Effects of L1 background and L2 proficiency on L2 sentence processing: An ERP study

Kristina Kasparian1,2, Nicolas Bourguignon1,2, John E. Drury3 & Karsten Steinhauer1,2

1School of Communication Sciences & Disorders, McGill University
2Center for Research on Language, Mind and Brain
3Department of Linguistics, Stony Brook University
Aims

- **Neurocognitive mechanisms** underlying real-time sentence processing in **adult second language (L2) learners**

- Effect of **first language (L1) background** on L2
 - Transfer/interference between grammars

- Influence of **proficiency level** on:
 - L2 processing
 - Degree of interference from L1
Second language (L2) processing

- **Main question in this line of L2 research:**
 - How “native-like” are processing mechanisms and neural substrates for L2 vs. L1?

- L2 acquisition “fundamentally different” from L1 acquisition
- Different factors at play in L2 learning
Second language (L2) processing

- **Age of acquisition (AOA)**
 - Critical Period for language learning (Lenneberg, 1967)
 - Different language processes and brain areas for L2 vs. L1 (Kim et al., 1997, Weber-Fox & Neville, 1996)

- **Proficiency level**
 - Affects brain organization & patterns of language processing (Perani et al., 1998; Steinhauer et al., 2009)

- **Crosslinguistic transfer**
 - L1 knowledge may affect L2 learning/processing
Two views of crosslinguistic transfer

- **Influence of L1 in L2 acquisition**
 - Depends on similarities or differences between L1 & L2
 - **Positive transfer** – when L1 and L2 have similar properties
 → facilitation in learning
 - **Negative transfer** – when L1 and L2 are contradictory
 → interference/difficulty in learning

- **Co-activation of L1 during L2 processing**
 - Automatic
 - When L1 and L2 properties differ → interference
 - Co-activation does not *necessarily* impact L2 acquisition
 - But *may* lead to more persistent transfer if not inhibited
Using ERPs to study transfer effects

- Long history of **behavioral studies** on L1-L2 transfer (Nitschke et al., 2009 for a review; but see Clahsen & Felser, 2006)

- **ERP evidence of transfer** is limited and inconclusive (Kotz, 2009 for a review)

- **Excellent temporal resolution** (in milliseconds)
 - Useful method to study language comprehension
 - Timing of language-related cognitive processes as they unfold
Eliciting ERP responses

- **Violation paradigm:**
 - Test sentences contain violation occurring on specific target word
 - Directly contrasted with correct (control) sentences
 - Analyze difference in brain waves between these 2 conditions

 e.g.
 - *The soup has been eaten by the man* *(lexical-semantic/meaning violation)*
 - *The soup has been killed by the man* *(lexical-semantic/meaning violation)*
 - *The soup has been eat by the man* *(grammatical violation)*

- Specific language processes trigger **identifiable wave patterns**
 - Differ in **timing** and **location on scalp**
Lexical-semantic (meaning) processing

- The pizza was too hot to ...
 *cry vs. eat

- N400
 - Negative wave
 - ~ 400 ms after violation
 → Marker of difficulty in word meaning integration

Kutas, Lindamood & Hillyard, 1984
Syntactic (grammar) processing

- **The children...**
 - *plays* vs. *play* in the garden

- **P600**
 - Positive wave
 - ~ 600 ms after violation
 - Controlled grammatical processing, reanalysis and repair

Weber-Fox & Neville, 1996
Some kinds of grammatical violations elicit a **biphasic pattern** of N400 + P600

- **N400**: Search/retrieval of lexical-semantic properties of word + clash
- **P600**: Failed integration

(Pattern we expect to see in our own study)

NP (ACC) + intransitive verb

Peter met Mary

Peter yawned Mary

Argument structure violations: Wrong *number* of arguments

(Friederici & Frisch, 2000)
ERP evidence of transfer

- Thierry & Wu (2007)
 - Lexical transfer effects
 - Native-Mandarin learners of English
 - Pairs of English words (semantic relatedness task)
 - For half the pairs, the words shared a character in Mandarin
 e.g. *Train* and *Ham* → *Huo Che* and *Huo Tui*
 - Subjects’ brain responses showed an implicit character repetition priming effect (reduced N400 effect)

- **Automatic L1 lexical activation during L2 reading**
 - Effect not seen in behavioral performance; only ERPs!

Could these findings be replicated in domain of **syntax**?
Our present study

- Syntactic transfer
- ERP reading study in English
- 2 groups of **late L2 learners** of English
 - Native-French
 - Native-Mandarin
- Compared to **native English monolinguals**
Conditions

- Adjective-noun word order
- Violation paradigm designed to introduce online conflict between L1 and L2
 - English and Mandarin – adjectives are pre-nominal
 - French – majority of adjectives are post-nominal

<table>
<thead>
<tr>
<th></th>
<th>English</th>
<th>Mandarin</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>...the white vase...</td>
<td>✓</td>
<td>× ...le blanc vase</td>
</tr>
<tr>
<td>ii)</td>
<td>...the vase white...</td>
<td>×</td>
<td>✓ ...le vase blanc</td>
</tr>
<tr>
<td>iii)</td>
<td>...the big vase...</td>
<td>✓</td>
<td>✓ ...le grand vase</td>
</tr>
<tr>
<td>iv)</td>
<td>...the vase big...</td>
<td>×</td>
<td>× ...le vase grand</td>
</tr>
</tbody>
</table>
Research questions

- **Native English speakers:**
 - Adjective order violations \rightarrow N400 followed by P600

- **Adult L2 learners of English** (vs. native English speakers)
 - AOA-effects? (support for “critical period”?)
 - Delayed, smaller or missing N400/P600 effects?
 - Different scalp distributions?
 - **Proficiency effects?**
 - High proficiency speakers = “native-like” ERP patterns
 - **Transfer (L1 background) effects?**
 - Differences in French-L1 vs. Mandarin-L1
Transfer effects: Predictions

- No interference for Mandarin-L1 and comparable effects for both violation conditions (same as English)
- Negative transfer/interference only for French-L1 in i vs. ii
- Comparison of English control conditions (i vs. iii) could also be informative, as correct control (i) = L1-violation in French

<table>
<thead>
<tr>
<th></th>
<th>English</th>
<th>Mandarin</th>
<th>French</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>...the white vase...</td>
<td>✓</td>
<td>✗ ...le blanc vase</td>
</tr>
<tr>
<td>ii)</td>
<td>...the vase white...</td>
<td>✗</td>
<td>✓ ...le vase blanc</td>
</tr>
<tr>
<td>iii)</td>
<td>...the big vase...</td>
<td>✓</td>
<td>✓ ...le grand vase</td>
</tr>
<tr>
<td>iv)</td>
<td>...the vase big...</td>
<td>✗</td>
<td>✗ ...le vase grand</td>
</tr>
</tbody>
</table>
Participants

- **Initial sample**
 - English-L1 (n = 13)
 - French-L1 (n = 11)
 - Mandarin-L1 (n = 12)

- **Language background questionnaire**
 - Age of acquisition (AOA) of English
 - Exposure to each language

- **Proficiency measures**
 - *Global L2 proficiency*:
 - Self-ratings
 - Cloze-test
 - *Specific knowledge of adjective word order*:
 - Online grammaticality judgments (behavioral)
 - Structure-specific proficiency
Procedure

Silent reading of correct/incorrect English sentences

Examples of stimuli

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>L1-French violation</td>
<td>He put the white vase</td>
<td>on the table</td>
</tr>
<tr>
<td>ii.</td>
<td>L2-English violation</td>
<td>He put the vase white</td>
<td>on the table</td>
</tr>
<tr>
<td>iii.</td>
<td>L1-L2 control</td>
<td>He put the big vase</td>
<td>on the table</td>
</tr>
<tr>
<td>iv.</td>
<td>L1-L2 violation</td>
<td>He put the vase big</td>
<td>on the table</td>
</tr>
</tbody>
</table>

Baseline

- End-of-sentence grammaticality judgments
- Intermixed with 8 types of filler sentences (1/2 violations)
- Rapid serial visual presentation (300ms, 200ms ISI)
Initial sample: Behavioral results

- % acceptability
- All groups were highly accurate in grammaticality judgments
- But L2 groups rejected violations less accurately than English natives
- However, L2 groups did not differ from each other
Initial sample: ERP results

- **English native speakers:**
 - **N400:** difficulty in lexical-semantic integration
 - **P600:** difficulty in grammatical processing; reanalysis

He put the...
Initial sample: ERP results

- **Mandarin-L1 speakers:**

- **Same ERP patterns as English native speakers**
Initial sample: ERP results

- **French-L1 speakers:** *Pre-nominal* adjective condition
 - No transfer/interference expected
 - Pre-nominal in both French (L1) and English (L2)
 e.g. “*big vase*” – “*grand vase*”

- Same ERP patterns as English-L1 and Mandarin-L1 speakers
Initial sample: ERP results

- **French-L1 speakers:** *Post-nominal adjective condition*
 - Negative transfer (interference) expected
 - Post-nominal in French but pre-nominal in English
 - e.g. “white vase” but “vase blanc”

- Different L2 pattern: N400 only??
French-L1 speakers (cont).

- Earlier effects for correct control condition!

- Effect triggered by adjective (too early to be tied to L2)

- **L1 violation effect:** English control is ungrammatical in French

- **L2-effects:**
 - Missing L2-P600?
 - Is large L2-N400 a real L2 effect or continuation of positivity?
French-L1 speakers (cont).

- Aim: Correct for early difference and see if L2-N400 survives
- New baseline: 700-800 ms

- L2-violation: English native-like pattern! (N400+P600)
Initial sample: Discussion

- No significant ERP differences between English, Mandarin and French participants when L1 and L2 converge.

- L1 causes clash in French speakers for adjectives that are pre-nominal in English (= post-nominal in French).
 - “The white vase” vs. “le vase blanc” - short lived “L1-P600”

- L1-activation is transient: Does not hinder L2 processing.
 - French-L1 speakers showed native-like L2 processing pattern (N400 + P600) after baseline correction.
Follow-up with larger sample

- **Larger sample:**
 - English (n = 17)
 - Mandarin (n = 21)
 - French (n = 23)

- **Behavioral results:**
 - High accuracy in acceptability judgments
 - No difference between L2 groups
 - No evidence of transfer effects

- **ERP results:**
 - Similar ERPs (N400+P600) for English-L1 & Mandarin-L1
Focusing on the French-L1 group...

All four conditions

No additional baseline correction necessary to see L2 effects
Focusing on "the white vase"...

= Good in ENG, Bad in FR

English
Mandarin
French

N400 (French viol.)
P600 (French viol.)
Larger sample: Discussion

- **Similar ERP signatures of L2 processing**: N400 + P600
 - **Across groups**: English, Mandarin, French
 - Against strong version of “critical period” claim that L2 processing is qualitatively different

- **Transfer effect** in French-L1 group where L1 & L2 differ
 - L1 grammar is activated while processing L2
 - L1-driven N400 + P600
 - Only in the group we expect + in condition we expect!
 - Overridden by L2 grammar processing

- Similar findings as Thierry & Wu (2007) but for syntax
 - Automatic L1 activation during L2 processing
 - Not evident in behavioral results
Proficiency-level in L2 (English)

- Currently investigating whether L1 transfer effects mediated by L2 proficiency level
- Is there more to it than co-activation of L1 that does not affect L2?
- In low proficiency speakers, this co-activation might lead to transfer in its “classical view” (difficulties in L2 due to L1 grammar)

Low proficiency level → more persistent L1 interference?

→ less native-like L2 processing?

- Which measure of proficiency best predicts ERP patterns?
 - Global proficiency vs. Structure-specific proficiency
French-L1 group: High vs. Low proficiency

- **By cloze test:** no real differences in L1 effects
French-L1 group: High vs. Low proficiency

- **Behavioral accuracy:** larger L1-P600 in low proficiency
Proficiency effects: Preliminary findings

- Initial evidence that proficiency level mediates transfer effects in French L2-learners
 - L1-P600 (“transfer”) effect limited to low-proficiency French group
- Currently testing additional low-proficiency French-L1 speakers
- Our prediction (based on other L2 data from our lab):
 - Including more low proficiency French speakers
 - Stronger transfer effects (L1-P600 will be even larger)
 - Weaker L2 effects (L2-P600 smaller than in current sample)
Take home message

- **ERP data** on transfer effects in *grammar*
- **L1 grammar** plays a role in L2 processing/acquisition
 - Even for structures that are rather easily learnable
 - Even if not particularly useful (different properties)
- May *interfere* down the line with *native-like L2 processing*, especially at *low proficiency* level
- **Highlights interplay between factors** such as AOA, L1 background and proficiency level in L2 learning/processing
- Demonstrates ERPs extremely useful at detecting differences in processing patterns *in absence of behavioral differences*
THANK YOU!
Acknowledgments

- Ms. Tiffany Lin, MScA

Funding:

- NSERC grant to KS: *Brain signatures of second language acquisition*
- CRC/CFI grant to KS: *Neurocognition of Language*
- CIHR, Vanier CGS: *PhD Scholarship to KK*
- Faculty of Medicine, McGill: *Tomlinson PhD Fellowship to KK*
- University of Montreal: *Bursary of Excellence to NB*
EXTRA INFORMATION
Initial Sample

<table>
<thead>
<tr>
<th>L1-</th>
<th>AOA</th>
<th>Listening</th>
<th>Reading</th>
<th>Pronunciation</th>
<th>Fluency</th>
<th>Vocabulary</th>
<th>Grammar</th>
<th>Cloze-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese</td>
<td>Mean</td>
<td>9.91</td>
<td>5.92</td>
<td>5.75</td>
<td>5.50</td>
<td>5.42</td>
<td>5.00</td>
<td>5.25</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>4.39</td>
<td>0.90</td>
<td>0.75</td>
<td>1.00</td>
<td>0.79</td>
<td>0.85</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>16</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L1-</th>
<th>AOA</th>
<th>Listening</th>
<th>Reading</th>
<th>Pronunciation</th>
<th>Fluency</th>
<th>Vocabulary</th>
<th>Grammar</th>
<th>Cloze-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>Mean</td>
<td>16</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>4.16</td>
<td>0.94</td>
<td>0.54</td>
<td>1.04</td>
<td>1.00</td>
<td>0.81</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>23</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
Larger Sample

<table>
<thead>
<tr>
<th>L1-Chinese</th>
<th>AOA</th>
<th>Listening</th>
<th>Reading</th>
<th>Pronunciation</th>
<th>Fluency</th>
<th>Vocabulary</th>
<th>Grammar</th>
<th>Cloze-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>10.13</td>
<td>6.00</td>
<td>5.86</td>
<td>5.57</td>
<td>5.48</td>
<td>5.00</td>
<td>5.33</td>
<td>25.10</td>
</tr>
<tr>
<td>SD</td>
<td>4.22</td>
<td>1.05</td>
<td>0.73</td>
<td>0.93</td>
<td>0.81</td>
<td>0.77</td>
<td>0.91</td>
<td>3.35</td>
</tr>
<tr>
<td>Min</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Max</td>
<td>16</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L1-French</th>
<th>AOA</th>
<th>Listening</th>
<th>Reading</th>
<th>Pronunciation</th>
<th>Fluency</th>
<th>Vocabulary</th>
<th>Grammar</th>
<th>Cloze-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>14</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>SD</td>
<td>4.08</td>
<td>0.82</td>
<td>0.58</td>
<td>0.85</td>
<td>0.85</td>
<td>0.65</td>
<td>0.92</td>
<td>3.35</td>
</tr>
<tr>
<td>Min</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Max</td>
<td>23</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>27</td>
</tr>
</tbody>
</table>
Larger sample (incl. initial)

- Behavioral results:

 - English-L1 = 17, French-L1 = 23, Mandarin = 21
Larger sample: English

- English (n = 17)
- All four conditions

- Control conditions only
 No differences
Larger sample: Mandarin

- Mandarin (n = 21)
- All four conditions

- Control conditions only
 No differences
Predictions: Native English

- Adjective order violations → Posterior positive-going **P600**
 - Non-canonical adjective orders:
 - e.g. *brown big dog vs. big brown dog*
 - (Kemmerer et al., 2006)

2 possible ERP patterns: What precedes the P600?

- Biphasic (E)LAN + P600?
 - Syntactic ERP profile
 - Syntactic word-order violation
 - (Neville et al., 1991)
Predictions: Native English (cont.)

OR:

- Biphasic N400 + P600 pattern?
 - Secondary predication
 - He painted the vase white
 - Depends on lexical properties of verb
 - He saw the vase white
 - N400: Search/retrieval of lexical-semantic properties + clash
 - P600: Failed integration

*NP_{ACC} + intransitive verb

Peter met Mary
*Peter yawned Mary

Argument structure violations: Wrong number of arguments

(Friederici & Frisch, 2000)
Structure-specific vs. general proficiency

- Further evidence from another condition in same study

- Native-French (N=23) and native-Mandarin (N=21) late learners of English were compared to native-English monolinguals (N=17) in a reading ERP study in English
- Nominal morphology: articles and their interaction with singular/plural markers [7, 8]
- English and French make use of nominal morphology [cf. Table 1]
- Mandarin: no singular indefinite determiner and no singular/plural morphology [4]
- Target sentences contained NPs involving mismatching plural morphology and singular indefinite articles

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>i)</td>
</tr>
<tr>
<td>ii)</td>
</tr>
</tbody>
</table>
Fig 1: Acceptance rates

- COR
- VIOL

Fig 2: English-L1

Fig 3: Voltage maps

Fig 4: French-L1

Fig 5: Mandarin-L1

- As predicted for the native-English, the mismatch violation condition ("a books") elicited a left anterior negativity (LAN, 350-450ms) + P600 (cf. Fig.2)
- In contrast, an N400+P600 pattern + a subsequent anterior negativity was found in the French-L1 and Mandarin-L1 groups (cf. Fig 4 and 5)
• No differences between French and Mandarin learners at either low or high proficiency levels.

• High proficiency groups (Fig 6a): marginally significant posterior negativity followed by large P600 ($p < .0001$). No late negativities.

• Low proficiency groups (Fig 6b): broad N400 (cond $p < .04$), weak P600 at Pz only, and late anterior negativity (1200-1300 ms; cond*antpost: $p < .02$).

• Irrespective of L1-background, the P600 amplitude significantly correlated with L2 proficiency, and more so in terms of structure-specific proficiency (behavioral error rates, $r = -0.51$, $p < 0.05$) than overall proficiency (cloze test, $r = 0.32$, $p = 0.05$) or age of acquisition ($r = -0.45$, $p < 0.05$).

• In a stepwise regression, only the behavioral error rates (acceptability for incorrect sentences) survives as a significant predictor of size of P600 effect.
Syntactic transfer effects

- **Tokowicz & MacWhinney (2005)**
 - Native-English (L1) learners of Spanish (L2)
 - Grammaticality judgment task:
 - Tense-marking (L1 similar to L2)
 - Determiner-number agreement (L1 differs from L2)
 - Determiner-gender agreement (unique to L2)
 - Sensitive to L2 grammatical violations (P600 effect) *only* on constructions similar in L1-L2 or unique to L2
 - Violations in L2 *not* detected when L1 and L2 dissimilar

- L1 background affects L2 grammatical processing
 - No indication of this distinction in behavioral performance