Genetic Factors Related to Racial Variation in Plasma Levels of Insulin-Like Growth Factor-1: Implications for Premenopausal Breast Cancer Risk

Helena Jernström,*† William Chu,* Danny Vesprini,* Yuzhen Tao,‡ Noreen Majeed,‡ Cheri Deal,§ Michael Pollak,‡ and Steven A. Narod*†

*Centre for Research in Women’s Health, University of Toronto, 790 Bay Street, 7th floor, Toronto, Ontario M5G 1N8, Canada; †The Jubileum Institute, Department of Oncology, Lund University Hospital, S-221 85 Lund, Sweden; ‡Lady Davis Research Institute of Jewish General Hospital and McGill University, Montreal, Quebec, Canada; and §Department of Pediatrics and Sainte Justine Hospital, Universite de Montreal, Montreal, Quebec, Canada

The oral contraceptive pill is associated with a modest increase in the risk of early-onset breast cancer in the general population, but it is possible that the risk is higher in certain subgroups of women. The relative risk of breast cancer associated with oral contraceptive use has been reported to be higher for African-American women than for white women. African-American women also have a higher incidence of premenopausal breast cancer than white women. Circulating levels of insulin-like growth factor-1 (IGF-I) vary between ethnic groups and are positively associated with the risk of premenopausal breast cancer. In general, the plasma level of IGF-I is lower in women who take oral contraceptives than in women who do not. In an attempt to explain the observed ethnic difference in IGF-I levels with oral contraceptive use, we sought to identify polymorphic variants of genes that are associated with IGF-I levels and estrogen metabolism. We measured IGF-I and IGFBP-3 plasma levels in 503 nulligravid women between the ages of 17 and 35. All women filled out a questionnaire that included information about ethnic background and oral contraceptive use. Samples of DNA were used to genotype the women for known polymorphic variants in the IGF1, AIB1, and CYP3A4 genes. Black women had significantly higher mean IGF-I levels than white women (330 ng/ml versus 284 ng/ml; \(P = 0.001 \), adjusted for age and oral contraceptive use). IGF-I levels were significantly suppressed by oral contraceptives in white women (301 ng/ml versus 267 ng/ml; \(P = 0.0003 \)), but not in black women. Among oral contraceptive users, the IGF-I level was positively associated with the absence of the IGF1 19-repeat allele (338 ng/ml versus 265 ng/ml; \(P = 0.00007 \)), with the presence of the CYP3A4 variant allele (320 ng/ml versus 269 ng/ml; \(P = 0.01 \)), and with the presence of the AIB1 26-repeat allele (291 ng/ml versus 271; \(P = 0.08 \)). After adjusting for genotypes, ethnic group was no longer a significant predictor of the IGF-I level. IGF-I levels are higher among black than white women. Polymorphic variants in the CYP3A4, IGF1, and AIB1 genes are associated with increases in the plasma levels of IGF-I among oral contraceptive users and the variant alleles are much more common in black women than in white women. The high incidence of premenopausal breast cancer among black women may be mediated through genetic modifiers of circulating levels of IGF-I.

Key Words: insulin-like growth factor-1 (IGF-I); IGF binding protein-3; genotype; oral contraceptives; IGF1; CYP3A4; AIB1.
the risk of premenopausal breast cancer, particularly among women who begin oral contraceptive use before age 20 or before their first full-term pregnancy (4). Most studies describe the experience of white women (4), but a few studies have reported that African-American women who use oral contraceptives face a higher relative risk of breast cancer than white women (5–7).

Insulin-like growth factor-1 (IGF-I) is a peptide growth factor, which is present in the plasma and the breast tissue, and which promotes the proliferation of breast epithelial cells (8–10). The principal IGF-I binding protein, IGFBP-3, suppresses breast cell proliferation and promotes apoptosis. Plasma levels of IGF-I and of IGFBP-3 vary between ethnic groups (11) and are predictive of the risk of premenopausal breast cancer (12–14). Hankinson et al. (12) found a sevenfold increase in the risk of premenopausal breast cancer for women in the highest tertile of serum IGF-I, compared to women in the bottom tertile, after adjustment for age and IGFBP-3 levels.

The plasma level of IGF-I is strongly influenced by exogenous estrogens (15–20). In a recent study of white women, we reported that the mean level of plasma IGF-I was significantly lower in women who took oral contraceptives than in women who did not (P = 0.001) (16). However, a minority of women on oral contraceptives demonstrated high levels of IGF-I. These women may constitute a subgroup that is at particularly high risk of premenopausal breast cancer when exposed to the oral contraceptives.

We speculated that differences in plasma IGF-I levels may contribute to the reported difference in the risk of premenopausal breast cancer between white and black women, and that the observed ethnic differences in IGF-I levels may be the consequence of the relative population frequencies of functional polymorphic variants in genes which regulate the metabolism of exogenous estrogens.

METHODS

Study Subjects

Healthy volunteer women, between the ages of 17 and 35 years, were recruited from the University of Toronto, from the Bay Centre for Birth Control, and from the Toronto community by flyers and e-mail. The protocol was approved by the University of Toronto ethics committee. We have previously described 311 white women in this sample who reported never to have been pregnant (16). The present study deals with the results on 503 women of the four most common ethnic groups, white, black, Asian, and Indian-Pakistani. Asian women included those of Japanese, Chinese, Korean, Vietnamese, or Thai decent. Forty-one women of other, or mixed, ethnicity were excluded. Only women who reported never to have been pregnant, to have no past history of cancer, and who did not have diabetes were included. The study protocol included a morning visit to the study center on a random day of the menstrual cycle. All women completed a self-administered questionnaire, detailing information on age, ethnic group, menstrual history, current diet (vegetarian or not), exercise, alcohol consumption, and smoking. A brief medical history was taken and included the current use of medications, including oral contraceptives. Samples of various packages of oral contraceptive brands were displayed at the center and the women were asked to identify their current brand. All contraceptive formulations contained 17α-ethinyl estradiol as estrogen, but the type of progestin varied. Each type of contraceptive was coded as to the amount of estrogen and type of progesterone it contained. The average daily dose of ethinyl estradiol was calculated for women who used triphasic pills. Seven different types of progestins were recorded.

Blood samples were taken for analysis of plasma levels of IGF-I and IGFBP-3, and for DNA extraction. Levels of IGF-I and IGFBP-3 in plasma were assayed using ELISA methodology as previously described (21). The level of free IGF-I is believed to be a better predictor of breast cancer risk than the total IGF-I (12). In the present study the ratio of IGF-I to IGFBP-3 was taken as a surrogate for free IGF-I.

Genotyping

Genomic DNA was extracted from 20 ml of peripheral blood using Puregene DNA extraction kits.

IGF1 polymorphism. The polymorphism in the IGF1 gene is a variable number tandem repeat (VNTR) type polymorphism (22), consisting of eight alleles, ranging in size from 16 to 23 repeat units. The polymorphism was evaluated by a PCR-based assay using the following primers: sense 5'-GCT AGC CAG CTG GTG TTA TT-3' and antisense 5'-ACC ACT CTG GGA GAA GGG TA-3'. The forward primer was end-labeled with Cy5 (Amersham Life Sciences, Oakville, Ontario). PCR were performed using 25 ng of template DNA for each reaction, 0.4
mM of each primer, 200 mM of each deoxynucleotide triphosphate, 1.0 mM MgCl$_2$, 2% dimethyl sulfoxide, 1.25U Taq polymerase (Gibco, Fredrick, MD), and the manufacturer’s standard buffers in a final reaction volume of 25 μl. To evaluate the genotype the amplified PCR products were subjected to acrylamide gel electrophoresis. The gels were dried and scanned on a Storm 860 Phosphorimaging System (Molecular Dynamics, Sunnyvale, CA) to visualize and score the repeat alleles. The number of repeat elements was determined by measuring the size of the PCR products in comparison to known standards.

AIB1 polymorphism. The variable number tandem repeat polymorphism in the AIB1 gene contains seven alleles and was evaluated using the following PCR primers: sense 5′-TCA TCA CTT CGG ACA ACA GAG G and antisense 5′-TGG GGG AAG CAG TCA CAT TAG GA. PCR were performed using 25 ng of template DNA for each reaction, 0.4 mM of each primer, 200 mM of each deoxynucleotide triphosphate, 1.0 mM MgCl$_2$, 2% dimethyl sulfoxide, 1.25 U Taq polymerase (GIBCO), and the manufacturer’s standard buffers in a final reaction volume of 25 μl. To evaluate the VNTR in the AIB1 gene the amplified PCR products were subjected to electrophoresis on Spreadex 500 gels (Helixx, Toronto, Ontario) and visualized with ethidium bromide staining. The number of repeat elements was determined by measuring the size of the PCR products in comparison to known standards.

CYP3A4. The CYP3A4 polymorphism is a biallelic single nucleotide polymorphism in the nifedipine responsive element of the gene (23). PCR was performed to amplify a 592-bp fragment in the upstream coding region of the CYP3A4 gene. The primers are 5′-AAC AGG GGT GGA AAC ACA-3′ and 5′-CTT TCC TGC CCT GCA CAG-3′. The forward primer was end-labeled with Cy5 (Amersham Life Sciences, Oakville, ON). The PCR amplification was performed in 25-μl reaction volumes and consisted of 35 cycles (94°C/min, 64°C/30 s, and 72°C/30 s). To identify homozygous wild-type (W/W), heterozygous variant (W/V), and homozygous variant (V/V) genotypes, two samples for each subject were separated by conformation-sensitive gel electrophoresis (CSGE) (24). In one well, 8 μl of PCR product was loaded in the absence of PCR product generated from a known homozygous variant subject (−V/V DNA). In a second well 4 μl of PCR product was loaded with 4 μl of V/V DNA (+V/V DNA). As described by Rebbeck et al., the absence and presence of V/V DNA do not affect the separation pattern for W/W and V/V subjects (23). Homoduplexes and heteroduplexes were always observed for W/V subjects, while only a single homoduplex was observed for V/V subjects. For W/W subjects, the absence of V/V DNA resulted in homoduplex formation, while the addition of V/V DNA produced both homoduplex and heteroduplex bands. Following electrophoresis, gels were dried and scanned on a Storm 860 Phosphorimaging System (Molecular Dynamics) to visualize the bands and genotype of the subject.

Data Analysis

The correlations between age and plasma levels of IGF-I were measured using the Pearson correlation coefficient. The effects of ethnic group and oral contraceptive use on these hormone levels were measured using multivariate linear regression models, adjusting for age.

All comparisons between ethnic groups and between women with different genotypes of the three candidate genes were adjusted for age (continuous), for current oral contraceptive use (yes/no), and for estrogen dose (continuous) among oral contraceptive users, except where otherwise indicated.

The 19-repeat allele of the IGF1 polymorphism has been previously associated with the serum IGF-I level (22). The number of tandem repeats of each of the two alleles of the IGF1 polymorphism was therefore determined for each woman. The women were categorized by the presence of zero, one, or two copies of the 19-repeat allele. Similarly, for the AIB1 polymorphism, the women were categorized according to the presence of zero, one, or two copies of the 26-repeat allele. The number of variant alleles of the bi-allelic CYP3A4 polymorphism was determined for each woman.

RESULTS

The total sample of 503 women included 329 white women (65%), 78 African-American women (15%), 71 Asians (14%), and 25 women of Indian or Pakistani origin (5%). All women were between the ages of 17 and 35 years. The characteristics of the women in the four ethnic groups are described in Table 1.

Among the entire study group, plasma IGF-I levels declined continuously with age ($r = -0.41; P = 10^{-21}$). Black women had significantly higher mean IGF-I levels than white women ($P = 0.001$, adjusted for age and oral contraceptive use) (Fig. 1).
The age-adjusted mean IGF-I levels were lower in white women who used oral contraceptives than in white women who were not on oral contraceptives (266 ng/ml versus 301 ng/ml; \(P = 0.0003 \)). We found that the mean IGF-I levels were inversely related to the average daily estrogen dose (\(P = 0.01 \)), but were not related to the progesterone content of the oral contraceptives. In contrast, oral contraceptive use was not associated with lower IGF-I levels in black women (\(P = 0.80 \)), in Asian women (\(P = 0.22 \)), or in Indian-Pakistani women (\(P = 0.71 \)). Among users of oral contraceptives, black women had significantly higher levels of plasma IGF-I than white women (341 ng/ml versus 267 ng/ml; \(P = 0.001 \)) (Fig. 1).

TABLE 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>White (n = 329)</th>
<th>Black (n = 78)</th>
<th>Asian (n = 71)</th>
<th>Indian-Pakistani (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean 25.4 (17–35)</td>
<td>Mean 24.8 (17–35)</td>
<td>Mean 24.3 (19–31)</td>
<td>Mean 22.9 (19–30)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>Mean 166 (147–188)</td>
<td>Mean 165 (150–182)</td>
<td>Mean 160 (150–173)</td>
<td>Mean 159 (154–166)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>Mean 63.3 (41.3–114.9)</td>
<td>Mean 63.5 (44.5–95.3)</td>
<td>Mean 55.7 (39.5–78.5)</td>
<td>Mean 54.2 (40.4–79.4)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>Mean 23.1 (16.93–46.32)</td>
<td>Mean 23.3 (15.83–32.37)</td>
<td>Mean 21.6 (16.45–27.38)</td>
<td>Mean 21.6 (16.03–32.56)</td>
</tr>
<tr>
<td>Age at menarche (years)</td>
<td>Mean 12.8 (9–18)</td>
<td>Mean 12.2 (8–17)</td>
<td>Mean 12.1 (8–16)</td>
<td>Mean 12.4 (10–15)</td>
</tr>
<tr>
<td>Current OC user</td>
<td>50%</td>
<td>21%</td>
<td>25%</td>
<td>36%</td>
</tr>
<tr>
<td>Current smoker</td>
<td>15%</td>
<td>10%</td>
<td>14%</td>
<td>16%</td>
</tr>
<tr>
<td>Current vegetarian diet</td>
<td>15%</td>
<td>3%</td>
<td>4%</td>
<td>20%</td>
</tr>
<tr>
<td>Highest level of education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attended high school</td>
<td>1.5%</td>
<td>2.6%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Graduated high school</td>
<td>3.6%</td>
<td>5.1%</td>
<td>2.8%</td>
<td>8%</td>
</tr>
<tr>
<td>Attended college/university</td>
<td>23.7%</td>
<td>43.6%</td>
<td>39.7%</td>
<td>36%</td>
</tr>
<tr>
<td>Graduated degree/diploma</td>
<td>71.1%</td>
<td>47.4%</td>
<td>57.7%</td>
<td>56%</td>
</tr>
</tbody>
</table>

Note. Missing values: Height was missing for 2 white women, weight for 15 white women, BMI for 17 white women, age at menarche for 2 white women, and smoking status was missing for 4 white women. Weight and BMI were missing for 1 black woman, height and BMI were missing for 4 Asian women, height and BMI were missing for 1 Indian-Pakistani woman.

The age-adjusted mean IGF-I levels were lower in white women who used oral contraceptives than in white women who were not on oral contraceptives (266 ng/ml versus 301 ng/ml; \(P = 0.0003 \)). We found that the mean IGF-I levels were inversely related to the average daily estrogen dose (\(P = 0.01 \)), but were not related to the progesterone content of the oral contraceptives. In contrast, oral contraceptive use was not associated with lower IGF-I levels in black women (\(P = 0.80 \)), in Asian women (\(P = 0.22 \)), or in Indian-Pakistani women (\(P = 0.71 \)). Among users of oral contraceptives, black women had significantly higher levels of plasma IGF-I than white women (341 ng/ml versus 267 ng/ml; \(P = 0.001 \)) (Fig. 1).

IGF-I Levels and the IGF1 Gene

Among users of oral contraceptives, the mean IGF-I level was significantly higher in women who lacked a copy of the 19-repeat allele of the IGF1 gene, compared to women with one or two copies of the allele (338 ng/ml versus 266 ng/ml; \(P = 0.00007 \)) (Fig. 2). No association between the IGF1 polymorphism and the plasma IGF-I levels was present in women who did not use oral contraceptives. The interaction between the use of oral contraceptives and the presence of the IGF1 19-repeat allele on the plasma IGF-I level was highly significant (\(P = 0.002 \)) and was present in all four ethnic groups (data not shown).

Polymorphic Variants of the CYP3A4 Gene

Among women who took oral contraceptives, the mean IGF-I levels were higher for women who carried one or two variant CYP3A4 alleles than among
women who did not (320 ng/ml versus 269 ng/ml; \(P = 0.01\)). There was a significant trend in the mean IGF-I level by the number of CYP3A4 alleles (\(P = 0.005\)) (Fig. 3). In nonusers, there was no significant trend in the mean IGF-I level by number of CYP3A4 variant alleles (\(P = 0.20\)).

Polymorphic Variants of the AIB1 Gene

Among users of oral contraceptives, women who carried one or more copies of the 26-repeat allele of the AIB1 gene had modestly higher mean IGF-I levels than women who lacked the 26-repeat allele (291 ng/ml versus 271 ng/ml). Although the difference did not achieve statistical significance (\(P = 0.08\)) the effect was present at all exposure levels of exogenous estradiol (Fig. 4). Among nonusers, no association was seen (306 ng/ml versus 309 ng/ml; \(P = 0.76\)).

Cumulative Number of Variant Alleles and IGF-I Levels

The frequencies of the specific alleles of the IGF1 gene, the CYP3A4 gene, and the AIB1 gene varied by ethnic group (Table 2). We assigned a score from zero to four to each woman, depending on the total number of variants present (i.e., the absence of the IGF-1 19-repeat allele, the presence of at least one copy of the AIB1 26-repeat allele, and the presence of one or two copies of the CYP3A4 variant (counted as one for heterozygotes and as two for homozygotes). Black women had, on average, 1.7 variants, compared to 0.4 for the white women, 0.5 for the Asian women, and 0.4 for the Indian-Pakistani women (\(P < 0.001\) for the difference between black versus white women) (Table 3). Among oral contraceptive users, a strong correlation was present between the total variant score and the mean IGF-I level (\(r = 0.31; P = 4 \times 10^{-6}\)) (Figs. 5 and 6). Among women who did not use oral contraceptives, no significant association was seen (\(r = 0.06; P = 0.16\)) (Fig. 5).

To evaluate concurrently the effect of ethnic background and the genotypes of the three candidate genes on the mean plasma IGF-I level, a series of
multiple linear regressions was performed. In the absence of genotype, ethnic background was a significant predictor of the IGF-I levels among users of oral contraceptives. Similarly, in the absence of ethnic group, the number of genetic variants was a significant predictor of the IGF-I level. However, when both the ethnic group and the total number of variants were introduced into the model, the effect of ethnic group was no longer significant ($P_{\text{trend}} = 0.0002$ for number of variants, adjusted for age, estrogen dose, and ethnic group). This was also true if the genetic variants were entered into the model individually, rather than as a score. Among nonusers, the total number of variants did not predict the mean IGF-I levels ($P_{\text{trend}} = 0.74$, adjusted for age and ethnic group).

These data are based on the total plasma IGF-I levels. We repeated all analyses using the IGF-I to IGFBP-3 ratio as the outcome, in place of the total IGF-I. The results remained essentially the same.

TABLE 2
Allele Frequency Distribution of Polymorphic Genetic Variants by Ethnic Background

<table>
<thead>
<tr>
<th>Variant Allele</th>
<th>White (n = 329)</th>
<th>Black (n = 78)</th>
<th>Asian (n = 71)</th>
<th>Indian-Pakistani (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (%)</td>
<td>No. (%)</td>
<td>No. (%)</td>
<td>No. (%)</td>
</tr>
<tr>
<td>IGF1 genotype (VNTR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1 (0.2%)</td>
<td>7 (4.5%)</td>
<td>1 (0.7%)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4 (0.6%)</td>
<td>6 (3.8%)</td>
<td>7 (4.9%)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>38 (5.8%)</td>
<td>25 (16.0%)</td>
<td>27 (19.0%)</td>
<td>5 (10%)</td>
</tr>
<tr>
<td>19</td>
<td>460 (70.2%)</td>
<td>59 (37.8%)</td>
<td>58 (40.8%)</td>
<td>28 (56%)</td>
</tr>
<tr>
<td>20</td>
<td>110 (16.8%)</td>
<td>30 (19.2%)</td>
<td>13 (9.1%)</td>
<td>9 (18%)</td>
</tr>
<tr>
<td>21</td>
<td>29 (4.4%)</td>
<td>22 (14.1%)</td>
<td>32 (22.5%)</td>
<td>8 (16%)</td>
</tr>
<tr>
<td>22</td>
<td>13 (2.0%)</td>
<td>5 (3.2%)</td>
<td>4 (2.8%)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>—</td>
<td>2 (1.3%)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>AIB1 genotype (VNTR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>—</td>
<td>—</td>
<td>1 (0.7%)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>84 (12.8%)</td>
<td>10 (6.4%)</td>
<td>6 (4.2%)</td>
<td>5 (10%)</td>
</tr>
<tr>
<td>27</td>
<td>1 (0.2%)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>254 (38.8%)</td>
<td>55 (35.3%)</td>
<td>29 (20.4%)</td>
<td>12 (24%)</td>
</tr>
<tr>
<td>29</td>
<td>311 (47.6%)</td>
<td>88 (56.4%)</td>
<td>101 (71.1%)</td>
<td>31 (62%)</td>
</tr>
<tr>
<td>30</td>
<td>4 (0.6%)</td>
<td>3 (1.9%)</td>
<td>3 (2.1%)</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>31</td>
<td>—</td>
<td>—</td>
<td>2 (1.4%)</td>
<td></td>
</tr>
<tr>
<td>CYP3A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No variant</td>
<td>305 (94.1%)</td>
<td>9 (11.5%)</td>
<td>69 (97.1%)</td>
<td>24 (100%)</td>
</tr>
<tr>
<td>Heterozygous variant</td>
<td>18 (5.6%)</td>
<td>38 (48.7%)</td>
<td>2 (2.8%)</td>
<td>—</td>
</tr>
<tr>
<td>Homozygous variant</td>
<td>1 (0.3%)</td>
<td>31 (39.7%)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. Missing values: Three IGF1 alleles, four AIB1 alleles, and five CYP3A4 genotypes were missing among white women. CYP3A4 genotype was missing for one Indian-Pakistani woman.

TABLE 3
Cumulative Number of Variant Alleles by Ethnic Background

<table>
<thead>
<tr>
<th>Cumulative number of variants</th>
<th>White (n = 329)</th>
<th>Black (n = 78)</th>
<th>Asian (n = 71)</th>
<th>Indian-Pakistani (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>209 (64.9%)</td>
<td>6 (7.7%)</td>
<td>43 (60.6%)</td>
<td>16 (66.7%)</td>
</tr>
<tr>
<td>1</td>
<td>104 (32.2%)</td>
<td>21 (26.9%)</td>
<td>24 (33.8%)</td>
<td>7 (29.2%)</td>
</tr>
<tr>
<td>2</td>
<td>8 (2.5%)</td>
<td>40 (51.3%)</td>
<td>4 (5.6%)</td>
<td>1 (4.2%)</td>
</tr>
<tr>
<td>3 or more</td>
<td>1 (0.3%)</td>
<td>11 (14.1%)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. Missing values: Cumulative numbers of variants were missing for five white women and one Indian-Pakistani woman.
Epidemiologic investigations of circulating IGF-I levels in the healthy female population to date have been based largely on white women. These studies may not be generalizable to other ethnic groups. We found that on average, black women had significantly higher IGF-I levels than white women, and that they did not show the characteristic suppression of IGF-I associated with oral contraceptive use. Black women who used oral contraceptives actually had higher mean IGF-I levels than black women who were not on oral contraceptives. In white women, IGF-I levels were inversely correlated with the average estrogen dose contained in oral contraceptives, but were not related to progesterone content. All oral contraceptives used by the women in the present study contained 17-α ethinyl estradiol.

In girls, the highest levels of circulating IGF-I are observed between the ages of 11 and 13 (25). A study of 136 girls between the ages of 9 to 17 reported that African-American girls had higher free IGF-I concentrations and higher ratios of free to total IGF-I in serum than white girls. The African-American girls were older and more sexually mature. After controlling for sexual maturation and fat mass, the adjusted levels of total IGF-I, bound IGF-I, and IGF-BP3 in the white girls were significantly higher than in the black girls (26). After puberty, IGF-I levels decline continually with age, and the decrease is pronounced after menopause in white women (27). It appears that the effects of exogenous estrogen on serum IGF-I depend on the route of administration. In general, endogenous and transdermal estrogens increase IGF-I levels, whereas oral estrogens decrease the levels. For example, hormone replacement therapy in the form of transdermal estradiol resulted in a slight increase in serum IGF-I; but the administration of oral estradiol to postmenopausal women resulted in a significant fall in the mean IGF-I level in an (ethnically undefined) Australian population (17). The finding was confirmed in an Italian study (28), but to our knowledge no studies have investigated the effect of transdermal estrogen in postmenopausal black women. We observed a similar effect on IGF-I levels from oral estrogen when oral contraceptives were taken by premenopausal white women (15,16). Estrogen causes distinct, route-dependent effects on the somatotrophic axis. The dissociation of the GH/IGF-I axis by the oral route is likely to arise from impaired hepatic IGF-I production which causes increased GH secretion through reduced feedback inhibition (29).

Both oral contraceptive use and high levels of plasma IGF-I are believed to increase the risk for breast cancer in premenopausal women, and it is therefore important to elucidate the relationships between the two. Because oral contraceptives decrease IGF-I levels in most young women, and because IGF-I levels appear to be positively correlated with breast cancer risk, we might expect oral contraceptive use to be associated with a reduced risk of premenopausal breast cancer. However, it is possible that the risk is not equal in all women, and the hazard may be restricted to women who are genetically predisposed. In our study, plasma levels of IGF-I were associated with genotype for three candidate genes (IGF1, CYP3A4, and AIB1). Among carriers of two or more risk alleles, the average level of IGF-I was actually higher if they took oral contraceptives than if they did not (Fig. 5). The ethnic differences in the IGF-I levels among users of oral contraceptives could be explained to a large degree by population genetic differences in the three candidate genes.

The three genes were chosen on the basis of previous epidemiologic studies and on their known biologic activities. We studied the IGF1 polymorphism because of a prior report that it was related to circulating IGF-I level. Rosen and colleagues reported lower mean IGF-I levels in men and women who were homozygous for the 19-repeat allele (22) compared to heterozygous carriers and noncarriers of the 19-repeat allele. However, a subsequent report
failed to find a relationship between this polymorphism and bone mineral density (30), but no IGF-I levels were measured in that study (31). In the present study, the effect of the IGF1 genotype on IGF-I levels was restricted to oral contraceptive users. Oral contraceptive users who lacked a copy of the 19-repeat allele had significantly higher mean levels of IGF-I than women with at least one copy of the allele. This interaction between oral contraceptives and the IGF1 polymorphism was seen in women of all ethnic backgrounds. The IGF1 polymorphism is located in the promoter region of the IGF1 gene (22). This microsatellite polymorphism is located 1 kb upstream of the IGF1 transcription start site (32,33) and contains specific regulatory elements (34). In vitro studies of rat osteoblasts have shown a 100- to 300-fold difference in suppressing the stimulatory effect of prostaglandin E2 in response to 17-α and 17-β estradiol when they bind to the estrogen response elements within the IGF1 promoter region (34). The difference in IGF-I levels among oral contraceptive users with and without the 19-repeat allele suggests that this allele may be associated with a conformational change in the region of the IGF1 promoter, possibly involving the estrogen response element.

We chose to study CYP3A4 because it codes for one of the key enzymes involved in the metabolism of the 17-α ethinyl estradiol, which is the estrogen contained in oral contraceptives (35,36). CYP3A4 is the member of the cytochrome P450 family which is most abundantly expressed in the liver (37). An in vivo study showed that oral contraceptive steroids inhibited CYP3A4 activity (38). We found that IGF-I levels were higher among oral contraceptive users with the CYP3A4 variant allele and a dose-response relationship was present. To our knowledge the effect of different CYP3A4 variant alleles on ethinyl estradiol metabolism has not been studied. Based on an in vitro promoter assay, the CYP3A4 variant allele was found to increase transcriptional activity of the gene (39). The variant allele of CYP3A4 is much more common among black women than among women of other ethnic backgrounds. It is not clear how the association between the CYP3A4 variant allele and increased IGF-I level is mediated, but our observations suggest that this may be mediated by the metabolism of the synthetic ethinyl estradiol.

The third gene that was associated with circulating IGF-I levels among oral contraceptive users was AIB1. We chose to study AIB1 because it is a coactivator of estrogen signaling, because of its reported involvement in breast cancer, and because of its relationship with bone mineral density. AIB1 codes for a nuclear receptor protein which interacts with the estrogen receptor in a ligand-dependent fashion (40). Transfection of AIB1 in a model system resulted in enhancement of estrogen-dependent tran-

FIG. 6. Mean IGF-I levels in relation to age and cumulative number of variant alleles among oral contraceptive users.
the cumulative number of variant genes was taken among women, and 4% of Indian-Pakistani women. When 65% of black women had two or more variant alleles, three genes between the four ethnic groups. Over frequencies of the individual genotypes of each the genes. We found large differences in the observed number of genetic variants of the three candidate genes, which appears to correlate with the cumulative risk of breast cancer during periods of oral contraceptive use. This increase may be due to the cumulative number of genetic variants of the three candidate genes. We found large differences in the observed frequencies of the individual genotypes of each the three genes between the four ethnic groups. Over 65% of black women had two or more variant alleles, compared with only 3% of white women, 5% of Asian women, and 4% of Indian-Pakistani women. When the cumulative number of variant genes was taken into consideration, the effect of ethnic background was not a significant determinant of IGF-I levels among oral contraceptive users. It is therefore likely that much of the variation in IGF-I levels in users of oral contraceptives in different ethnic groups is attributable to the genotypes at these three loci.

Our finding of higher overall IGF-I levels among black women than among women of other ethnic backgrounds may explain to some degree why premenopausal breast cancer is more common among black than white women (1–3). IGF-I levels were particularly high among black women who used oral contraceptives, and the role of oral contraceptives in contributing to breast cancer rates among black women deserves further study. Our data are cross-sectional and repeated measures were not taken on the same individuals. It will be important in future studies to measure IGF-I levels before and after starting oral contraceptives in order to confirm the findings reported here.

ACKNOWLEDGMENTS

Supported by the Canadian Breast Cancer Research Initiative Streams of Excellence Program and MFR (the Swedish Medical Research Council). We also thank Dr. Phillipa Holowaty, Elizabeth Hoodfar, Kelly Metcalf, Jalil Hakimi, Caitlin Springate, Danielle Hanna, Minnie Ho, Patricia de los Rios, and Amy Finch for their contributions to this research.

REFERENCES

