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Abstract Metabolic scaling, the inverse correlation of metabolic rates to body mass, has been 
appreciated for more than 80 years. Studies of metabolic scaling have largely been restricted to 
mathematical modeling of caloric intake and oxygen consumption, and mostly rely on computational 
modeling. The possibility that other metabolic processes scale with body size has not been compre-
hensively studied. To address this gap in knowledge, we employed a systems approach including 
transcriptomics, proteomics, and measurement of in vitro and in vivo metabolic fluxes. Gene expres-
sion in livers of five species spanning a 30,000-fold range in mass revealed differential expression 
according to body mass of genes related to cytosolic and mitochondrial metabolic processes, and 
to detoxication of oxidative damage. To determine whether flux through key metabolic pathways 
is ordered inversely to body size, we applied stable isotope tracer methodology to study multiple 
cellular compartments, tissues, and species. Comparing C57BL/6 J mice with Sprague-Dawley rats, 
we demonstrate that while ordering of metabolic fluxes is not observed in in vitro cell-autonomous 
settings, it is present in liver slices and in vivo. Together, these data reveal that metabolic scaling 
extends beyond oxygen consumption to other aspects of metabolism, and is regulated at the level 
of gene and protein expression, enzyme activity, and substrate supply.

Editor's evaluation
Key metabolic processes have been shown to scale inversely with the body mass of different 
animals. This study provides direct evidence for metabolic scaling of key metabolic fluxes in the 
livers of mice and rats, as well as species-specific differences in the transcription and expression 
of enzymes involved in energy metabolism that could contribute to metabolic scaling. The finding 
suggests that metabolic scaling likely reflects multiple levels of regulation and have broad implica-
tions for studying animal metabolism and physiology.

Introduction
In 1932, Max Kleiber published a seminal study (Kleiber, 1932), integrating prior reports demon-
strating a phenomenon that came to be termed ‘Kleiber’s law,’ or the principle of metabolic scaling. 
Metabolic scaling refers to the phenomenon that the metabolic processes in many animals, if not all, 
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scale inversely to three-quarters of their body mass (West et al., 1997). In simpler terms, there is a 
reduction in metabolic rate as body size increases. For example, an elephant is 25 million times larger 
than a fruit fly, yet its energy expenditure is only 20 thousand times higher; thus, from the fruit fly to 
elephant, the metabolic rate per gram of body weight scales down 1250 times. While there is exper-
imental evidence for metabolic scaling from bacteria to large mammals, data have been generated 
almost exclusively from observations of caloric intake and oxygen consumption, with gene and protein 
expression, and substrate fluxes almost entirely unexplored.

The concept of hierarchical regulation, whereby gene expression initiates the cascade that allows 
for the flux of metabolic pathways (Rossell et al., 2005; Suarez and Moyes, 2012), provides a systems 
framework to begin to understand scaling. Beginning at the transcriptional level, we studied liver 
gene expression across five species: mice (Mus musculus), rats (Rattus norvegicus), monkeys (Macaca 
mulatta), humans (Homo sapiens), and cattle (bos taurus), species with a 30,000-fold range of average 
body weight in adults (from 30 g in mice, to 900 kg in cattle). Numerous metabolic genes related 
to glycolysis, gluconeogenesis, fatty acid metabolism, oxygen consumption, electron transport, and 
redox function, and detoxification of oxidative damage, were expressed at levels inverse to body size. 
Further analysis of liver proteomics revealed that approximately half of the genes in the liver that were 
expressed inversely proportionally to body size at the transcriptional level, were also expressed at 
levels inversely proportional to body size at the level of protein expression. To determine if gene and 
protein expression would correlate with enzyme activity and metabolic flux, we performed a compre-
hensive assessment of liver metabolism in vivo and in vitro using modified Positional Isotopomer NMR 
Tracer Analysis (PINTA) (Perry et al., 2017b) and stable isotope-derived turnover (Perry et al., 2015) 
methods. Our analysis shows that rats exhibit lower metabolic rates when compared to mice in and ex 
vivo; however, no significant differences were observed when we isolated hepatocytes and cultured 
them in vitro under identical conditions. Taken together, this study demonstrates the variation of 
metabolic fluxes according to body size, extending prior studies of metabolic scaling, and provides 
unique insight into the regulation of metabolic flux across species.

Figure 1. Genes that follow the pattern of allometric scaling are most strongly related to metabolism. (A) KEGG Pathway enrichment of all genes that 
are expressed with an inverse correlation to body mass, and (B) clustering heatmap of scaled genes that belong to one of six Reactome metabolic 
superpathways. All samples were obtained from males. For clarity, the human gene (and style of writing human gene names) are shown. RAPGEF, rap 
guanine nucleotide exchange factor; ELOVL2, Elongation of Very Long Chain Fatty Acids-Like 2; MDH1, malate dehydrogenase 1; LIPE, hormone-
sensitive lipase E; PANK1, pantothenate kinase 1; PGK1, phosphoglycerate kinase 1; SDC4, syndecan 4; ALDH7A1, aldehyde dehydrogenase 7 family 
member A1; GPX1, glutathione peroxidase 1; GLUL, glutamate-ammonia ligase; SORD, sorbitol dehydrogenase; TDO2, tryptophan 2,3-dioxygenase; 
DLST, dihydrolipoamide S-succinyltransferase; ACACA, acetyl-CoA carboxylase-alpha; ADIPOR1, adiponectin receptor-1; GPT, glutamic-pyruvate 
transaminase; HS3ST3B1, heparan sulfate-glucosamine 3-sulfotransferase 3B1; PSMD5, proteasome 26 S subunit, non-ATPase-5; COX8A, cytochrome c 
oxidase subunit 8 A; NDUFA9, NADH:ubiquinone oxidoreductase subunit A9.
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Results
Genes within the liver that are expressed inversely proportional to 
body weight are predominantly metabolic genes
We examined gene expression in livers from mice (Mus musculus), rats (Rattus norvegicus), monkeys 
(Macaca mulatta), humans (Homo sapiens), and cattle (Bos taurus). Using recent advances in high 
throughput mRNA sequencing and bioinformatics tools that allow for intra-species data prepro-
cessing (Bray et al., 2016; Conesa et al., 2016; Ritchie et al., 2015), we searched for a set of genes 
in the liver, the metabolic hub of mammals, whose expression correlates inversely with body mass. 
After normalizing for differences in transcript length and abundance across species, we filtered out 
genes that followed the pattern of mouse >rat > monkey >human > cow. The genes that met these 
criteria were predominantly related to metabolic pathways, including pyruvate metabolism, amino 
acid metabolism, and glucose metabolism (Figure 1A). Genes from this list were further restricted to 
genes involved in amino acid, carbohydrate, energy, lipid, vitamin, and TCA cycle metabolism, and 

Figure 2. Metabolic genes that are expressed inversely proportionally to body size implicate key pathways in 
substrate and nucleotide supply, glucose and fatty acid flux, oxygen consumption, and detoxification pathways. 
mRNA expression of key regulatory genes related to metabolite detoxication (A), intertissue metabolism (B), fatty 
acid metabolism (C), glucose metabolism (D), tricarboxylic acid (TCA) cycle, NAD metabolism (F), and the electron 
transport chain (G) in mice, rats, monkeys, humans, and cattle. Bars denote expression levels by an organism, 
following the same order shown in the cartoon of organisms. Expression was normalized to counts per million 
and was then further normalized for sequencing depth and transcript length. All genes met an adjusted p-value 
threshold of 0.01 using a one-way ANOVA with the Bonferroni correction for multiple comparisons. All samples 
were obtained from males (n=2 replicates per species). ALDH7A1, aldehyde dehydrogenase 7 family member 
A1; GPX1, glutathione peroxidase 1; GLUL, glutamate-ammonia ligase; GPT, glutamic-pyruvate transaminase; 
ADIPOR1, adiponectin receptor-1; LIPE, hormone-sensitive lipase E; PANK1, pantothenate kinase 1; ACACA, 
acetyl-CoA carboxylase-alpha; ELOVL2, Elongation of Very Long Chain Fatty Acids-Like 2; SORD, sorbitol 
dehydrogenase; PGK1, phosphoglycerate kinase 1; DLST, dihydrolipoamide S-succinyltransferase; TDO2, 
tryptophan 2,3-dioxygenase; MDH1, malate dehydrogenase 1; NDUFA9, NADH:ubiquinone oxidoreductase 
subunit A9; COX8A, cytochrome c oxidase subunit 8 A.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2 and Figure 2—figure supplement 1.

Figure supplement 1. Liver metabolic genes, but not structural genes, are expressed inversely proportionally to 
body size in rodents.
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demonstrated a range of degrees of inverse correlation with body mass, with only TCA cycle genes 
clustering together (Figure 1B).

Genes encoding enzymes involved in hepatic metabolism are expressed 
inversely proportionally to body mass and involve metabolite 
detoxification, intertissue metabolism, substrate metabolism, electron 
transport, and NAD metabolism
In order to further understand the functional aspects of the metabolic genes that are expressed 
inversely proportionally to body size, the gene list from Figure 1B was categorized into several func-
tional categories, converging on optimizing energy provision, oxidative metabolism, and damage 
control from oxidative stress and ammonia (Figure 2). Furthermore, to understand whether or not 
certain genes that are expressed inversely proportionally to body size involved anabolic or cata-
bolic processes, they were further classified by their properties to be energy suppliers or consumers. 
Eleven of sixteen critical metabolic enzymes that scaled required molecular oxygen, NAD+/NADH, 
or ATP/ADP for function, possibly indicating exquisite regulation of energy-consuming processes at 
the individual gene level. Genes involved in the detoxication of lipid peroxidation-derived aldehydes 
(ALDH7A1), hydrogen peroxide (GPX1), and ammonia (GLUL) suggest scaling of damage control 
mechanisms that are associated with increased oxidative metabolism across species (Figure 2A). The 
inverse correlation between body size and expression of genes that are associated with interorgan 
crosstalk is consistent with scaling in vivo which would not be expected in plated cells. For example, 
the differentially expressed genes include GPT1, which is involved in recycling skeletal muscle-derived 
alanine back to liver-derived glucose (Felig and Wahren, 1971; Petersen et  al., 2019), and the 
adiponectin receptor (ADIPOR1), which binds an adipose tissue-derived hormone that regulates 
gluconeogenesis and fatty acid oxidation (Lin and Accili, 2011; Li et al., 2020 Figure 2B). Genes 
involved in fatty acid metabolism included the rate-limiting steps of the synthesis of CoA (PANK1), 
of de novo fatty acid synthesis (ACACA), and of fatty acid elongation (ELOVL2), in addition to the 
oxidation of diacylglycerols (LIPE) (Figure 2C). NAD and ATP-dependent genes involved in glycolysis 
(PDK1), fructose/glucose metabolism (SORD1), and DLST of the TCA cycle also correlated inversely 
with body size (Figure 2D–E). Differentially regulated genes also couple oxygen consumption to NAD 
provision (MDH1, TDO2), and are involved with the function of the electron transport chain (subunits 
of complex I, NDUFA9, and complex IV, COX8A, which catalyzes oxygen accepting the final electrons 
of the electron transport chain) (Figure 2F–G).

To examine the possibility that the inverse correlation between body mass and gene expression 
observed in the transcriptomics analysis could be a consequence of global alterations in mRNA (for 
example, as a consequence of alterations in RNA turnover rates), we performed targeted quantitative 
polymerase chain reaction (qPCR), measuring in liver tissue abundance of mRNA encoding several 
enzymes that were found to scale in the five-species transcriptomics analysis, relative to the common 
housekeeping gene β-actin (Actb). We found that all three enzymes (Glul, Lipe, and Dlst) scaled rela-
tive to Actb (Figure 2—figure supplement 1A–C), whereas structural genes (collagenase 3 [Mmp3] 
and Larp1) did not (Figure 2—figure supplement 1D–E), indicating that the differences in metabolic 
gene expression observed across species is likely not a result of global changes in RNA levels.

In addition to transcriptomics, we assessed proteomics data to evaluate the protein levels corre-
sponding to the genes that were found to be expressed inversely proportionally to body size at the 
level of mRNA expression. Our proteomics data were limited to mouse, rat, and human, as all the 
open-source proteomic databases that we identified lacked data from monkey or cow. An important 
limitation for finding such data is that even with careful post-processing, we cannot combine data 
from different studies, because differences in methods of tissue preparation may influence results. 
Therefore, we were limited to a single experiment that had generated proteomics data for mouse, 
rat, and human using the same experimental procedures. The dataset contained protein expression 
corresponding to eight of the twenty genes identified to scale in our transcriptomics data analysis. 
Of these, three (GLUL, GPX1, and MDH1) were found to follow a reverse correlation with body size 
(Figure 3A–C). Interestingly, one of these proteins (GLUL) was also found to be expressed inversely 
proportionally to body size in the left ventricle of the heart (Figure 3D). Additionally, we measured 
liver transaminase concentrations and observed that both alanine aminotransferase (ALT) and aspar-
tate aminotransferase (AST) exhibited lower concentrations in humans as compared to rats and rats 
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Figure 3. Proteomics reveals a negative correlation between body size and the expression of some liver proteins. Liver (A) glutamate-ammonia ligase 
(GLUL), (B) glutathione peroxidase 1 (GPX1), and (C) malate dehydrogenase 1 (MDH1) protein expression. (D) GLUL protein expression in the left 
ventricle of the heart. The proteomics analysis was performed on n=1 per species, so statistical comparisons were not possible. (E) Plasma alanine 
aminotransferase (ALT) and (F) aspartate aminotransferase (AST) concentrations (for both transaminases, n=5 per species). *p<0.05, ***p<0.001, 
****p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3 and Figure 3—figure supplement 1.

Figure supplement 1. Liver metabolic enzyme activity is inversely proportional to body size.
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as compared to mice (Figure  3E–F), consistent with scaling at the level of protein expression as 
well as mRNA expression. Finally, we utilized established enzymatic assays to measure the activity 
of peroxidase and pyruvate carboxylase in the livers of mice and rats. 30–40% lower activity of each 
enzyme per mg tissue was observed in rats as compared to mice (Figure  3—figure supplement 
1A–B), suggesting scaling at the level of metabolic enzyme activity.

Metabolic rates of mouse vs. rat hepatocytes in vitro are not 
significantly different
Considering prior data reporting higher oxygen consumption per unit body mass in smaller as 
compared to larger animals (Gilman et al., 2013; Brody, 1945; Urbina and Glover, 2013), we first 
asked whether these differences were cell-intrinsic, or whether in vivo or hepatocyte-extrinsic signals 
are required. We incubated plated hepatocytes in [3-13C] lactate and first validated that the data met 
the assumptions of PINTA, including reaching steady-state in [13C] lactate and glucose enrichment, 
and producing glucose at a linear rate throughout the 6 hr incubation (Figure 4—figure supplement 
1A–C). Consistent with the possibility that hepatocyte-extrinsic signals are primarily responsible for 
metabolic scaling, when we used PINTA to assess cytosolic and mitochondrial fluxes, we observed no 
significant differences between species in any of the fluxes measured in plated hepatocytes: glucose 
production, VPC, VCS, the contribution of glucose or fatty acids to the tricarboxylic acid (TCA) cycle, 
or lipolysis (Figure 4A–H, Figure 4—figure supplement 1D–F). Similarly, a mitochondrial stress test 
in plated hepatocytes revealed no difference in any parameter: neither basal mitochondrial and non-
mitochondrial respiration, ATP production, maximal (uncoupled) respiration, spare respiratory capacity, 
nor proton leak differed between plated hepatocytes from mice and rats (Figure 4I). Previous studies 
have demonstrated scaling in vitro in cell suspensions only when analyzed immediately after hepato-
cyte isolation (Porter and Brand, 1995), and have suggested that the phenomenon of scaling gradu-
ally disappears around 24 hr post removal (Brown et al., 2007), similar to the conditions in which we 
performed these studies. Most prior in vitro studies have also demonstrated an absence of scaling, in 
contrast to in vivo (Glazier, 2015), and we extend these results to gluconeogenic and lipolytic fluxes 
in hepatocytes, glucose production in liver slices, and multimodal flux analysis in vivo.

Glucose production per gram tissue is higher ex vivo in liver slices from 
mice than in rats
Next, considering that hepatocytes comprise approximately 70–80% of liver mass and that their culture 
in vitro does not replicate in vivo conditions (Krebs, 1950), we asked whether glucose production 
would be different between mice and rats in slices of liver. Indeed, we found that liver glucose produc-
tion per gram liver mass was threefold greater in mouse liver slices as compared to rats (Figure 5A–B), 
suggesting that hepatocyte-extrinsic signals (for example, from other liver cell types) are involved in 
liver metabolic scaling.

Metabolic rates in multiple tissue types are higher in vivo in mice 
relative to rats
We utilized multimodal stable isotope metabolic flux analysis to compare rats and mice with respect 
to a panel of metabolic fluxes (Figure 6A). First, we validated tracer assumptions in vivo, including the 
metabolic and isotopic steady state in plasma and negligible liver glycogen concentrations, although 
in the recently fed state, hepatic glycogenolysis was higher in mice than that in rats (Figure  6—
figure supplement 1A–G). Using PINTA, we found that both endogenous glucose production and 
gluconeogenesis from pyruvate (VPC) per gram liver were more than twofold higher in mice than rats 
(Figure  6B–C), although the fractional contribution of pyruvate to gluconeogenesis did not differ 
between mice and rats (Figure 6—figure supplement 1H). Mitochondrial oxidation scaled similarly, 
increasing threefold in mice as compared to rats studied under the same conditions, due to increases 
in both glucose oxidation (pyruvate dehydrogenase flux, VPDH) and fatty acid oxidation (Figure 6D–F), 
associated with an increase in the ratio of pyruvate carboxylase anaplerosis to citrate synthase flux 
(VPC/VCS) without any difference in the fraction of VCS flux fueled by glucose through PDH (Figure 6—
figure supplement 1I–J). While we did not have the capacity to measure liver fluxes in larger mammals 
in the current study, endogenous glucose production, VPC, and VCS previously measured using PINTA 
were 50–60% lower in overnight fasted humans than in rats (Petersen et al., 2019), assuming a liver 
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size of 1500 g in humans. These differences in metabolic fluxes according to body size applied not 
only to rodent liver metabolism but also to adipose tissue metabolism: whole-body fatty acid turn-
over, reflecting lipolysis, was 2.5-fold higher in mice than in rats (Figure 6G). No sex differences were 
observed in any of the measured fluxes (Figure 6—figure supplement 1K–P). Taken together, these 

Figure 4. Metabolic fluxes are not different between mouse and rat hepatocytes in vitro. (A) Study design. This figure was made using Biorender.com. 
(B) Tracer labeling strategy. (C) Glucose production. (D) Gluconeogenesis from pyruvate (pyruvate carboxylase flux, VPC). (E) Citrate synthase flux (VCS), 
i.e., mitochondrial oxidation. (F) Pyruvate dehydrogenase flux (VPDH), i.e., the contribution of glucose via glycolysis to total mitochondrial oxidation. 
(G) Non-esterified fatty acid (NEFA) production. (H) The contribution of fatty acid oxidation to citrate synthase flux. (I) Oxygen consumption rate (OCR) 
during a mitochondrial stress test. In all panels, hepatocytes from wild-type males were studied, and groups were compared using the two-tailed 
unpaired Student’s t-test. No significant differences were observed. In all panels, the mean ± SEM. of six biological replicates (averaged from three 
technical replicates per biological replicate) is shown.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for Figure 4 and Figure 4—figure supplement 1.

Figure supplement 1. Validation of tracer assumptions and flux ratios in the in vitro hepatocyte PINTA flux studies.

https://doi.org/10.7554/eLife.78335
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data emphasize the inadequacy of common in vitro methods as a readout of in vivo metabolism: 
whereas in vivo mitochondrial oxidation (TCA cycle flux) was threefold higher in mice than in rats, in 
vitro measurements of oxygen consumption throughout a mitochondrial stress test, TCA cycle flux, 
and glucose production were not different between the species (Figure 4).

Classical clustering defined species-specific clusters based on in vivo 
metabolic fluxes but not in vitro fluxes
A clustering dendrogram was applied to our in vitro flux data and showed no distinct clustering 
between species (Figure 7A–B). However, the in vivo metabolic flux data led to distinct clustering of 
rats and mice (Figure 7C), providing a classical clustering-based objective analysis of in vitro versus in 
vivo metabolic flux.

Discussion
Oxygen consumption has been shown to scale inversely with body mass in species ranging in mass 
across 20 orders of magnitude, from 10–14 to 106 grams (Ernest et al., 2003; Gillooly et al., 2001; 
Kleiber, 1932; Makarieva et al., 2005a; Makarieva et al., 2008; Savage et al., 2004; West et al., 
2002). This phenomenon has been most studied in mammals, but is highly conserved, having also 
been shown to occur in prokaryotes (Fenchel and Finlay, 1983; Makarieva et al., 2005a; Makarieva 
et al., 2005a; Makarieva et al., 2008; Moses et al., 2008), plants (Makarieva et al., 2005b; Mori 
et al., 2010; Reich et al., 2006), insects (Chown et al., 2007; Maino and Kearney, 2014; Makarieva 
et al., 2005a), fish (Clarke and Johnston, 1999; Gjoni et al., 2020; Rubalcaba et al., 2020), and birds 
(Glazier, 2008; Hudson et al., 2013; Makarieva et al., 2005b). However, a major limitation of prior 
studies in this field has been that observations have been largely limited to oxygen consumption and 
caloric intake, leaving other metabolic processes unexplored. This study sought to address this issue 
by examining the generalizability of the inverse relationship between body mass and metabolic rates, 
using both experimental measurements and previously assembled databases that have not previously 
been employed in this context.
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Figure 5. Glucose production scales ex vivo in liver slices. (A) Study design. This figure was made using Biorender.com. (B) Glucose production. Groups 
were compared by the two-tailed unpaired Student’s t-test. Liver slices from male, wild-type animals (n=4 mice and 2 rats, three technical replicates per 
biological replicate) were studied.

The online version of this article includes the following source data for figure 5:

Source data 1. Source data for Figure 5.
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It is important to note that the metabolic processes which we observed to be higher in mice 
as compared to rats did not necessarily adhere quantitatively to the classic metabolic scaling rela-
tionship, with metabolic rates proportional to three-quarters of body mass. This speaks to the idea 
that the scaling relationship is multidimensional: it is entirely conceivable that whole-body oxygen 
consumption could be proportional to three-quarters of body mass, while other metabolic processes 
may exhibit a different scaling relationship. Further studies across species beyond rodents will be 
required to address this question.

The possibility that gene expression, as reflected by mRNA abundance, may also scale with body 
mass has not been previously addressed. We observed that the expression of key genes in glycol-
ysis, gluconeogenesis, fatty acid metabolism, NAD synthesis and transport, mitochondrial oxygen 
consumption, and protection from oxidative damage scale with body mass. More compelling, 
however, is the observation that those genes for which an inverse relationship of expression with body 
mass is observed, are not randomly distributed across the genome. Rather, the collection of genes 
whose expression is inversely correlated with body mass is enriched for genes related to metabolic 
processes, and whose corresponding proteins’ enzymatic action are constrained by the supply of 
substrate, NAD, ATP, or oxygen.

The notion that body mass is a variable related to the level of expression of certain genes has 
not previously been considered as an aspect of metabolic scaling. However, it should be noted that 
metabolic scaling cannot fully be explained at the transcriptional level, because many rate-limiting 
enzymes in the metabolic processes measured in vivo did not scale at the transcriptional level, and 
only approximately half of genes that scaled at the level of mRNA scaled at the level of protein. Thus, 
it is likely that both transcriptional and other mechanisms – such as enzyme activity – are responsible 

Figure 6. Analysis of systemic metabolic fluxes suggests in vivo metabolic scaling in mice vs. rats. (A) Study design. (B) Endogenous glucose 
production. (C) Gluconeogenesis from pyruvate (VPC). (D) VCS, i.e., mitochondrial oxidation. (E) VPDH, i.e., the contribution of glucose via glycolysis to total 
mitochondrial oxidation. (F) Palmitate (fatty acid) turnover. (G) The contribution of fatty acid oxidation to citrate synthase flux. In all panels, groups were 
compared using the two-tailed unpaired Student’s t-test. Male rodents (n=4 mice and 6 rats) were studied.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data for Figure 6 and Figure 6—figure supplement 1.

Figure supplement 1. Validation of tracer assumptions, flux ratios, and lack of sex differences in the in vivo flux studies.

https://doi.org/10.7554/eLife.78335
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for variations in metabolic flux per unit mass, inversely proportionally to body size. Additionally, the 
currently available data do not allow us to assess whether the expression of certain isoforms of key 
metabolic enzymes scales differentially across species.

It is also informative to contrast the lack of an inverse relationship between body size and meta-
bolic fluxes per tissue weight (oxygen consumption, mitochondrial oxidation, lipolysis, and glucose 
production in hepatocytes) measured in the in vitro setting, to our findings in vivo (where all fluxes 
proceeded faster in mice than in rats). This emphasizes the need to employ tracer methods in vivo to 
generate a comprehensive picture of differences in metabolic fluxes between species.

Our findings emphasize that measurement of oxygen consumption in vitro may fail to detect any 
influence of scaling processes present in vivo. Glucose production was threefold higher in mouse liver 
slices relative to rat liver slices, but did not significantly differ between plated hepatocytes from mice 
and rats. Future studies using metabolic flux analysis may have the further capacity to generate new 
insights as to the scope and mechanism of metabolic scaling (Wiechert, 2001). For example, our 
data do not allow us to ascertain whether differences in oxygen consumption orchestrate metabolic 
alterations, as has been suggested in the setting of cancer cells (Nakazawa et al., 2016), or metabolic 
alterations require changes in oxygen consumption. Additionally, there are limitations to the fact that 
metabolic flux studies were performed only in the two arguably most related species included in the 
transcriptomics analysis (with monkey and human perhaps being similarly related). Our laboratory 
does not have the capacity to perform flux analysis in larger or smaller species, but we fully recognize 
that widening our scope beyond the 10-fold range in body size between mice and rats may yield 

Figure 7. Comparison of in vitro and in vivo results. (A) Study workflow. (B) Clustering heatmap demonstrating the absence of metabolic differences 
in vitro. (C) Clustering heatmap demonstrating metabolic differences between mice and rats in vivo. In panels (B) and (C), mouse and rat color legends 
correspond to the species label attached to the dendrogram on the leftmost of each graph. Vpc = pyruvate carboxylase flux, Vcs = citrate synthase flux, 
Vpdh = pyruvate dehydrogenase flux, Vfao = fatty acid oxidation, NEFA = non-esterified fatty acid concentrations. All data presented in Figures 3 and 5 
were utilized in the classical clustering analysis and are included in this figure.
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different results. For example, it is possible that the mathematical relationship between body size and 
metabolic flux may reach a threshold of body size, after which this relationship may change. However, 
experimental and computational data suggest that the metabolic scaling relationship with regard to 
oxygen consumption holds at least from birds to cattle, and that a similar – but not identical – scaling 
relationship exists in plants (Niklas and Kutschera, 2015), so we posit that it is likely that if such a 
threshold exists, it occurs at a body size orders of magnitude larger than the rodents included in our 
study.

Taken together, the findings of this study show that the phenomenon of metabolic scaling extends 
to processes beyond oxygen consumption and caloric intake, and is bookended by scaling not only 
of gene and protein expression, but also of enzyme activity and cytosolic and mitochondrial fluxes in 
vivo. It may be that if one were to alter the activity of an enzyme in a larger species using a mutation 
to increase it to the level of activity of the same enzyme in a smaller species, that the phenomenon 
of metabolic scaling might disappear. Future work will be required to examine this possibility. The 
mechanisms underlying the phenomenon of metabolic scaling remain obscure, and deserve investi-
gation as a fundamental question in biology (Hatton et al., 2019; Kolokotrones et al., 2010; White 
and Seymour, 2003). Our data support the notion that cell-extrinsic regulatory factors are involved.

Ideas and speculation
These data have implications for metabolic regulation during hibernation, in which metabolic rates are 
reproducibly and markedly but reversibly suppressed (Jansen et al., 2021; Jansen et al., 2019; Tøien 
et al., 2011). Metabolic scaling phenomena may also have medical relevance. Recent reports provide 
data consistent with ‘Peto’s paradox’ by showing that cancer is not more prevalent in larger, long-lived 
organisms than smaller ones (Makarieva et al., 2005a; Vincze et al., 2022), despite the fact that 
more cells are at risk for transformation, and over longer periods of time. Metabolic scaling provides 
a potential explanation: the slower rates of metabolic processes (including oxygen consumption) and 
reduced oxidative damage in larger animals imply lower rates of proliferation and carcinogenic DNA 
damage, so that while more cells are at risk in large animals, carcinogenesis proceeds more rapidly in 
smaller ones.

Metabolic scaling phenomena that lead to different rates of metabolic fluxes according to organism 
size deserve consideration in the context of murine models of human diseases. These differences may 
contribute to the faster rate of aging and shorter life expectancy of rodents as compared to humans. A 
separate example concerns cancer models, where species-specific different rates of in vivo metabolic 
fluxes might be relevant to carcinogenesis or efficacy of treatments.

Materials and methods
All animal studies were approved by the Yale University Institutional Animal Care and Use Committee 
(protocol 2019–20290). Source data are found in Supplementary file 1.

Rodents
Healthy male (or, when designated, female), wild-type C57BL/6 J mice (catalog number 000664) and 
Sprague-Dawley rats (strain code 400) were obtained at 8 weeks of age from Jackson Laboratories and 
Charles River Laboratories, respectively, and given ad lib access to regular chow and water. Rodents 
underwent surgery under isoflurane anesthesia to place catheters in the jugular vein (mice) and in 
both the jugular vein and carotid artery, with the tip of the arterial catheter advanced into the right 
atrium of the heart (rats). After a week of recovery and confirmation that the animals had regained 
their pre-surgical body weight and following a 24 hr fast, rodents underwent the in vivo tracer studies 
described below. Rodents used for hepatocyte studies were fed ad lib until isoflurane euthanasia and 
liver isolation as described in the in vitro studies below.

Human participants
Plasma samples were obtained, deidentified, from healthy, lean participants (all male, in order to 
maintain consistency with the rodent studies; age 26±3, body mass index 24.2 ± 0.8; ethnicity data 
not collected) in a Yale University IRB-approved (protocol 0108012609, NCT03738852, beginning 
11/7/2018) clinical study. Eligibility included age  >18  years and body mass index  >18.0, without 
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evidence of renal, thyroid, neurologic, or psychiatric dysfunction. Pre-defined outcomes were focused 
on the counterregulatory response to hypoglycemia, but baseline samples could be used in a deiden-
tified manner for other analyses. All volunteers provided informed consent to participate in the study, 
and for the data to be published. Data were collected at Yale University. Blood was obtained from a 
venous catheter in the left forearm, centrifuged, and stored at –80 °C to await further analysis. No 
harms were observed.

Gene expression analysis
All liver raw transcriptomics data were obtained from Array Express (Brazma et al., 2003) (https://doi.​
org/10.1093/nar/gkg091), and were all preprocessed using the same methods. Cattle, monkey, and 
rat were obtained from E-MTAB-4550, mouse from E-MTAB-5166, and human from E-MTAB-6814. 
Two replicates from each species were used. Raw counts from each species were normalized to counts 
per million (CPM) and were then TMM-normalized to account for differences in sequencing depth as 
well as transcript length across species and scanners using the R package edgeR (Robinson et al., 
2010). All transcript homologs were converted to human gene names using ENSEMBL in the biomaRt 
R package (Durinck et al., 2009). For the analyses in Figure 5, genes were filtered to those that 
followed the allometric scaling pattern mouse > rat > monkey > human > cattle. This gene list was put 
into EnrichR and KEGG pathway enrichment analysis was performed (Kuleshov et al., 2016). Genes 
in this list that followed the scaling pattern were then filtered based on whether they met one of six 
Reactome metabolic superpathways related to the metabolism of amino acids, carbohydrates, energy, 
lipids, tricarboxylic acid cycle, and vitamin cofactors (Jassal et al., 2020). A clustering heatmap was 
performed on these genes using the Seaborn Python package (Waskom, 2021). Genes were plotted 
again upon this map using the Seaborn Python package. To assess for differences in gene expression 
in genes displayed on the metabolic map, a one-way ANOVA with a Bonferroni correction for multiple 
comparisons (thus we used an adjusted p-value threshold for this test of 0.01, corresponding to an 
alpha level of 0.05, for significance) using the Python Scipy package (Virtanen et al., 2020).

Targeted gene expression analysis was performed by qPCR in our laboratory. mRNA was prepared 
using TRIzol (Life Technologies), purified using RNeasy mini-columns (Qiagen), and used to prepare 
cDNA. Quantitative real-time PCR was performed using SYBR Green (Applied Biosystems). Primers 
were obtained from IDT with the sequences shown in Supplementary file 1.

Protein expression analysis
All liver raw mass spectrometry proteomics data were obtained from the Proteomics Identifications 
Database (PRIDE). Mouse liver S9 fraction (PXD000733), rat liver S9 fraction (PXD000717), and human 
liver S9 fraction (PXD00734) raw data from a previously published study (Golizeh et al., 2015) were 
processed using MaxQuant software (version 2.1.4.0, Max-Planck Institute of Biochemistry, Munich, 
Germany), and proteins were identified with built-in Andromeda search engine based on Uniprot 
canonical protein collections for each species. The false discovery rate cut-offs were set to 1% on 
peptide, protein, and site decoy levels (default), thereby only allowing the high-quality identifica-
tions to pass. Raw intensities of all species showed similar distributions; therefore, data were normal-
ized across species by median centering, and we used the EggNOG database to match orthologous 
proteins between species. Perseus was used to perform data analysis. We looked exclusively at the 
twenty genes that were identified with the pattern mouse > rat > human in our transcriptomics data 
analysis. We used iBAQ intensity (intensity Based Absolute Quantification) as a proxy for protein 
expression because iBAQ intensities are the raw intensities divided by the number of theoretical 
peptides. Therefore, iBAQ values are proportional to the molar quantities of the proteins. Addition-
ally, the iBAQ algorithm can roughly estimate the relative abundance of proteins within a sample 
(Krey et al., 2018).

Because the primary goal of Golizeh et  al., 2015 , was to evaluate protein/peptide-level ion 
exchange fractionation and proteome coverage in liver microsomes versus S9 fractions, the protein 
data did not include protein abundance. Consequently, the dataset did not have replicates as two 
livers from each species were digested differently (one with trypsin and the second with pepsin). Since 
the different digestion methods could alter both protein identification and abundance, we evaluated 
only the data from the liver S9 fraction digested with trypsin. Since we had no replicates, statistical 
analysis could not be carried out.
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In vitro tracer analysis
Primary hepatocytes were isolated by the Yale Liver Center’s Cell Isolation Core, plated in a six-well 
plate (4.0 × 105 cells per well), and allowed to recover for 6 hr at 37 °C in substrate replete media 
(DMEM high glucose containing 10% FBS, 2% penicillin–streptomycin, 100  nM dexamethasone, 
10 mM HEPES, and 1 nM insulin). The attached cells were then washed once in PBS and incubated 
overnight in low-glucose culture media (DMEM low glucose containing 10% FBS, 2% penicillin–
streptomycin and 10 mM HEPES) for glucose production assays, or serum-free low-glucose culture 
medium (DMEM low glucose supplemented with 0.5% fatty acid free BSA, 2% penicillin–streptomycin, 
and 10 mM HEPES) for lipolysis assays. Following the overnight incubation, for glucose production 
assays, cells were washed twice with PBS and the media was replaced with 2 ml of substrate-replete 
glucose production medium (DMEM no-glucose base media containing 0.5% fatty acid-free BSA, 
20 mM sodium lactate (50% 3-13C), 2 mM sodium pyruvate, 2 mM GlutaMAX, MEM non-essential 
amino acids, and 10 mM HEPES). After a s6 hr incubation at 37 °C, the media was collected. Glucose 
concentrations were measured as described in the Biochemical Analysis section, and normalized to 
total protein measured using the bicinchoninic acid (BCA) assay. For lipolysis assays, cells were washed 
twice with PBS and the media was replaced with a fresh 2 ml volume of low-glucose culture medium. 
Cells were incubated at 37 °C for 6 hr, after which the media was collected and non-esterified fatty 
acid concentrations measured as described in the Biochemical Analysis section. The lipolysis rate 
was calculated after normalizing to total protein concentrations determined using the BCA assay. 
Flux ratios were measured using Equations 5-13 in Supplementary file 2, and back-calculated from 
net glucose production determined by measuring the glucose concentration in the media using the 
Sekisui Glucose Assay and assuming a linear rate of net glucose production during the 6 hr incubation.

Glucose production in liver slices
Mice and rats were fasted overnight (16 hr) and sacrificed. Rodent livers were extracted and washed in 
Krebs-Henseleit buffer (KHB) containing 550 mM sodium chloride, 23 mM potassium chloride, 6.3 mM 
calcium dichloride, 10 mM magnesium sulfate, and 6.9 mM sodium phosphate monobasic. Rodent 
livers were cored into smaller bits using the Alabama R&D tissue coring press. Cored livers were sliced 
to the thickness of 230 microns, the lowest setting on the Alabama R&D tissue slicer. Liver slices were 
transferred to 24-well plates containing gluconeogenesis media (DMEM without glucose but with 
20 mM lactate, 2 mM pyruvate, 10 mM HEPES, and 44 mM sodium bicarbonate) (400 ul for mouse 
livers and 500 ul for rat livers). The 24-well plates were placed in a tissue culture incubator (5% CO2) 
and shaken at 80 RPM for 6 hr. At the end of the 6 hr incubation, liver slices and media were collected. 
Liver slice weights were measured on a scale. Glucose concentrations from liver slice media were 
measured using the Sekisui Glucose Assay. Glucose concentrations were normalized to liver weights 
measured in milligrams and microliters of gluconeogenesis media.

In vitro oxygen consumption analysis
Primary hepatocytes were isolated from ad lib fed mice and rats by the Yale Liver Center’s Cell Isola-
tion core and plated recovery media as described previously Camporez et al., 2013 in 24-well XF24 
V7 cell culture plates coated with type I collagen. After 6–8 hr of recovery at 37 °C in 5% CO2, cells 
were washed twice with PBS and the media was replaced with low-glucose culture media (DMEM 
base medium containing 5 mM glucose, 2 mM glutamine, and non-essential amino acids, pH 7.4), in 
which cells were cultured overnight. The next morning, as we have previously described (Perry et al., 
2020), cells were washed twice with PBS and the media was replaced with 500 μL XF24 assay medium 
(DMEM base medium containing 5.5 mM glucose, 1 mM pyruvate, and 2 mM glutamine, pH 7.4) and 
equilibrated at 37 °C for 60 min. The Seahorse XFe 24 Analyzer was used to perform a mitochondrial 
stress test: after three baseline measurements of O2 consumption (10 min apart), oligomycin (an inhib-
itor of ATP synthase) was injected, and three subsequent measures of O2 consumption was performed 
using a 4 min mix/2 min wait/4 min measure protocol. Next, the uncoupler 2-[2-[4-(trifluoromethoxy)
phenyl]hydrazinylidene]-propanedinitrile (FCCP) was injected to dissipate the proton gradient, with 
three O2 consumption measurements taken as described above. Finally, rotenone (0.5 μM) and anti-
mycin (10 μM) were injected to inhibit Complexes I and III, respectively. Oxygen consumption was 
normalized to total protein measured using the Pierce BCA Protein Assay.
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In vivo tracer analysis
Mice and rats received a 3 X (5 min) primed-continuous infusion of [3-13C] sodium lactate (4.5 mg/kg 
body weight/min), [1, 2, 3, 4, 5, 6, 6-2H7] glucose (1.0 mg/kg/min), and [U-13C16] potassium palmitate 
(0.8 mg/kg/min) for 120 min. Tracers were infused into the jugular vein (mice) or the right atrium (rats) 
to ensure systemic delivery. After 100, 110, and 120 min, blood was collected from the tail vein (mice) 
or from the jugular venous catheter (rats) and centrifuged to obtain plasma, then animals were sacri-
ficed with IV pentobarbital and their livers freeze-clamped in liquid nitrogen.

Biochemical analysis
In plated hepatocyte and liver slice studies, glucose concentrations in the cell media were determined 
using the Sekisui Glucose Assay. Non-esterified fatty acid concentrations in the hepatocyte media 
were measured using the Sekisui Non-Esterified Fatty Acid kit.

Glucose production in hepatocytes was determined by measuring the glucose concentration in 
media after 1, 2, 3, 4, 5, and 6 hr of incubation. Glucose enrichment in hepatocytes, plasma, and 
livers was measured by gas chromatography/mass spectrometry (GC/MS). Samples were deproton-
ized using 1:1 barium hydroxide:zinc sulfate (100 μl for cells and 300 μl for ~100 mg liver samples, 
which were subsequently homogenized using a TissueLyser) and derivatized with 50  μl 1:1 acetic 
anhydride:pyridine. After 20 min heating to 65 °C, 50 μl methanol was added, and glucose enrichment 
([13C1], [13C2] and, in plasma, [2H7] (all using the Chemical Ionization mode), [4, 5, 6-13C1] and [4, 5, 6-13C2] 
(both using the electron ionization mode)) were measured by GC/MS.

[13C] alanine enrichment was measured by GC/MS (Perry et al., 2016). We have previously shown 
that flux through pyruvate kinase and malic enzyme – which would add [13C] label to carbon 2 of 
alanine – is minimal under fasting conditions in normal rats Perry et al., 2016; therefore, the measured 
[13C] alanine enrichment can be attributed entirely to [3-13C] lactate enrichment. [13C] malate enrich-
ment was also measured by GC/MS (Perry et  al., 2017b). Total malate enrichment and C1C2C3 
malate enrichment were measured and the C2  + C3 malate enrichment was determined according to 
Supplementary file 2, equations 1 and 2, which relies on the assumption that the C4 enrichment is 
approximately equal to the C1 enrichment of malate (Perry et al., 2017b). Total and C4C5 glutamate 
enrichment was measured by LC-MS/MS (Perry et al., 2018). With 13C lactate infusion, no label enters 
glutamate carbon 5, so all label in the C4C5 fragment was assumed to be labeled in glutamate C4.

Plasma transaminase concentrations were measured by ELISA (Abcam; ALT: ab282882 [mouse]/
ab234579 [rat], AST: ab263882 [mouse]/ab263883 [rat]). Liver glycogen concentrations were measured 
in 0 and 4 hr fasted mice and rats using the phenol-sulfuric acid method reported by Schaubroeck 
et al., 2022. PC activity (Vatner et al., 2013) and peroxidase activity (Sigma ‘Enzymatic Assay of 
Peroxidase (EC 1.11.1.7)’ protocol) were measured enzymatically in the liver.

In vivo flux analysis
Endogenous palmitate and glucose production were determined using equation 3 in Supplementary 
file 2; Perry et al., 2017a comparing plasma enrichment to the infused tracer enrichment, measured 
using gas chromatography/mass spectrometry (GC/MS) as described in the Biochemical Analysis 
section. In the fasted/substrate-depleted and, therefore, glycogen-depleted state (Perry et  al., 
2018), endogenous glucose production can be attributed entirely to gluconeogenesis (equation 4). 
Based on equations previously described (Perry et al., 2017b), and after verifying minimal renal and 
hepatic bicarbonate enrichment by GC/MS (Perry et al., 2020), we measured the whole-body ratio 
of phosphoenolpyruvate carboxykinase (PEPCK) flux (i.e. gluconeogenesis from pyruvate) to total 
gluconeogenesis by mass isotopomer distribution analysis (equations 5 and 6), correcting for any 
[13C2] glucose synthesized from [13C2] trioses (equation 7). At steady state, VPEPCK is equal to the sum of 
pyruvate kinase flux and pyruvate carboxylase flux (VPK +VPC); based on our previously published data, 
under fasting conditions pyruvate kinase flux is minimal, less than 10% of pyruvate carboxylase flux 
(Perry et al., 2016). Therefore, we can assume that the rate of gluconeogenesis from pyruvate (i.e. 
VPEPCK) is approximately equal to VPC.

Next, we measured the ratio of pyruvate carboxylase anaplerosis to citrate synthase flux (VPC/VCS) 
using the enrichment of liver alanine, malate, and glutamate (equation 8). This equation, in which 
pyruvate cycling is again assumed minimal, is derived in detail in our recent publication (Perry et al., 
2017b). We then measured the fractional contribution of glycolytic carbons to the TCA cycle (i.e. 
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pyruvate dehydrogenase flux relative to citrate synthase flux, VPDH/VCS) (equation 9) using the model 
and assumptions we (Befroy et al., 2014; Perry et al., 2018; Perry et al., 2016; Song et al., 2020) 
and others Alves et al., 2011; Petersen et al., 2016; Petersen et al., 2015 have described. Finally, 
absolute turnover rates (equations 10-13) were determined, utilizing the ratios measured with equa-
tions 5, 8, and 9, and the absolute gluconeogenesis rate measured using equations 3 and 4.

Statistical considerations, power calculations, and statistical analysis
The sample size (n=4–6 in vitro replicates, 2–4 slices, or 4–6 animals in vivo) was calculated to supply 
80% power at α=0.05 to detect the expected twofold difference with 50% variance. Power calcula-
tions were performed using the ClinCalc online calculator. Groups in the in vivo and in vitro studies 
were compared using the two-tailed unpaired Student’s t-test after confirming that the data met the 
assumptions of the test. The in vivo studies compared 4–6 biological replicates (unique animals), the 
liver slice studies compared 2–4 biological replicates, and the in vitro studies compared two biological 
replicates, with three technical replicates (separate wells) from each. No samples were excluded from 
analysis in the in vitro or ex vivo studies. Randomization and blinding were not possible during the in 
vivo studies because of the readily apparent differences between mice and rats, but all analyses were 
performed by investigators who were blinded as to species. No adverse events occurred. ARRIVE 
reporting guidelines were followed.
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