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1 OVERVIEW

We aim to identify prevalent shapes formed by collections of points
in R"” by applying concepts from persistent homology. Such points
are called vertices, and we identify the shapes by identifying the
persistent holes in a progression of Vietoris-Rips simplicial
complexes. Finally, we see the applications of this technique onto
topics in neuroscience.
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2 DEFINITIONS

® 0,

2.1 For afinite set of vertices V = {vg,v1,...,v,}
a collection of k+1 vertices is called a

k-simplex. A subset X of the power set P (V)
that is closed under subsets is called

an abstract simplicial complex.

1

Simplicial complex with six vertices,
seven 1-simplices and one 2-simplex

2.2 Let 'y be the vector space of formal linear combinations of k-simplices over a
field F. The k" boundary map D, : C;, — Ci_1 is a linear map which sends k-simplices s
in X to afinite formal sum of k-1 simplices via

k
Dy (s) = Z(—l)i{so, e, Si, ...,sk} ={s1,5, ..., 5k} —{S0, 52, ..., Sk} +...
i=0

The kernel of Dy, ker (D), consists of linear combinations of k-simplices such that
the resulting formal sum in Cy_1is zero. Such an object roughly corresponds to a k-
cycle. The image of Dy, Im (Dy), is the set of all formal sums of k-1 simplicies that
are the result of D acting on formal sums of k simplicies, and correspond to the k-1
“boundaries” of X.

2.3 The k" homology group of a simplicial complex X is given by the quotient space

Hi (X) = Iiug)))

The construction of Hi (X) ensures that k-1 cycles which do not enclose k-
dimensional features remain in H, (X), while k-1 cycles generated by such features
are removed from the space. Because of this, the dimension of H; (X) corresponds
to the number of k-dimensional holes in X, and each basis element of H; (X)
corresponds to the boundaries that outline the holes.

In the transition from a collection of abstract vertices to a real-world data set, two
issues arise. The first is that discrete data points are not connected graphically. Their
distribution may suggest that they adhere to some underlying trend, but there does
not normally exist some straight-line path between two neighbouring data points such
that all intermediate values lie on said path. This means that the decision to connect
any two such data points is somewhat arbitrary, and that any approach to data
analysis which involves simplicial homology must account for this fact. The second is
that discrete data points do not arrange themselves into neat geometrical figures, as
there is always a degree of randomness or uncertainty in the distribution of any data
set. This means that our algorithm must also be robust to noise.

2.4 A Vietoris-Rips Complex VR (X,r) defined on a metric space (M, d) is the simplicial
complex generated by a set of points X in M along with a distance 7 such that a set
of k points are joined in a k-1 simplex if the distance between any two points in the set

is at most 27. Visually, we often represent T as a radius extending from every point in X.

The Vietoris Rips Complex provides an elegant
way of avoiding the construction of arbitrary
simplices. By letting T" increase over a given
interval, it is possible to construct a sequence of
"nested" complexes such that VR (X, ;)
C VR(X,r;11). This allows the features of the
connected data set to "evolve over time", with
the implicit assumption that features which
persist over a longer interval are topologically
| | | nontrivial, possibly hinting at some important
20 30 40 feature of the data.

r
2.5 The k" barcode of a Vietoris Rips Complex VR (X, r)is a graphical representation of the
persistence of k-dimensional holes in X over a range of values of 7> The horizontal axis
represents the value of 7, while the number of bars present at a point along the axis
represents how many k-dimensional holes exist at a given T value.

3 COMPUTATION

For the Vietoris-Rips Complex VR (X, r) of a data set X in M with a distance of 7T, let

M (Dg) be the matrix representation of D g with respect to the basis of C'g and Ci_1. By
construction, the columns of M (D) are the images of the basis vectors of Cg under D g
with respect to the basis of Ci_1.

We expect M (Dg) to be either diagonalizable or reducible to reduced row-echelon form
using elementary matrix operations. Once this is done, we will have obtained an equivalent
matrix whose row rank is the dimension of Im (Dg) , and whose nullity is the dimension of
Ker (Dg).

For a given 7 value, we compute the dimension of the quotient space Hx (K):
dim (Hy(K)) = dim(Ker(Dg)) — dim(Im(Dg_1))

and find the basis of Hg (K) which corresponds to the k-dimensional holes, and append the
kth barcode by either beginning a new bar (for a new k-dimensional hole) or extend the
length of a pre-existing bar (for a k-dimensional hole that already exists). The placement of
the bars along the vertical axis is arbitrary.

This process is repeated for increasing r until the value at which all elements in X are in an
n — 1 simplicial complex, i.e. the point at which every element in the set is connected to
every other element.

4 APPLICATIONS

Functional Connectivity of Brain

e Functional connectivity is an approach describing the brain network across separate
brain regions by co-activation patterns and strength, as opposed to structural
connectivity (SC) which anatomically explains the neural network by the physical
neuronal pathways of electrical signals.

e Persistent homology-based functional connectivity is used for investigating an overall
information transfer in brain and cognitive abilities, offering advantages over traditional
graph theory-based measures.

e In this case, a simplicial complex is a network of nodes (brain regions) and edges (their
functional connections).

e Data are extracted from resting state fMRI scan in time series measuring the O
consumption level of neurons, thus they are an indirect and instrumental measure of
neuronal activity.

e The advantages include its robustness to noise & weak connectivity and that this
method takes integrative information processing of brain into account.

e The research findings suggest a negative correlation between the dispersion of
information and cognitive abilities.
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