Updated: Wed, 10/02/2024 - 13:45

From Saturday, Oct. 5 through Monday, Oct. 7, the Downtown and Macdonald Campuses will be open only to McGill students, employees and essential visitors. Many classes will be held online. Remote work required where possible. See Campus Public Safety website for details.


Du samedi 5 octobre au lundi 7 octobre, le campus du centre-ville et le campus Macdonald ne seront accessibles qu’aux étudiants et aux membres du personnel de l’Université McGill, ainsi qu’aux visiteurs essentiels. De nombreux cours auront lieu en ligne. Le personnel devra travailler à distance, si possible. Voir le site Web de la Direction de la protection et de la prévention pour plus de détails.

News

First images of magnetic fields at the edge of black hole in M87 Galaxy

Diaphanous magnetic structures look like the threads of a spider web but are strong enough to trap plasma
Published: 25 March 2021

The Event Horizon Telescope (EHT) collaboration, which includes researchers from McGill University, who produced the first ever image of a black hole, has revealed this week a new view of the massive object at the centre of the M87 galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of a black hole. The observations are key to explaining how the M87 galaxy, located 55 million light-years away, is able to launch energetic jets from its core.

“We are now seeing the next crucial piece of evidence to understand how magnetic fields behave around black holes, and how activity in this very compact region of space can drive powerful jets that extend far beyond the galaxy,” says Monika Mościbrodzka, Coordinator of the EHT Polarimetry Working Group and Assistant Professor at Radboud Universiteit in the Netherlands.

On 10 April 2019, scientists released the first ever image of a black hole, revealing a bright ring-like structure with a dark central region — the black hole’s shadow. Since then, the EHT collaboration has delved deeper into the data on the supermassive object at the heart of the M87 galaxy collected in 2017. They have discovered that a significant fraction of the light around the M87 black hole is polarized.

“These diaphanous magnetic structures spread out from the black hole like the threads of a spider web – they are delicate looking but strong enough to trap plasma and prevent it from falling into this massive black hole,” said Daryl Haggard, from the McGill University Department of Physics. Her team, the McGill Extreme Gravity and Accretion group (MEGA), studies these and other physical phenomena that teach us about how black holes grow (and how they don’t grow) and thus how they impact their surroundings.

“This work is a major milestone: the polarization of light carries information that allows us to better understand the physics behind the image we saw in April 2019, which was not possible before,” explains Iván Martí-Vidal, also Coordinator of the EHT Polarimetry Working Group and GenT Distinguished Researcher at the Universitat de València, Spain. He adds that “unveiling this new polarized-light image required years of work due to the complex techniques involved in obtaining and analysing the data.”

Light becomes polarized when it goes through certain filters, like the lenses of polarized sunglasses, or when it is emitted in hot regions of space that are magnetized. In the same way polarized sunglasses help us see better by reducing reflections and glare from bright surfaces, astronomers can sharpen their vision of the region around the black hole by looking at how the light originating from there is polarized. Specifically, polarization allows astronomers to map the magnetic field lines present at the inner edge of the black hole.

“The newly published polarized images are key to understanding how the magnetic field allows the black hole to 'eat' matter and launch powerful jets,” says EHT collaboration member Andrew Chael, a NASA Hubble Fellow at the Princeton Center for Theoretical Science and the Princeton Gravity Initiative in the USA.

The bright jets of energy and matter that emerge from M87’s core and extend at least 5000 light-years from its centre are one of the galaxy’s most mysterious and energetic features. Most matter lying close to the edge of a black hole falls in. However, some of the surrounding particles escape moments before capture and are blown far out into space in the form of jets.

Astronomers have relied on different models of how matter behaves near the black hole to better understand this process. But they still don’t know exactly how jets larger than the galaxy are launched from its central region, which is as small in size as the Solar System, nor how exactly matter falls into the black hole. With the new EHT image of the black hole and its shadow in polarized light, astronomers managed for the first time to look into the region just outside the black hole where this interplay between matter flowing in and being ejected out is happening.

The observations provide new information about the structure of the magnetic fields just outside the black hole. The team found that only theoretical models featuring strongly magnetized gas can explain what they are seeing at the event horizon.

“The observations suggest that the magnetic fields at the black hole’s edge are strong enough to push back on the hot gas and help it resist gravity’s pull. Only the gas that slips through the field can spiral inwards to the event horizon,” explains Jason Dexter, Assistant Professor at the University of Colorado Boulder, USA, and coordinator of the EHT Theory Working Group.

To observe the heart of the M87 galaxy, the collaboration linked eight telescopes around the world, to create a virtual Earth-sized telescope, the EHT. The impressive resolution obtained with the EHT is equivalent to that needed to measure the length of a credit card on the surface of the Moon.

This setup allowed the team to directly observe the black hole shadow and the ring of light around it, with the new polarized-light image clearly showing that the ring is magnetized. The results are published today in two separate papers in The Astrophysical Journal Letters by the EHT collaboration. The research involved over 300 researchers from multiple organizations and universities worldwide.

"The EHT is making rapid advancements, with technological upgrades being done to the network and new observatories being added. We expect future EHT observations to reveal more accurately the magnetic field structure around the black hole and to tell us more about the physics of the hot gas in this region," concludes EHT collaboration member Jongho Park, an East Asian Core Observatories Association Fellow at the Academia Sinica Institute of Astronomy and Astrophysics in Taipei.

To read:

This research was presented in two papers published this week in The Astrophysical Journal.

  • Observational publication: First M87 Event Horizon Telescope Results. VII. Polarization of the Ring, ApJL March 24, 2021 [Preprint]
  • Theory publication: First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon, ApJL March 24, 2021 [Preprint]

The McGill research was funded by a Natural Sciences and Research Council of Canada (NSERC) Discovery Grant, a Fonds de recherche du Québec – Nature et technologies (FRQNT)Nouveaux Chercheurs Grant, and a Tier II Canada Research Chair.

More information

The EHT collaboration involves more than 300 researchers from Africa, Asia, Europe, North and South America. The international collaboration is working to capture the most detailed black hole images ever obtained by creating a virtual Earth-sized telescope. Supported by considerable international investment, the EHT links existing telescopes using novel systems — creating a fundamentally new instrument with the highest angular resolving power that has yet been achieved.

The individual telescopes involved are: ALMA, APEX, the IRAM 30-meter Telescope, the IRAM NOEMA Observatory, the James Clerk Maxwell Telescope (JCMT), the Large Millimeter Telescope (LMT), the Submillimeter Array (SMA), the Submillimeter Telescope (SMT), the South Pole Telescope (SPT), the Kitt Peak Telescope, and the Greenland Telescope (GLT).

Visual Material Information

Image: Polarized emission of the ring in M87 - TIFF [10 Mb] – JPEG [8.8 Mb]

Short caption: Polarized view of the black hole in M87. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole. Credit: © EHT Collaboration


About McGill University

Founded in Montreal, Quebec, in 1821, McGill University is Canada’s top ranked medical doctoral university. McGill is consistently ranked as one of the top universities, both nationally and internationally. It is a world-renowned institution of higher learning with research activities spanning two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

 

 

Back to top