enrichments. Metformin did not inhibit
13C6-glucose contribution to the serine pool, whereas serine
deprivation drastically reduced it (Fig. 2D). Metformin
increased unlabeled serine (mþ0) relative to control, and this
effect was ablated by concomitant serine withdrawal, suggest-
ing that metformin increases the uptake of exogenous serine.
Metformin did not affect expression of PHGDH, which indi-
cates that the effects ofmetformin on intracellular serine levels
are not mediated by modulating expression of this enzyme
(Fig. 2E). Collectively, these data show that the decrease in
proliferation upon metformin exposure in serine-deprived
MC38 cells cannot be explained by a decrease in de novo serine
biosynthesis.

Serine deficiency enhances the activity of biguanides in
AMPK-independent manner

AMPK activation due to energetic stress leads to down-
regulation of proliferation and other energy-consuming pro-
cesses, thereby favoring cellular survival (35). Antiproliferative
effects of biguanides are in partmediated by AMPK-dependent
inactivation of mTORC1 (10, 36), whereas changes in
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intracellular serine levels have been shown to reduce the
activity of mTORC1 in cell lines (27). Therefore, we explored
the possibility that the enhancement of metformin-induced
inhibition of proliferation by serine deprivation is mediated by
the AMPK and/or mTORC1 pathways. Serine withdrawal only
marginally reduced the phosphorylation of mTOR effectors S6
kinase 1 (S6K1) and its downstream substrate ribosomal
protein S6 (rpS6) in H1299 and MC38 as compared with
control, whereas 2.5 mmol/L metformin had no effect (Fig.
4A and B). In stark contrast, treatment with 2.5 mmol/L
metformin combined with serine deprivation resulted in fur-
ther suppression ofmTORC1 as judged by a strong reduction in
S6K1 and rpS6 phosphorylation (Fig. 4A–C). The data show
that the potentiation of the antiproliferative effects of metfor-
min by serine withdrawal is paralleled by decreased mTORC1
signaling.

We next determined whether the effects of combination of
serine withdrawal and metformin on mTORC1 are mediated
by AMPK. To this end, we activated AMPK pharmacologi-
cally using AICAR, while varying serine availability in MC38
cells. Although 25 mmol/L AICAR had no effect on AMPK
activation or ACC phosphorylation, both AMPK and ACC
phosphorylation were stimulated with 50 mmol/L AICAR to
levels comparable with those observed in 2.5 mmol/L met-
formin-treated cells, and this was paralleled by modest
inhibition of mTORC1 as judged by slightly decreased phos-
phorylation of rpS6 (Fig. 5A, compare lanes 1 vs. 3 and 1 vs.
7). Moreover, the antiproliferative effects of 50 mmol/L
AICAR and 2.5 mmol/L metformin were comparable. Sur-
prisingly, although serine deprivation increased the inhibi-
tory effects of both 50 mmol/L AICAR and 2.5 mmol/L
metformin on mTORC1 signaling (Fig. 5A; compare lanes
3 and 4 and 7 and 8), serine withdrawal potentiated the
antiproliferative effects of metformin but not AICAR (Fig. 5B).
These results suggest that the potentiation of the effects of

metformin by serine withdrawal is not mediated by AMPK or
mTORC1.

To further corroborate these findings, we measured the
effects of metformin and serine withdrawal on the prolifer-
ation of H1299 cells depleted of AMPKa1/2 by shRNA
(Fig. 5C and D). These experiments revealed that similarly
to AICAR, AMPKa1/2 subunit depletion does not affect the
inhibition of proliferation by metformin in cells depleted of
serine. Taken together, these findings show that serine
withdrawal bolsters the antiproliferative effects of bigua-
nides independently of AMPK. This suggests that serine
withdrawal and metformin exert their combinatory antipro-
liferative effects by directly perturbing the metabolism of
cancer cells.

Serine deprivation reduces theupregulation of glycolysis
and shifts in the relative abundance of citric acid cycle
metabolites induced by metformin

In the setting of energy stress due to inhibition of oxidative
phosphorylation by biguanides, changes in metabolic fluxes
occur. Primarily, oxygen consumption and glucose oxidation
are decreased, whereas glycolytic flux to lactate is upregulated
(18, 20). Serine acts as a criticalmodulator of glycolysis (26).We
therefore sought to explore the effects of serine deprivation
and metformin treatment on glucose metabolism. We treated
MC38 and H1299 cells with metformin for 24 hours and
measured glucose consumption and lactate secretion. As
expected, we observed substantial increases in glucose con-
sumption and lactate secretion, indicative of upregulated
glycolysis (Fig. 6A and B). Compared with cells in the ser-
ine–replete control condition, cells under serine deprivation
exhibited a reduced rate of glycolysis (Fig. 6A and B). Further-
more, serine deprivation effectively inhibited the metformin-
induced increase in glucose consumption, lactate secretion,
and the lactate:pyruvate ratio (Fig. 6A, B, and E). These results
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confirm that cells respond tometformin-induced energy stress
by upregulating glycolysis, and demonstrate that serine dep-
rivation is a potent inhibitor of this compensatory response. To
further explore whether serine depletion potentiates the anti-
proliferative effects of biguanides by impeding the compensa-
tory switch to glycolysis, we supplemented MC38 and H1299
cells with 1 mmol/L pyruvate. Given that in the presence of
metformin, pyruvate entry into the citric acid cycle will be
limited (15, 31), pyruvate supplementation will lead to the
conversion of pyruvate into lactate by lactate dehydrogenase
and the generation of NADþ that is required for the activity of

the glycolytic pathway. Accordingly, pyruvate alleviated the
inhibitory effects of the combination of metformin and serine
withdrawal on glycolysis (Fig. 6B), which was paralleled by
rescue of proliferation (Fig. 6C). Hence, the combined inhib-
itory effect of metformin and serine withdrawal on cell pro-
liferation can be explained at least in part by abrogation of
metformin-induced compensatory switch to glycolysis in cells
deprived of serine.

In addition to upregulating glycolysis, metformin alters the
citric acid cycle due to accumulation of NADH as a conse-
quence of complex I inhibition, promoting the usage of
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glutamine to support lipogenesis (37–40). Metformin was
found to increase thea-ketoglutarate/citrate ratio by reducing
glycolytic input into the mitochondria (41). Therefore, we
assessed lactate, citrate and a-ketoglutarate levels in MC38
cells under serine deprivation and/or metformin treatment.
Strikingly, metformin and serine deprivation had opposite
effects on the concentration of these metabolites in cells,
whereby serine withdrawal antagonized both the increase in
lactate and a-ketoglutarate, and the decrease in citrate
induced bymetformin (Fig. 6D). Importantly, pyruvate rescued
the levels of all three metabolites (Fig. 6D). As expected,
metformin-treated MC38 cells showed an increase in the
a-ketoglutarate/citrate ratio as compared with control (Fig.
6F). This effect was abolished by serine deprivation, and
pyruvate partially restored the a-ketoglutarate/citrate ratio
in metformin and serum depleted cells.
Considering these findings, we further studied the effects

of metformin and serum withdrawal on citric acid cycle
activity by monitoring citrate isotopomers with stable iso-
tope tracer analysis using 13C6-glucose or 13C5-glutamine.
Serine deprivation increased mþ2 citrate derived from
13C-glucose (Fig. 6G) and mþ4 citrate derived from 13C5-
glutamine (Fig. 6H), thereby supporting the observation that
serine deprivation increases citric acid cycle activity (25).
In contrast, metformin dramatically reduced the flux of
13C6-glucose into mþ2 citrate (Fig. 6G), whereas the flux of
13C5-glutamine into mþ5 citrate was maintained (Fig. 6H).
Importantly, serine deprivation alone led to an accumula-
tion of 13C-glutamine–derived mþ5 citrate, which was fur-
ther increased when serine deprivation was combined with
metformin treatment (Fig. 6H). This finding, together with
the serine withdrawal-induced decrease in the a-ketogluta-
rate/citrate ratio (Fig. 6F), suggests that serine deprivation
alters the metabolism of glutamine-derived citrate. Taken
together, these findings suggest that serine withdrawal
potentiates the antineoplastic effects of metformin at least
in part by antagonizing compensatory metabolic pathways
that are activated on exposure to biguanides.

Discussion
The hypothesis that the antidiabetic biguanide metformin

may be "repurposed" for indications in oncology is receiving
considerable attention, with more than 100 clinical trials
involving metformin treatment for cancer presently under-
way (6). However, there are important gaps in knowledge
with respect to the mechanisms of action. Although met-

formin influences levels of circulating hormones in a manner
that may reduce proliferation of certain cancers, these
changes are modest in magnitude (5), and it is not estab-
lished clinically that they are sufficient to have a therapeutic
effect. The possibility that biguanides act directly on
cancer cells in vivo is supported by many preclinical models
(5–7, 13, 15, 17). There is evidence that the direct antipro-
liferative actions of biguanides on cancer cells are a conse-
quence of metabolic stress caused by inhibition of oxidative
phosphorylation (1, 2).

Prior work suggests that both host and tumor-related
factors influence the antineoplastic activity of biguanides.
For example, cancers with baseline impairment of oxidative
phosphorylation due to mutations in genes encoding pro-
teins in respiratory complex I are particularly sensitive to
biguanides, whereas high glucose levels attenuate the anti-
proliferative effects of biguanides by facilitating high rates of
glycolysis, which can relieve the energy stress caused by
biguanide-induced reduction in oxidative phosphorylation
(17, 18). We observed that sensitivity to biguanides in vitro is
significantly increased under conditions of serine depriva-
tion, and extended this observation to an in vivo model, in
which a level of biguanide exposure that is well tolerated but
insufficient to achieve antineoplastic activity under control
conditions inhibited tumor growth when mice were fed a
diet deficient in glycine and serine. This diet was well
tolerated and was not by itself associated with significant
in vivo tumor growth inhibition in the aggressive MC38
cancer cell model. In contrast, a recent report showed that
dietary restriction of serine and glycine is sufficient to have
an antiproliferative effect on the slower growing HCT116
cancer cell model (25).

Serine is directly involved in folate and methionine cycles,
and is thus important for nucleotide biosynthesis, NADPH
production, and reactive oxygen species clearance (42). We
initially suspected a novel action of metformin as an inhib-
itor of serine biosynthesis to account for its enhanced
activity when serine is removed from culture medium, but
this hypothesis was not supported by our metabolic studies.
Rather, our results show that cell survival in the presence of
biguanide-induced inhibition of oxidative phosphorylation is
associated with increased glycolysis, and that under serine
deprivation this compensatory increase in glycolysis does
not take place (Fig. 7). This demonstrates a new context in
which the positive impact of serine on glycolysis (25–27, 33)
is important.

(Continued.) Proliferation was determined by viable cell count and data are expressed as a percentage of growth inhibition as compared with control.
Data, mean � SEM (�, P < 0.01). D, intracellular lactate, citrate, and a-ketoglutarate levels in MC38 cells treated for 24 hours as indicated were
determined by GC–MS. Pyruvate addition (1 mmol/L) was simultaneous with other treatments. Data, means � SEM (n ¼ 3 biological replicates). E, the
intracellular lactate to pyruvate ratio in MC38 was determined by GC–MS. Data, mean � SEM (n ¼ 3 independent experiments); �, P < 0.05. F, the
a-ketoglutarate (a-KG) to citrate ratio, indicator of glutamine-dependent reversal of citric acid cycle, in MC38 cells was determined by GC–MS. Pyruvate
addition (1 mmol/L) was simultaneous to other indicated treatments. Data, mean� SEM (n¼ 3 biological replicates); �, P < 0.05. G, stable isotope tracer
analyses of citrate in MC38 cells treated as indicated and incubated with 13C6-glucose for 24 hours. Each bar integrates principal isotopomer
ion amounts and shows the relative metabolite present per cell. Data, mean � SEM (n ¼ 3 biological replicates); �, P < 0.05. H, stable isotope tracer
analyses of citrate in MC38 cells treated as indicated and incubated with 13C5-glutamine. Each bar integrates principal isotopomer ion amounts and
shows the relative metabolite present per cell. mþ5 reflects reverse citric acid cycle cycling through reductive carboxylation, whereas mþ4 reflects
forward citric acid cycle cycling. Data, mean � SEM (n ¼ 3 biological replicates); �, P < 0.05.
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Inhibition of cancer growth by manipulation of dietary
amino acids has previously been proposed (43, 44), but leads
to adverse effects of deficiency in essential amino acids. This
contrasts with our approach, in which a well-tolerated
dietary restriction of two nonessential amino acids sensi-
tizes cancer cells to biguanide treatment. Substantial inter-
individual differences in circulating levels of glycine and
serine exist between normal individuals (45), even in the
absence of dietary interventions, and may influence the
efficacy of biguanides as antineoplastic agents. Our findings
indicate that characterizing and targeting compensatory
metabolic pathways activated in response to biguanide-
induced energy stress can identify strategies to improve the
efficacy of these compounds as antineoplastic agents.
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Figure 7. Schematic of the proposed mechanism by which serine deprivation interferes with biguanide-induced metabolic remodeling. Left, biguanide-
induced reduction in oxidative phosphorylation leads to (i) a compensatory increase in glycolysis with augmentation of glucose uptake and lactate production
and (ii) reductive carboxylation in the citric acid cycle (CAC).These effects on the citric acid cycle are associated with an increase in the a-ketoglutarate
(a-KG) to citrate ratio. Right, serine withdrawal counteracts these compensatory metabolic responses to biguanides associated with enhanced
antineoplastic activity.
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