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The Consistency of Arithmetic
Storrs McCall

The paper presents a proof of the consistency of Peano Arithmetic (PA) that does not lie in deducing its consistency as a theorem in an axiomatic system.  PA's consistency cannot be proved in PA, and to deduce its consistency in some stronger system PA+ is self-defeating, since the stronger system may itself be inconsistent.  Instead, a semantic proof is constructed which demonstrates consistency not relative to the consistency of some other system but in an absolute sense.  

"God exists because mathematics is consistent, and the Devil exists because we can't prove it".     (André Weil)


Is Peano arithmetic (PA) consistent?  This paper contains a proof that it is:- a proof moreover that does not lie in deducing its consistency as a theorem in a system with axioms and rules of inference.  Gödel's second incompleteness theorem states that, if PA is consistent, its consistency cannot be proved in PA.  But to deduce its consistency in some stronger system PA+ that includes PA is self-defeating, since if PA+ is itself inconsistent the proof of PA's consistency is worthless.  In an inconsistent system everything is deducible, and therefore nothing is provable.  If there is to be a genuine proof of PA's consistency, it cannot be a proof relative to the consistency of some other stronger system, but an absolute proof, such as the proof of consistency of two-valued propositional logic using truth-tables.   Axiomatic proofs we may categorize as "syntactic", meaning that they concern only symbols and the derivation of one string of symbols from another, according to set rules.  "Semantic" proofs, on the other hand, differ from syntactic proofs in being based not only on symbols but on a non-symbolic, non-linguistic component, a domain of objects.
If the sole paradigm of "proof" in mathematics is "axiomatic proof", in which to prove a formula means to deduce it from axioms using specified rules of inference, then Gödel indeed appears to have had the last word on the question of PA-consistency.  But in addition to axiomatic proofs there is another kind of proof.   In this paper I give a proof of PA's consistency based on a formal semantics for PA.   To my knowledge, no semantic consistency proof of Peano arithmetic has yet been constructed.


The difference between "semantic" and "syntactic" theories is described by van Fraassen in his book The Scientific Image:


"The syntactic picture of a theory identifies it with a body of theorems, stated in one particular language chosen for the expression of that theory.  This should be contrasted with the alternative of presenting a theory in the first instance by identifying a class of structures as its models.  In this second, semantic, approach the language used to express the theory is neither basic nor unique; the same class of structures could well be described in radically different ways, each with its own limitations.  The models occupy centre stage." (1980, p. 44)



Van Fraassen gives the example on p. 42 of a consistency proof in formal geometry that is based on a non-linguistic model.  Suppose we wish to prove the consistency of the following geometric axioms:

A1.  For any two lines, there is at most one point that lies on both.

A2.  For any two points, there is exactly one line that lies on both.

A3.  On every line there lie at least two points.


The following diagram shows the axioms to be consistent:
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Figure 1

The consistency proof is not a "syntactic" one, in which the consistency of A1-A3 is derived as a theorem of a deductive system, but is based on a non-linguistic structure.  It is a semantic as opposed to a syntactic proof.  The proof constructed in this paper, like van Fraassen's, is based on a non-linguistic component, not a diagram in this case but a physical domain of three-dimensional cube-shaped blocks.  In section 1 Peano Arithmetic is presented as an axiomatic system, and in section 2 formal semantics based on block domains are laid down for it.

1.  The system PA

1.1  Primitive symbols



Logical symbols: &, ~, =, (   



Arithmetic symbols: 0, S, +, (


Variables: x, y, z, …


1.2  Rules of formation

1.2.1  For terms:



(i)  All variables, plus 0, are terms


(ii)  If X and Y are terms, then so are SX, X+Y, and X(Y


(iii)  Nothing else is a term.

1.2.2  For wffs:



(i)  If X and Y are terms, then X = Y is an atomic wff.



(ii)  If A is a wff and x is a variable, then ((x)A is a wff.



(iii)  If A and B are wffs, then so are  ~A and A&B.



(iv)  Nothing else is a wff.


1.3   Definitions.



A => B  =df  ~(A & ~B)



A v B
=df  ~(~A & ~B)



(x)A =df  ((x)A



((x)A  =df  ~(x)~A



1 =df S0


1.4  Axioms


Axioms and rules for first-order logic plus the following (Mendelson (1964), p. 103; Goodstein (1961), p. 46):



A1.
(x=y) => (x=z => y=z)



A2.
~(Sx = 0)



A3.
(x=y) => (Sx=Sy)



A4.
(Sx=Sy) => (x=y)



A5.
x+0 = x



A6.
x+Sy = S(x+y)



A7.
x(0 = 0



A8.
x(Sy = (x(y)+x


Induction rule.  From |- F(0) and |- (x)(Fx => F(Sx)) infer |- (x)Fx.

2.  Formal semantics for PA.


The semantics presented in this paper I call "block semantics", for reasons that will become clear.1   Block semantics is based on domains consisting of cube-shaped objects of the same size, e.g. children's wooden building blocks.  These can be arranged either in a linear array or in a rectangular array, i.e. either in a row with no space between the blocks, or in a rectangle composed of rows and columns.  A linear array can consist of a single block, and the order of individual blocks in a linear or rectangular array is irrelevant. Given three blocks A, B and C, the linear arrays ABC and BCA are indistinguishable.  Two linear arrays can be joined together or concatenated into a single linear array, and a rectangle can be re-arranged or transformed into a linear array by successive concatenation of its rows.  The result is called the “linear transformation” of the rectangle.  An essential characteristic of block semantics is that every domain of every block model is finite.  In this respect it differs from Tarski’s semantics for first-order logic, which permits infinite domains.  But although every block model is finite, there is no upper limit to the number of such models, nor to the size of their domains.  


It should be emphasized that block models are physical models, the elements of which can be physically manipulated.  Their manipulation differs in obvious and fundamental ways from the manipulation of symbols in formal axiomatic systems and in mathematics.  For example the transformations described above, in which two linear arrays are joined together to form one array, or a rectangle of blocks is re-assembled into a linear array, are physical transformations not symbolic transformations.  


(It has been suggested to me by some colleagues that, in the interests of constructing a fully formalized proof, an "ersatz" facsimile of block models could be made out of linguistic items rather than 3-dimensional blocks, for example domains consisting entirely of tokens of the letter "a".  There could be linear sequences of a's and rectangular arrays of a's, somewhat in the style of "ersatz" possible worlds in modal semantics consisting of maximal consistent sets of propositions (see e.g. Lewis (1986), pp. 136-44).  This is true I suppose, but the proposal does not convert the proposed consistency proof for arithmetic into a fully formalized axiomatic proof any more than a consistency or independence proof in modal logic based on ersatz possible worlds becomes an axiomatic proof rather than a semantic one.)


A semantic block model M consists of a domain D and an assignment function v.  M = <D,v>.  A domain D is a set of blocks, and the assignment function v connects terms of PA with linear or rectangular arrays of blocks.  Variables x, y, z, .. are each assigned linear arrays of blocks by the function v, and 0 is assigned the “empty” or null array Ø.  The term x+y is assigned the linear concatenation of the arrays assigned to x and y, and x(y is assigned the rectangular array with sides v(x) and v(y).  By a linear transformation, a rectangular array can be reassembled into a linear array formed by successively concatenating the rows of the rectangle.  The term Sx is assigned the linear transformation of whatever is assigned to x, plus one block more.  A formal definition of the function v is given in section 4 below.  But first a problem must be addressed concerning assignments to terms such as SSSx, or SSx ( SSx, in models with domains of, say, only two blocks.


In a two-block model, assignments can be made to 0, x, Sx and SSx, but not to SSSx.  In such a model, the value of v(SSSx) is undefined, and v is a partial function not a total function.  This complicates the semantics somewhat, since the valuation function vM over a model M, which takes formulae into truth-values, will also, like v, be a partial function.  When M’s domain contains only two blocks, vM(x=SSS0), and vM(S0 + SS0 = SSS0), cannot take the value “true”, or the value “false”, but can only be “undefined”.  Consequently not all theorems of PA are true in all models, but only in “sufficiently large” models.  It is possible to construct a rigorous formal semantics in which the assignment and valuation functions are partial functions, and the value “U” or “undefined” takes its place beside the regular truth-values T and F.  But as will be seen, there is a simpler solution that results in a bivalent rather than a trivalent semantics.  This will involve constructing a re-vamped axiomatic system for PA, based not on functional expressions like “x+y”, “x(y” and “Sx”, but on relational predicates like Sxyz (“the sum of x and y is z”), and Pxyz (“the product of x and y is z”).  Such an approach, reminiscent of Russell’s theorem on the eliminability of definite descriptions, is found in Abraham Robinson’s (1965a) and (1965b).2  As it turns out, the semantics for PA using Robinson axioms rather than the traditional axioms of section 1 above are bivalent, meaning that every wff in every model is either true or false.  The Robinson-style axiomatic system is marginally more complex than the usual one, but this is more than compensated for by the simplicity of its semantics.

3.  PA in traditional form vs the Robinson-style system RPA.


The usual axiomatic basis for the system PA is given in section 1.  When function symbols are replaced by relations, the resultant Robinson-style system RPA is as follows:

3.1  Primitive symbols. 


(i)
Logical symbols: &, ~, =, (.


(ii)
Variables : x,y,z,…


(iii)
Constants: 0, 1


(iv)
Three-place relations Sxyz (“the sum of x and y is z”) and Pxyz (“the product of x and y is z”).

Variables and constants are terms.

3.2  Rules of formation.


(i)
Where a,b and c are terms, a=b, Sabc and Pabc are wffs.


(ii)
If A is a wff and x is a variable, then ((x)A is a wff.


(iii)
If A and B are wffs, so are ~A and A&B.


(iv)
Nothing else is a wff.

3.3  Definitions.

Df I.
 A=>B is defined as ~(A&~B).


Df II.
 (x)A is defined as ((x)A.


Df III.   ((x)A is defined as ~(x)~A


Df IV. 
 Cxy is defined as Sx1y.




(Cxy is read “the successor of x is y”).


Additional definitions are needed for the derivation of the axioms of PA in RPA.  These definitions are given in section 8.

The axioms and rules of inference for RPA are those of first-order logic with identity, plus the following:

R1.
Sx0x

R2.
~Sx10

R3.
(Sxyz & Swyz) => x=w

R4.
Px00

R5.
Px1x
R6.
(x)(y)(z)((s)((t)((u)(Syzs & Sxsu & Sxyt & Stzu)

R7.
(x)(y)(z)((r)((s)((t)((u)(Syzr & Pxrs & Pxyt & Pxzu & Stus)
R8.
((y)[Cxy & (z)(Cxz => z=y)]


|
R9.
((z)[Sxyz & (w)(Sxyw => w=z)]

|  Existence and uniqueness axioms for  

R10.
((z)[Pxyz & (w)(Pxyw => w=z)]

|    “successor”, “sum” and “product”.
Induction rule.  From |- F(0) and |- (x)(y)((Fx & Cxy) => Fy) infer |- (x)Fx.

Section 8 contains formal derivations of the axioms A1-A8 and PA’s induction rule from the axioms R1-R10, RPA’s induction rule, and other definitions stated there.   RPA is consequently a complete system of Peano arithmetic.

4.  Formal semantics for RPA.


As in section 2 above, semantic models M = <D,v> for RPA consist of a domain D of blocks and an assignment function v that assigns linear or rectangular arrays of blocks to variables, a single block to the constant 1, and the empty or null sequence Ø to the constant 0.  
(i)    Two linear arrays are equal if they form a rectangle when placed beside each other, 
(ii)   A rectangular and a linear array are equal if the latter is a linear transformation of the former, and
(iii)  Two rectangles are equal if their linear transformations are equal.


4.1
The valuation function vM with respect to a model M is a function that takes every wff A of RPA into the set of truth-values {T, F}.  It is defined inductively.  Except where quantified, or where it is explicitly stated to the contrary, the letters x,y,z, … henceforth stand for either variables or constants.


4.1.1
(Basis).  A is an atomic wff.



(i)
vM(x=y) = T iff  v(x) and v(y) are equal.

(ii)
vM(Cxy) = T iff the linear transformation of v(y) equals the linear transformation of v(x) plus one block.

(iii)
vM(Sxyz) = T iff the linear transformation of v(x) concatenated with the linear transformation of v(y) equals the linear transformation of v(z).

(iv)
vM(Pxyz) = T iff the rectangular array, with sides equal to the linear transformations of v(x) and v(y), is equal to v(z).


4.1.2
(Induction step).  Assume vM(A) and vM(B) have already been defined.  Then:



(i)
vM(~A) = T iff vM(A) = F.



(ii)
vM(A&B) = T iff vM(A) = T and vM(B) = T.



(iii)
vM((x)A) = T iff for all models M’ = <D’,v’>, where D is a subset of D’ and where v’ differs from v at most in assignment to x, vM’(A) = T.



(iv)
vM(((x)A) = T iff there is a model M’ = <D’,v’>, where D is a subset of D’ and where v’ differs from v at most in assignment to x, such that vM’(A) = T.


4.2
Truth in a model.



A formula A is true in a model M iff vM(A) = T.

4.3
Validity.



A is valid iff A is true in all non-empty models.


(The restriction of validity to truth in non-empty models is necessitated by the constant 1.  0 ≠ 1 is intuitively valid, but is not true in empty models.)


As stated earlier, the reason for switching from the traditional system PA of Peano Arithmetic to the Robinson-style system RPA is that the block semantics for RPA are bivalent whereas those for PA are not.  In models with domains of just two elements, the formula 

x = SSS0 is neither true nor false but “undefined” in the semantics for PA, as is the theorem 
S0 + SS0 = SSS0.  In the block semantics for PA, validity cannot be defined as truth in all non-empty models.  But in RPA, which lacks functional expressions like “S” and “+”, the formula that corresponds to S0 + SS0 = SSS0 is (x)(y)(z)[(C0x & Cxy & Cyz) => Sxyz], and this formula is true in 1-element and 2-element models.  To show this we argue by reductio:
1.         Assume there is a model M = <D,v> such that vM(x)(y)(z)[(C0x & Cxy & Cyz) => Sxyz] = F.


2.
From 1, vM((x)((y)((z)~[(C0x & Cxy & Cyz) => Sxyz] = T.


3.
There is an M’ = <D’,v’>, where D is a subset of D’ and v’ differs from v at most in assignment to x, such that vM’((y)((z)~[(C0x & Cxy & Cyz) => Sxyz] = T.

4.
There is an M” = <D”,v”>, where v” differs from v’ at most in assignment to y, such that vM”((z)~[(C0x & Cxy & Cyz) => Sxyz] = T.

5.
There is an M”’ = <D”’,v”’>, where v”’ differs from v” at most in assignment to z, such that vM”’~[(C0x & Cxy & Cyz) => Sxyz] = T.

6.
From 5, vM”’(C0x & Cxy & Cyz) = T and vM”’(Sxyz) = F.

7.
Assignments to x, y and z that satisfy vM”’(C0x & Cxy & Cyz) = T are the linear arrays v’(x) = 1 block, v”(y) = 2 blocks and v”’(z) = 3 blocks.  (Recall that D(D”’).  If 
vM”’(C0x & Cxy & Cyz) = T, then vM”’(Sxyz) = T also, which contradicts line 6.  Consequently the assumption on line 1 is false, and there is no model M in which (x)(y)(z)[(C0x & Cxy & Cyz) => Sxyz] takes the value F.


The net result of moving from a formalized Peano arithmetic containing term-forming functional expressions to an arithmetic containing only sentence-forming relational expressions is that the semantics for the latter are bivalent, whereas the semantics for the former require that the truth-values of some formulae, in some models, be “undefined”.  Although Robinson is the first (and to the author’s knowledge the only) logician to propose a relation-based formal arithmetic, it is unlikely (but not impossible) that his motivation was to achieve a bivalent semantics.   We return to a general discussion of Robinson’s system in section 7.

5.  Semantic proof of the consistency of RPA.


Given the definition of “validity” of a formula A in the preceding section, the way to proving RPA consistent is open.  If it can be shown that all RPA axioms are valid, and that the rules of inference preserve validity, then all the theorems of RPA will be valid.  But it is impossible for two formulae A and ~A to both be valid:- if one takes the value T the other takes the value F.   Hence RPA is a consistent system.  Also, if RPA is consistent then PA is consistent too, since as is shown in section 8 all PA-theorems are derivable in RPA.  It follows that if all RPA theorems can be shown to be valid, Peano Arithmetic will be consistent.


We argue case-by-case that the axioms of RPA in section 3 are valid.  The arguments are generally by reductio.
Axiom R1.
Assume for reductio that there is a model M = <D,v>  in which R1 is false.


1.
vM(Sx0x) = F





Assumption

2.
From line 1, the concatenation of the linear transformation of v(x) with v(0), the null array, is not equal to v(x).  But this is impossible.  Consequently the assumption at line 1 is false, and R1 is true in all models, i.e. valid.

Axiom R2.


1.
vM(~Sx10) = F





Assumption


2.
vM(Sx10) = T





1


3.
From line 2, the concatenation of a linear array v(x) with a single additional block equals the null array.  But this is absurd.  Hence line 1 is false.

Axiom R3.


1.
vM[(Sxyz & Swyz) => x=w] = F


Assumption


2.
vM(Sxyz & Swyz) = T and vM(x=w) = F

1


3.
From line 2, the concatenation of v(x) with v(y) equals v(z), and the concatenation of v(w) with v(y) equals v(z), but v(x) and v(w) are not equal.  This is impossible, hence line 1 is false.

Axiom R4.



1.
vM(Px00) = F





Assumption


2.
Any rectangle, one of the sides of which is the null array, is null.  Hence in any model M, vM(Px00) is true, and line 1 is false.
Axiom R5.


1.
vM(Px1x) = F





Assumption


2.
A rectangle with a unit side is identical with the linear array consisting of the other side.  Hence vM(Px1x) is true in all models.
Axiom R6.

1.
vM[(x)(y)(z)((s)((t)((u)(Syzs & Sxsu & Sxyt & Stzu)] = F             Assumption


2.
From 1, vM[((x)((y)((z)(s)(t)(u)~(Syzs & Sxsu & Sxyt & Stzu)] = T   

3.
From 2, there is a model M’ = <D’,v’>, where D is a subset of D’, such that



vM’[(s)(t)(u)~(Syzs & Sxsu & Sxyt & Stzu)] = T
4.
From 3, for all models M”, where D’ is a subset of D”, and v” differs from v’ at most in assignment to s, t and u,
vM”[~(Syzs & Sxsu & Sxyt & Stzu)] = T, 

i.e. 

vM”(Syzs & Sxsu & Sxyt & Stzu) = F.

5.
 In line 4, vM”(Syzs) = T iff the concatenation of v”(y) and v”(z) is v”(s), vM”(Sxsu) = T  iff the concatenation of v”(x) and v”(s) is v”(u),

vM”(Sxyt) = T iff the concatenation of v”(x) and v”(y) is v”(t), and 



vM”(Stzu) = T iff the concatenation of v”(t) and v”(z) is v”(u).  


6.
Among all the models M” of line 4, v’(x), v’(y) and v’(z) are already specified by M’, and consequently v”(x), v”(y) and v”(z) are also specified (since v” differs from v’ at most in assignment to s, t and u).  We now select a particular model M”
in which we choose v”(s) to denote the concatenation of the array v”(y) with the array v”(z), v”(t) to denote the concatenation of v”(x) and v”(y), and v”(u) to denote the concatenation of v”(x) and v”(s).  That is to say, v”(u) denotes: 

     The concatenation of v”(x) with (the concatenation of v”(y) with v”(z)).  

But since in all block models concatenation is associative, i.e. 

    x CONCAT (y CONCAT z) = (x CONCAT y) CONCAT z,

where x, y and z are linear arrays of blocks, v”(u) will also denote: 

     (the concatenation of v”(x) with v”(y)), concatenated with v”(z),

i.e. v”(t) concatenated with v”(z).  And if v”(u) denotes the concatenation of v”(t) and v”(z) in M”, then vM”(Stzu) = T.
7.
A particular M” has been selected in which vM”(Syzs) = T, vM”(Sxsu) = T, and vM”(Sxyt) = T.  But in that model, we also necessarily have vM”(Stzu) = T, through associativity of concatenation.  This contradicts line 4.  Consequently, the assumption on line 1 is false.

(Note.  The above argument for the validity of Axiom R6 in block semantics illustrates an important difference between block models and the so-called “standard model” of arithmetic.  The standard model consists of the natural numbers, including 0, with the operations of addition and multiplication defined on them.  If we were to attempt to show that the axiom of associativity for addition, x+(y+z) = (x+y)+z, is satisfied in the standard model, we could argue that the truth of the axiom is based on the property of associativity of the operation of addition.  But such an argument would beg the question.  We can’t demonstrate the truth of the axiom by appealing to the associative property of numerical addition that the axiom states, since to deny the truth of the axiom is simply to deny the existence of the property.  But physical concatenation of linear arrays of blocks is associative quite independently of whether addition of numbers is associative, and in block semantics the latter (mathematical) property is based on the former (physical) property.)

Axiom R7.


1.
Assume vM(x)(y)(z)((r)((s)((t)((u)(Syzr & Pxrs & Pxyt & Pxzu & Stus) = F.  
In the way that the validity of Axiom R6 is based on the associativity of concatenation, the validity of R7 will follow from the analogue in block semantics of the distributivity of addition over multiplication, a(b+c) = ab + ac.


2.
From 1, vM[((x)((y)((z)(r)(s)(t)(u)~(Syzr & Pxrs & Pxyt & Pxzu & Stus)] = T   
3.
From 2, there is a model M’ = <D’,v’>, where D is a subset of D’, such that


vM’[(r)(s)(t)(u)~(Syzr & Pxrs & Pxyt & Pxzu & Stus)] = T   
4.
From 3, for all models M”, where D” is a subset of D’, and v” differs from v’ at most in assignment to r, s, t and u,




vM”[~(Syzr & Pxrs & Pxyt & Pxzu & Stus)] = T,   



i.e. vM”(Syzr & Pxrs & Pxyt & Pxzu & Stus) = F.   

5.
Among the models M” of line 4, v”(x), v”(y) and v”(z) are already specified by the assignments to x, y and z in M’.  We now select a particular M” by choosing v”(r) to denote the concatenation of v”(y) and v”(z), v”(s) to denote the rectangle of blocks with sides v”(x) and v”(r), v”(t) to denote the rectangle with sides v”(x) and v”(y), and v”(u) to denote the rectangle with sides v”(x) and v”(z).  

6.
 For simplicity’s sake in what follows the letters x,y,z,r,s,t and u will be used in place of their assignment values v’(x), v’(y), v’(z), v”(r), v”(s), v”(t) and v”(u).  As in the case of axiom R6, we argue that if vM”(Syzr), vM”(Pxrs), vM”(Pxyt) and vM”(Pxzu) are all true, then so is vM”(Stus), contradicting line 4.  
7.
In line 4, vM”(Syzr) = T iff the concatenation of y and z is r. 
 vM”(Pxrs) = T iff the rectangle with sides x and r is s.
 vM”(Pxyt) = T iff the rectangle with sides x and y is t. 



vM”(Pxzu) = T iff the rectangle with sides x and z is u.

8.
In block semantics, when we physically bring the two rectangles t and u together along the side x that they have in common, the result is a larger rectangle with sides x and (y+z), where y+z is the concatenation of y and z.  From line 7, (y+z) = r.  Let t’ be the linear transformation of the rectangle t, let u’ be the linear transformation of the rectangle u, and let s’ be the linear transformation of the rectangle s.  By the definition of “equality” at the beginning of section 4 above, t’=t, u’=u, and s’=s.  

9.
Since the large rectangle with sides x and r is s, and since s consists of the two smaller rectangles t and u put together along their common side x, we have that s=t+u, or equivalently s’ = t’CONCAT u’.  Since t=t’, u=u’, and s=s’, the “concatenation” of the rectangles t and u is s.  (This is the first, and only, time that the notion of “concatenating” two rectangles with a common side in block semantics will be appealed to.  Such concatenation is a physical operation performed on physical blocks.)  But if the concatenation of t and u is s, then vM”(Stus) = T.   Consequently if, in the particular model M” described in line 5, the four statements vM”(Syzr) = T, vM”(Pxrs) = T, vM”(Pxyt) = T and vM”(Pxzu) = T all hold, then vM”(Stus) = T also necessarily holds.  In that model, vM”[(Syzr & Pxrs & Pxyt & Pxzu & Stus)] = T, contrary to line 4.  By reductio, the assumption on line 1 is false, and axiom R7 is valid.  
Axioms R8-R10.

R8.
((y)[Cxy & (z)(Cxz => z=y)]


|

R9.
((z)[Sxyz & (w)(Sxyw => w=z)]

|  Existence and uniqueness axioms for  

R10.
((z)[Pxyz & (w)(Pxyw => w=z)]

|    “successor”, “sum” and “product”.


There is no difficulty in seeing that these three axioms are valid in block semantics.  Suppose for example, for reductio, that there is an M where vM((y)[Cxy & (z)(Cxz => z=y)] = F, i.e. that vM(y)~[Cxy & (z)(Cxz => z=y)] = T.  Then for all M’ = <D’,v’>, where D is a subset of D’ and v’ is like v except possibly in assignment to y, vM’~[Cxy & (z)(Cxz => z=y)] = T, i.e. vM’[Cxy & (z)(Cxz => z=y)] = F.  Select a model M’ in which v’(y) is v’(x) plus one block.  Then vM’(Cxy) = T, and consequently vM’[(z)(Cxz => z=y)] = F, i.e. vM’[((z)~(Cxz => z=y)] = T,   It follows that there is an M” = <D”,v”>, where D’ is a subset of D” and v” differs from v’ at most in assignment to z, such that vM”[~(Cxz => z=y)] = T, i.e. that vM”(Cxz) = T and vM”(z=y) = F.  But if in M” we select v”(z) to be equal to v’(x) plus one block, then v”(z) = v’(y) = v”(y), and vM”(z=y) = T.  And if in M” we select v”(z) to be different from v’(x) plus one block, then, since v”(x) = v’(x), vM”(Cxz) = F.  In either case we get a contradiction, and the hypothesis of the reductio is false.  So R8 is valid.

The arguments for the validity of axioms R9 and R10 are similar.

In addition to the arithmetical axioms R1-R10, RPA rests upon axiom-schemata for propositional logic that are known to be valid, plus two first-order schemata R11 and R12 and a rule RQ for predicate logic (see e.g. Church (1956), p. 172).  These may be shown to be valid, or in the case of RQ validity-preserving, as follows.
Axiom-schema R11.
(x)(A => B) => (A => (x)B), where x does not occur free in A.

1.  Assume (for reductio) that there is a model M = <D,v> in which 


vM[(x)(A => B) => (A => (x)B)] = F.


2. vM(x)(A => B) = T and vM(A => (x)B) = F

1


3. vM(A => (x)B) = F





2


4. vM(A) = T and vM((x)B) = F



3


5. vM(x)(A => B) = T





2


6. For all models M' = <D',v'>, where D is a subset of D' and v' differs from v at most in assignment to x, 



vM'(A => B) = T

      
  

5, 4.1.2 (iii)


7. For each such M', either vM'(A) = F or vM'(B) = T    
 6


8. But since x is not free in A, for each such M'


vM'(A) = vM(A)


9. Therefore, for each such M', either vM(A) = F or vM'(B) = T   

7, 8


10. vM(A) = T






4


11. Therefore, for each such M', vM'(B) = T


9, 10


12.  vM((x)B) = T





11, 4.1.2 (iii)

13.  But vM((x)B) = F





4

       
 Contradiction.  Hence the assumption on line 1 is false, and R11 is valid.

Axiom-schema R12.

(x)A => B, where B is like A except that B may contain a term t, or free occurrences of a variable y, wherever A contains free occurrences of x.


1.  Assume there is a model M = <D,v> such that vM((x)A => B) = F.

2.  vM(x)A = T and vM(B) = F




1


3.  vM(x)A = T






2


4.  For all M' = <D',v'>, the assignment functions of which differ from M at most in assignment to x, vM'(A) = T.



3

5.  Since D is a subset of D', M' will assign to y and the variables of t the same linear arrays of blocks that M assigns to y and the variables of t.  (Note that this would not necessarily be the case if D were not a subset of D'.)  Hence, for all M', vM'(B) = vM(B).


6.  vM'(B) = F






2, 5


7.  But since B differs from A only in having free y or a term t wherever A has free x, there will be, amongst the models M', a model M' = <D',v'>, where D is a subset of D’ and M’ differs from M at most in assignment to x, such that vM'(B) = vM'(A).  (We simply assign to y in M, and consequently in M', the same array of blocks that M assigns to x.  Alternatively, let v(t) = a in M, where a is some array of blocks.  Then, there will be at least one M', where D is a subset of D’, such that v'(x) = a in M'.  In that model M', vM'(B) = vM'(A).)


8.  vM'(A) = F




6, 7, since 6 holds for all M'.
Line 8 contradicts 4.  Consequently the assumption on line 1 is false, and R12 is valid.

Next it is shown that the rules of inference of RPA preserve validity.

(i)
The rule RQ.

From |- A infer |- (x)A

Assume that A is valid but that (x)A is not, i.e. vM(x)A = F for some model M.  The latter implies that for some model M' =<D',v'>, where D is a subset of D’ and v' differs from v at most in assignment to x, vM'(A) = F.  But if A is valid, then for all such models M', vM'(A) = T.  Hence if A is valid then (x)A is valid, i.e. RQ preserves validity.

(ii)
Modus ponens being validity-preserving, it remains to consider the rule of induction.  This has traditionally been the sticking point in arithmetical consistency proofs, presumably because of the step premiss that states “For all x and y, if Fx and if the successor of x is y, then Fy”.   There is no upper bound to the number of iterated steps from Fx to Fy before the conclusion (x)Fx is reached, hence the rule of induction is to all appearances non-finitistic. However, if we argue indirectly by reductio, the validity-preserving character of the rule can be shown finitistically, by a method describable as "finite descent”.
1.  Assume that F(0) and (x)(y)((Fx & Cxy) => Fy) are both valid, but that (x)Fx is not.

2.  I.e. there is a model M = <D,v> such that vM(x)Fx = F

3.  I.e. vM((x)~Fx = T

4.  From 3, there is a model M' = <D',v'>, where D is a subset of D’ and M' differs from M at most in assignment to x, such that vM'(~Fx) = T

5.  In M', let the predicate ~F be true of N blocks

6.  Since (x)(y)((Fx & Cxy) => Fy) is valid, its antilogism contrapositive (x)(y)((~Fy & Cxy) => ~Fx) is also valid. Recall that “Cxy” means “the successor of x is y”.  Therefore, in all models, if the predicate ~F is true of a linear array of N blocks, it is also true of N-1 blocks.  And if true of N-1 blocks, it is also true of N-2 blocks.  Etc.  

7   Applying line 6 repeatedly to line 5, ~F is true in M' of the empty array Ø.

8.  Consequently vM'~F(0) = T, i.e. vM'F(0) is false, contrary to the assumption that F(0) is valid.

9.  By reductio, the assumption on line 1 is false, and the rule of induction preserves validity.
This reductio argument requires only a finite number of steps, and is consequently finitistic.  Note that if we had attempted to argue directly for the validity of induction, i.e. to show that in all models where F(0) and (x)(y)((Fx & Cxy) => Fy) hold, then (x)Fx also holds, we would have been faced with an infinite task, since although each block model is finite, there is no limit to the number of such models.


6.  The power of block models.

The power of block models, and the need for the stipulation in the truth conditions for the universal quantifier that the domain D be a subset of D’, may be illustrated by considering one more formula, (x)((y)y>x.  We define y>x as ((z)(z≠0 & Sxzy).  To show that (x)((y)y>x is valid, assume for reductio that there is a model M such that vM((x)((y)y>x) = F.  That is, vM(((x)(y)~(y>x)) = T.  

I.e. there is an M' which differs from M at most in assignment to x, such that vM'(y)~(y>x) = T.  That is, for all models M" = <D",v">, where D’ is a subset of D" and M" differs from M' at most in assignment to y, vM"(~(y>x)) = T.   Consequently, for all such M", vM"(y>x) = F.  

But this is false.  There will be an M" = <D",v"), which in its assignment function v" differs from M' at most in assignment to y, such that vM"(y>x) = T.  M" simply assigns to y a linear array of blocks that is one block longer than the array that M' assigns to x.  This is possible because of the requirement that D’ is a subset of D”.
7.  How Robinson came close to proving the consistency of arithmetic in 1964.

No doubt with Gödel’s second incompleteness theorem in mind, Robinson remarks, on p. 234 of his (1965a), (p. 511 of the (1979) reprint), that “it is indeed a regrettable fact that no version of classical Mathematics is provably consistent”.  Further on in the same paper he says, “the gap due to the absence of consistency proofs for the major mathematical theories appears to be inevitable and we have learned to live with it.” (p. 513 of the reprint).   But in the appendix of his paper, entitled “A notion of potential truth”, he introduces a concept which, if pursued far enough, would have led him to a semantic consistency proof very similar to the one put forward in the present paper.  Robinson discusses relational structures ordered by inclusion, so that if A and B are any such structures, there is a structure C such that A and B are both included in C.  The set of such structures is an upward directed set.  He is not specific about what relations go to make up such structures, but as examples he cites (reprint, p.523) the relations Sxyz, Pxyz and Exy of addition, multiplication and equality.  Robinson explicitly introduces these relations in his book on Model Theory (1965b) pp. 26-27, published at roughly the same time.  The basis of the ordering of Robinson’s structures appears to be that a structure P is included in a structure Q if all the individuals of P are contained in Q, but Q may contain one or more new individuals not contained in P.  He offers as an example the set N of natural numbers with the relations of addition, multiplication and equality, where the relational structures A, B, C, .. are restricted to finite initial segments Nk = {0, 1, …k}, k = 0, 1, 2, … , of the natural numbers. 

Robinson introduces the notion of “potential truth” of a sentence X in a structure A in words very similar to those used to define the valuation function vM in section 4 above.  He defines, successively, potential truth for atomic formulae, truth-functions, and quantified formulae.  He proves that if a sentence X is potentially true in a structure A, then it is potentially true in all structures that include A.  Finally, he demonstrates that X is true (not “potentially true”, but true in an unqualified sense) in the union M of the directed set of all relational structures if and only if it is potentially true in every relational structure A in which it is defined.  (Robinson is not explicit about the conditions under which a sentence X might fail to be defined in a given structure A.)

Plainly, Robinson is very close to constructing a semantic interpretation of arithmetic similar to the block semantics of this paper.  What is lacking is an explicit definition of what constitutes a “model”.  As seen above, a model consists of a non-linguistic domain together with an assignment function, and Robinson passes over the latter.  If he had recognized “assignments” as linking symbols with objects, he could have identified his “potential truth” with “truth in a model”, and then gone on to define “ordinary truth” as “truth in all models”.  That would have opened the door to characterizing the set of mathematical truths such as Sxyz => Syxz as simply “true” as opposed to “potentially true”, and from there it is only a short step to proving mathematical consistency.
8.  A complete set of Robinson-style axioms for Peano Arithmetic.

This section contains a complete set of Robinson-style axioms for Peano Arithmetic.  From them, using suitable definitions, the usual axioms containing the functional terms Sx, x+y and x.y will be derived.  The axioms R1-R11 for the system RPA, plus the Rule of Induction, are as follows:

R1.
Sx0x

R2.
~Sx10

R3.
(Sxyz & Swyz) => x=w

R4.
Px00

R5.
Px1x
R6.
(x)(y)(z)((s)((t)((u)(Syzs & Sxsu & Sxyt & Stzu)

R7.
(x)(y)(z)((r)((s)((t)((u)(Syzr & Pxrs & Pxyt & Pxzu & Stus)

R8.
((y)[Cxy & (z)(Cxz => z=y)]


|  Existence and uniqueness axioms for
R9.
((z)[Sxyz & (w)(Sxyw => w=z)]

|  
R10.
((z)[Pxyz & (w)(Pxyw => w=z)]

|    “successor”, “sum” and “product”.

Induction Rule.  From |- F(0) and |- (x)(y)[(Fx & Cxy) => Fy] infer |- (x)Fx.

From this basis, together with the definitions given below, the axioms A1-A8 for the system PA containing the functional terms Sx, x+y and x.y are derivable.  The additional definitions required are:

Df. 1
x+y = z is defined as Sxyz

Df. 2
x(y = z is defined as Pxyz

Df. 3
Sx is defined as x+1.

It should be stressed that the purpose of introducing the singular terms “x+y”, “x(y” and “Sx” in definitions 1-3 is solely to make possible the derivation of the theorems of PA in the system RPA.  In the system lacking these definitions, the bivalent semantics for RPA hold, and they continue to hold when the definitions are added.  Using the definitions, one simply eliminates the terms x+y, x(y, and Sx. 

The derivation of the axioms A1-A8 follows.  
A1
1.   (x=y) => (x=z => y=z)





A pure identity thesis
A5
2.   x+0 = x







R1, Df 1


3.   ~Sx10







R2

4.   ~(x+1 = 0)







3, Df 1

A2
5.   ~(Sx = 0)







4, Df 3


6.   (x=y) => (x+1 = y+1)





Identity thesis

A3
7.   (x=y) => (Sx = Sy)





6, Df 3


8.   (Sxyz & Swyz) => x=w





R3

9.   (Sx1z & Sw1z) => x=w





8

10.  [(x+1 = z) & (w+1 = z)] => x=w




9, Df 1


11.  [(Sx = z) & (Sw = z)] => x=w




10, Df 3


12.  ((z)[(Sx = z) & (Sw = z)] => x=w



11, Pred. Logic 


13.  (Sx = Sw) => ((z)[(Sx = z) & (Sw = z)]



Pred. Logic with Id.

A4
14.  (Sx = Sw) => x=w





12, 13

15.  (x)(y)(z)((s)((t)((u)(Syzs & Sxsu & Sxyt & Stzu)

R6

16.  ((s)((t)((u)(y+z = s & x+s = u & x+y = t & t+z = u)

15, Df 1


17.  ((u)[(x + (y + z) =u) & ((x +y) + z) = u]



16, Pred. Logic with Id.


18.  x + (y + z) = (x + y) + z)





17

19.  x + (y + 1) = (x + y) + 1





18
A6
20.  x + Sy = S(x + y)






19, Df 3


21.  Px00







R4
A7
22.  x(0 = 0







21, Df 2


23.  (x)(y)(z)((r)((s)((t)((u)(Syzr & Pxrs & Pxyt & Pxzu & Stus)
     

R7

24.  ((r)((s)((t)((u)(y+z = r & (x(r) = s & (x(y) = t & (x(z) =u & t+u = s)
23

25.  ((s)[(x((y+z) = s) & ((x(y) + (x(z) = s)]


24

26.  x((y+z) = (x(y) + (x(z)





25, Pred. Logic


27.  Px1x







R5

28.  x(1 = x







27, Df 2


29.  x((y+1) = (x(y) + (x(1)





26
A8
30.  x(Sy = (x(y) + x






29, 28 Df 3


31.  (x+1 = y) ≡ Sx1y






Prop. Logic, Df 1


32.  (Sx = y) ≡ Sx1y






31, Df 3


33.  (Sx = y) ≡ Cxy






32, Df “Cxy”


34.  (x)[Fx => F(Sx)] => (x)(y)[(Fx & Sx = y) => Fy]

Pred. Logic with Id.


35.  (x)[Fx => F(Sx)] => (x)(y)[(Fx & Cxy) => Fy]


33, 34
Using 35, we can derive PA’s induction rule from RPA’s induction rule.  PA’s induction rule is:

  From  |- F(0) and |- (x)(Fx => F(Sx))  infer |- (x)Fx.

9.  A note on finite and infinite models

It has been suggested by a colleague that the consistency proof using block models does not go through unless the existence of an infinite set of blocks is assumed, and that the universe could contain such an infinite set might be doubted.  However, the consistency proof does not require an infinite set of blocks, as may be seen as follows.


The truth-conditions for existentially quantified formulae as given above, in section 4.1.2, are:

(iv) vM(((x)A) = T  in model M = <D,v>  iff there is a model M’ = <D’,v’>, where D is a subset of D’ and where v’ differs from v at most in assignment to x, such that vM’(A) = T.

Since D is a subset of D’ and consequently M’ can be a larger model than M, the question arises whether it is not merely some finite structure M, but rather the infinite structure which is the collection of all block models -- the universe of block models, so to speak -- that is shown to satisfy RPA.  Since block models are based on domains of physical cube-shaped objects, the infinite structure consisting of the set of all block models would not exist unless the universe contained infinitely many distinguishable physical items.  But whether the universe contains infinitely many things, or only finitely many things, is an empirical matter.  Without an infinity of physical objects, does the absolute consistency proof go through?

There are two replies to this.  First and foremost, at no point in the proof that every axiom of RPA is semantically valid, i.e. true in every non-empty block model, is an infinite model presupposed.  All block models have finite domains, there being no largest one.  There exists no limit to the size of block domains, without any single domain being infinite.  To address the question of whether the physical universe could contain a potential infinity of blocks, imagine the following thought experiment.

Take a single cube of matter, measuring 1 x 1 x 1. (The word “matter” is used in a 17th century sense, before the advent of atomic theory.)  The units of length are irrelevant: they could be meters, or kilometers, or whatever.  Imagine that the cube is bisected along each of its three dimensions, producing 8 smaller cubes, each ½ x ½ x ½.  Continue this process, through 64, 512, 4096, … cubes.  Out of a single 1 x 1 x 1 cube, a set of smaller and smaller cubes can be created, and the size of this set has no numerical upper limit.  Each step produces a larger, but finite, number of blocks.  A set of blocks that is actually infinite is never produced, nor is it necessary for the consistency proof.   Block models differ sharply from the “standard model” of arithmetic, based on an infinite set of integers.  The latter does not yield a non-circular arithmetic consistency proof, as is argued in section 5 above, axiom R6.

It might be asked, is it not an easy step from the predicate “…is a block model” to the set of all block models, which is infinite? Yes, by using the (unrestricted) axiom schema of comprehension, which states that to every property there corresponds a set.  But this leads to Russell’s paradox, and Frege’s lament that arithmetic totters.  The consistency proof neither needs nor recognizes the set of all block models, nor does it require a domain consisting of an actual infinity of physical blocks.




Footnotes
1 For helpful suggestions and advice in developing block semantics I am indebted to several colleagues.
2 I owe the reference to Robinson’s relational arithmetic to Alasdair Urquhart.
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