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Abstract 

Timbral blend is a fundamental aspect of various musical activities for shaping sounds and musical 

intentions, most prominently in composition and performance. It also underpins how people listen 

to and understand music. Although blend is most intuitively rendered with sounds through 

“external” hearing, the notion of “internal” hearing provides an alternative but still musically 

meaningful angle to approach blend. Previous studies have mostly focused on timbral instrumental 

blend of heard sounds, with little evidence on how imagined blend mediated by mental images 

functions in comparison with “externally” heard blend. Given the implicit role of imagining blends 

in different musical practices, another question that can be asked is whether musical background 

influences the properties of imagined blend. To investigate these questions, two groups of 

participants (musicians and non-musicians; 32 per group) were presented with pairs of short 

instrumental sounds in unison from 14 different instruments in two different conditions. In the first 

condition, individual instruments were played sequentially, and participants were instructed to 

imagine them being played simultaneously and rate their degree of blend. In the next condition, 

pairs of instruments were played simultaneously, and participants were asked to rate the perceived 

degree of blend. Results showed significant interaction effects between the type of instrument pairs 

and the two presentation conditions, and among instrument pairs, presentation conditions, and 

musical backgrounds. Similar effects were also observed after different instrument pairs were 

agglomerated into different instrumental family pairs, suggesting both specific and general 

instrumental contingency for the quality of imagined blend. Acoustic analyses were conducted on 

the sound stimuli and were used in modeling blends in the two conditions. Results suggested that 

while certain acoustic factors function consistently both in heard and imagined blend, some 

acoustic features contribute differently to the two types of blends, a result confirmed by two “blend 

spaces” generated with multidimensional scaling. Overall, it appears that the perception of heard 

and imagined blends draws on potentially different abstractions of certain acoustic features. In 

practice, how these two types of blends might differ is a result of complex interactions involving 

instrumental choices and listeners’ musical backgrounds. 
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Résumé 

Le mélange timbral est un aspect fondamental de diverses activités musicales pour façonner les 

sons et les intentions musicales, notamment dans la composition et l'interprétation. Il sous-tend 

également la manière dont les gens écoutent et comprennent la musique. Bien que le mélange soit 

le plus intuitivement rendu avec des sons par l'audition « externe », la notion d'audition « interne » 

fournit un angle alternatif mais toujours musicalement significatif pour aborder le mélange. Les 

études antérieures se sont principalement concentrées sur le mélange instrumental timbral des sons 

entendus, avec peu de preuves sur la façon dont le mélange imaginé médié par des images mentales 

fonctionne par rapport au mélange entendu « extérieurement ». Étant donné le rôle implicite de 

l'imagination des mélanges dans différentes pratiques musicales, une autre question qui peut être 

posée est de savoir si le contexte musical influence les propriétés du mélange imaginé. Pour étudier 

ces questions, deux groupes de participants (musiciens et non-musiciens ; 32 par groupe) ont reçu 

des paires de sons instrumentaux courts à l'unisson provenant de 14 instruments différents dans 

deux conditions différentes. Dans la première, les instruments individuels étaient joués 

séquentiellement, et les participants devaient imaginer qu'ils étaient joués simultanément et évaluer 

leur degré de mélange. Dans la deuxième, des paires d'instruments ont été jouées simultanément, 

et les participants devaient évaluer le degré de mélange perçu. Les résultats ont montré des effets 

d'interaction significatifs entre le type de paires d'instruments et les deux conditions de 

présentation, et entre les paires, les conditions et la formation musicale. Des effets similaires ont 

été observés après que les paires instrumentales aient été agglomérées en paires de familles 

instrumentales, suggérant une contingence instrumentale à la fois spécifique et générale pour la 

qualité du mélange imaginé. Des analyses acoustiques ont été menées sur les stimuli sonores et 

ont été utilisées pour modéliser les mélanges dans les deux conditions. Les résultats suggèrent que 

si certains facteurs acoustiques fonctionnent de manière cohérente dans les mélanges entendus et 

imaginés, certaines caractéristiques acoustiques contribuent différemment aux deux types de 

mélanges, un résultat confirmé par deux « espaces de mélange » générés par une mise à l'échelle 

multidimensionnelle. Dans l'ensemble, la perception des mélanges entendus et imaginés semble se 

reposer sur des abstractions potentiellement différentes de certaines caractéristiques acoustiques. 

En pratique, la façon dont ces deux types de mélanges peuvent différer est le résultat d'interactions 

complexes impliquant les choix instrumentaux et la formation musicale des auditeurs. 



 

iv 

 

Acknowledgments 
Time has flown by since I began the new journey in music technology two years ago. The COVID 

pandemic has shadowed this journey since the very beginning and brought unexpected challenges. 

Luckily, with the wonderful people in MPCL I am able to finally put a final period on my master’s 

thesis, getting ready for the new challenges in the forthcoming PhD studies. Firstly, I would like 

to thank my supervisor, Professor Stephen McAdams, for recognizing my passion for music 

research and welcoming me to the wonderful MPCL at the very start (while I was still a chemistry 

graduate with no academic background in music whatsoever!). I am grateful for his guidance and 

inspiration throughout my studying at McGill, and I am looking forward to continuing our research 

for my PhD. I sincerely thank our wonderful technical manager Bennett Smith for programming 

my experiments with all the fussy details I asked for every now and then. I was always amazed by 

the prompt and precise updates he made to my experiments following our email correspondence. 

Our statistical consultant Marcel Montrey also offered valuable input into clarifying some of the 

problems I encountered in data analyses. The wonderful MPCLers: Yuval Adler, Marcelo Caetano, 

Lena Heng, Erica Huynh, Iza Korsmit, Behrad Madahi, Lindsey Reymore, Joshua Rosner, Jade 

Roth, Kit Soden, and Matthew Zeller, have always been inspiring me with their wisdom and 

passion for music. I also thank them for their feedback on my thesis research and piloting my 

experiments. I would like to especially thank Lindsey Reymore for giving me (a first-time 

experimenter) hands-on guidance on how to run experiments with human participants. My lovely 

composer friends: Benjamin Lavastre, Omer Barash, Francis Battah, and Theo Haber, for our 

endlessly exciting discussion on great composers and music. Lastly, to my wonderful parents: 

without their unconditional support I wouldn’t be able to embark on this great adventure of music. 

  



 

v 

 

Author Contributions 
Under the supervision of Professor Stephen McAdams, I was responsible for coming up with the 

research questions, designing and running the experiments, and analyzing and interpreting the data. 

Bennett Smith programmed the experiments and helped me prepare them. 

  



 

vi 

 

Table of Contents 
 

Abstract ........................................................................................................................................... ii 

Résumé ........................................................................................................................................... iii 

Acknowledgments .......................................................................................................................... iv 

Author Contributions .......................................................................................................................v 

Table of Contents ........................................................................................................................... vi 

List of Figures ................................................................................................................................ ix 

List of Tables ................................................................................................................................ xii 

Chapter 1 Introduction .................................................................................................................1 

1.1 Concurrent timbres and blends ............................................................................................2 

1.1.1 Musical and perceptual background ........................................................................2 

1.1.2 Previous studies on non-instrumental blend ............................................................4 

1.1.3 Previous studies on instrumental blends ..................................................................6 

1.2 Timbre in working memory ...............................................................................................10 

1.2.1 Maintenance of timbre in working memory ..........................................................10 

1.2.2 Timbral imagery .....................................................................................................12 

1.3 Current study ......................................................................................................................14 

1.3.1 Motivations ............................................................................................................14 

1.3.2 Objectives ..............................................................................................................15 

1.3.3 Research questions and hypotheses .......................................................................16 

Chapter 2 Method ........................................................................................................................18 

2.1 Main experiment: perception of heard and imagined blends .............................................18 

2.1.1 Participants .............................................................................................................18 



 

vii 

 

2.1.2 Stimuli ....................................................................................................................19 

2.1.3 Experimental design ...............................................................................................20 

2.1.4 Procedure ...............................................................................................................20 

2.2 Acoustic analysis ...............................................................................................................23 

2.2.1 The Timbre Toolbox ..............................................................................................23 

2.2.2 Pairwise features ....................................................................................................25 

Chapter 3 Results .........................................................................................................................26 

3.1 Correlation between the two blending conditions .............................................................26 

3.2 ANOVA results ..................................................................................................................28 

3.2.1 Instrument-wise blends ..........................................................................................28 

3.2.1.1 Main effects .............................................................................................29 

3.2.1.2 Two-way interaction effects ....................................................................30 

3.2.1.3 Three-way interaction effect ....................................................................36 

3.2.2 Family-wise blends ................................................................................................38 

3.2.2.1 Main effects .............................................................................................39 

3.2.2.2 Two-way interaction effects ....................................................................40 

3.2.2.3 Three-way interaction effect ....................................................................42 

3.3 Regression modeling of blend ratings ................................................................................43 

3.3.1 Blends in the concurrent condition ........................................................................43 

3.3.2 Blends in the sequential condition .........................................................................44 

3.4 Multidimensional scaling of blend ratings .........................................................................45 

3.4.1 MDS of blends in the concurrent condition ...........................................................46 

3.4.2 MDS of blends in the sequential condition ............................................................49 

3.4.3 Projection of acoustic correlates ............................................................................53 

3.4.3.1 Acoustic correlates in the concurrent condition ......................................53 



 

viii 

 

3.4.3.2 Acoustic correlates in the sequential condition .......................................54 

Chapter 4 Discussion ...................................................................................................................56 

4.1 Congruence and incongruence between heard and imagined blends .................................57 

4.2 The effect of musical backgrounds ....................................................................................60 

4.3 Acoustic correlates of blend ...............................................................................................61 

Chapter 5 Conclusion ..................................................................................................................67 

Appendix 1: Loudness match adjustment ......................................................................................70 

Appendix 2: Synchrony adjustment ...............................................................................................71 

References ......................................................................................................................................72 

 

  



 

ix 

 

List of Figures 
Figure 2-1. Experimental interface of the sequential condition. ................................................... 22 

Figure 2-2 Experimental interface of the concurrent condition. ................................................... 22 

Figure 3-1. Median blend ratings for each instrument pair within musicians. ............................. 27 

Figure 3-2. Median blend ratings for each instrument pair within non-musicians. ...................... 27 

Figure 3-3. Main effect of blending condition on blend ratings (error bars correspond to the 95% 

confidence intervals [CI] of the means). ....................................................................................... 29 

Figure 3-4. Main effect of instrument pair on blend ratings (error bars correspond to the 95% CI).

....................................................................................................................................................... 31 

Figure 3-5. Interaction effect between blending condition and musical background on blend 

ratings (with 95% CI). ................................................................................................................... 31 

Figure 3-6. Interaction effect between instrument pair and musical background on blend ratings 

(with 95% CI). .............................................................................................................................. 32 

Figure 3-7. Interaction effect between blending condition and instrument pair on blend ratings 

(with 95% CI). .............................................................................................................................. 32 

Figure 3-8. Median blend ratings (with 95% CI) in the two blending conditions for pairs having 

significantly different conditional blend differences with large effect sizes, annotated with 

corresponding p-values and effect sizes of the differences. Pairs with the largest conditional 

blend differences are highlighted with red annotations. ............................................................... 34 

Figure 3-9. Frequencies of instruments forming pairs with significant conditional blend 

differences with large effect sizes. Instruments belonging to pairs with larger conditional 

differences are colored in black. ................................................................................................... 35 



 

x 

 

Figure 3-10. Means of conditional blend differences plotted for musicians and non-musicians 

separately. Pairs plotted in the graph are the ones having significantly different conditional blend 

differences between musicians and non-musicians. ..................................................................... 37 

Figure 3-11. Main effect of family combination on family-wise blend ratings (with 95% CI). .. 39 

Figure 3-12. Interaction effect between musical background and family combination on family-

wise blend ratings (with 95% CI). ................................................................................................ 41 

Figure 3-13. Mean blend ratings (with 95% CI) in the two blending conditions for all family 

combinations, annotated with p-values and effect sizes of the differences. Family combinations 

having significantly different conditional blend differences are highlighted with red annotations.

....................................................................................................................................................... 42 

Figure 3-14. MDS solution obtained with concurrent blend ratings, along with projections of 

acoustic correlates. Non-significant projections are drawn with dashed grey lines. For correlates 

only having one MDS dimension with significant contribution to the projections, the significant 

dimension is appended to correlates’ names with “*”. In the case of no significant contributions 

from either dimension, “(--)” are appended to the correlates’ names. .......................................... 47 

Figure 3-15. Stress contributions from individual instruments for the MDS scaling of concurrent 

blend ratings. ................................................................................................................................. 48 

Figure 3-16. Representation errors for each pair of instruments in the MDS solution of 

concurrent blend ratings. Darker colors correspond to larger representation errors. .................... 49 

Figure 3-17. MDS solution obtained with sequential blend ratings (optimally matched with the 

MDS configuration obtained with concurrent blend ratings via Procrustean transformations), 

along with projections of acoustic correlates. ............................................................................... 50 

Figure 3-18. Stress contributions from individual instruments for the MDS scaling of sequential 

blend ratings. ................................................................................................................................. 51 

Figure 3-19. Representation errors for each pair of instruments in the MDS solution of sequential 

blend ratings. Darker colors correspond to larger representation errors. ...................................... 52 



 

xi 

 

Figure 4-1. Distributions of blend ratings by musicians (upper panels) and non-musicians (lower 

panels) separated by the two blending conditions. ....................................................................... 60 

Figure 4-2. MDS spaces obtained with concurrent and sequential blend ratings. A few pairs that 

were tested to have large conditional blend differences are connected by colored lines (colors are 

shared by the two graphs). ............................................................................................................ 65 

  



 

xii 

 

List of Tables 
Table 2-1. Acoustic descriptors calculated on single instrument sounds, the respective input 

audio representations used for calculation, and statistics used for summarizing time-varying 

descriptors. Pairwise associations were used to generate pairwise features. ................................ 24 

Table 3-1. Final model obtained with concurrent blend ratings. Beta estimates are standardized. 

Standard errors and p-values of beta estimates are attached, along with the overall fit of the 

model. Significant predictors whose bootstrap confidence intervals (95%) don’t cross zero are in 

boldface. ........................................................................................................................................ 44 

Table 3-2. Final model obtained with sequential blend ratings. Beta estimates are standardized. 

Standard errors and p-values of beta estimates are attached, along with the overall fit of the 

model. Significant predictors whose bootstrap confidence intervals (95%) don’t cross zero are in 

boldface. ........................................................................................................................................ 45 

Table 3-3. Fit of projections and p-values of acoustic correlates in the MDS space obtained with 

concurrent blend ratings. Significant correlates are in boldface. .................................................. 54 

Table 3-4. Fit of projections and p-values of acoustic correlates in the MDS space obtained with 

sequential blend ratings. Significant correlates are in boldface. ................................................... 55 

 

Table A. Loudness adjustment applied to instrumental samples based on the results of loudness 

matching pre-experiment. ............................................................................................................. 70 

Table B. Time offsets between instrumental samples applied to ensure pairwise perceptual 

synchrony. Values are times in milliseconds that row’s stimuli should be delayed to be in 

synchrony with column’s stimuli. ................................................................................................. 71 

 

 



 

1 

Chapter 1  
Introduction 

 Introduction 
 

The perceptual complexity of timbre has been well described in both the existing music-

theoretical and psychophysical literature. A recent review by Siedenburg & McAdams (2017a) 

listed four conceptual distinctions of timbre which clarified some of the foundations behind timbre. 

The last one among them, which states that “Timbre is property of fused auditory events”, speaks 

to the interactive potential of different sonic events and the operational aspect of creating timbre 

from different constituents. Auditory scene analysis (Bregman, 1990) elucidates how complex 

auditory information is organized on a perceptual level and contributes to different perceived 

sound sources. On a higher level, an analogy can be made concerning how distinct sound sources 

can fuse into a single perceptual unity or remain separated. In the case of fusion, the resulting 

composite sound creates the illusion of a “virtual source image” (McAdams, 1984b). Fused 

concurrent sounds can have a range of distinct timbral characteristics (Sandell, 1995), which offer 

great potentials to orchestration and composition in the form of different instrumental 

combinations. Unsurprisingly, orchestration treaties have given great attention to the choices of 

concurrent combinations of different instruments for achieving different sonic intentions (e.g., 

Adler, 2002; Berlioz & Strauss, 1948; Rimsky-Korsakov, 1964). Various psychoacoustic studies 

have also focused on the perception of concurrent instrumental sounds (for a recent review on this, 

see McAdams, 2019b), many of which have specifically dealt with the perception of blend of the 

resulting concurrent timbres and its potential acoustic correlates.  

Despite the predominant discussion in these studies addressing blend on actually sounding 

combinations of instruments, blend is also applicable to the mental image of imagined instrumental 

combinations. The imagination of different instruments interacting with each other and hearing 
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instruments being played internally is commonly referred to as “inner hearing”, and is not 

unfamiliar to musicians, especially composers or orchestrators. Imagined concurrent timbres can 

be subjected to composers’ evaluation for subsequent modification, bridging written scores (initial 

ideas) and concrete sounds (realization). Previous studies have shown the authenticity of imagined 

timbral imagery based on long-term memory and prior learning of single instruments emulating 

that from hearing actual physical stimuli (Crowder, 1989; Halpern, Zatorre, Bouffard & Johnson, 

2004). However, little empirical research has been done on the mental image of concurrent timbres, 

let alone the quality of blend of imagined timbres. One of the basic questions concerning imagined 

blends would naturally be how comparable they are to perceived actual blends, and furthermore, 

how acoustic features might contribute to the found relationship. The current study tried to take a 

first step in this direction, examining imagined blends of different acoustic instruments in 

comparison with the perception of actual blends of the same instruments, as well as their potential 

acoustic correlates. This chapter gives an overview of existing research on two essential elements 

involved in the present study: a) concurrent timbres and perception of instrumental blends, and b) 

timbre in working memory, followed by a general description of motivations and questions 

proposed for the current study. 

1.1 Concurrent timbres and blends 
1.1.1 Musical and perceptual background 

Modern investigations on the timbral quality of concurrent instrumental sounds appeared 

relatively later than those conducted on single instrumental sounds, the first of the former might 

be credited to Kendall and Carterette’s research on the perceptual, verbal, and acoustical attributes 

of wind instrument dyads (Kendall & Carterette, 1991). On the other hand, the application of 

concurrent combination of instruments has always been a crucial component in composition and 

orchestration practices (Goodchild & McAdams, 2018). As Sandell (1989) identified, “Combining 

timbres, such as for melodic doubling, has been an important part of ensemble writing for centuries 

… and is likely to remain an important compositional concern in the future”.  

Generally speaking, the concurrent grouping of sounds is fundamental in how we perceive 

and understand the sonic environment we experience every day. Auditory scene analysis 

(Bregman, 1990) provides a framework for how the auditory system makes sense of multiple sound 

objects and thus derives a meaningful representation of them. Whereas segregation of sound 
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objects facilitates listeners’ attention to different events separately (to thus “understand” the sonic 

environment), under certain conditions sounds from different sources can fuse together into a 

“virtual” sound source, where new timbres emerge from this perceptual fusion (McAdams, 2019b, 

p. 218). This latter case is especially pertinent in the creation of musical sounds. In the context of 

musical activities such as orchestration, the perceptual process involved follows a hierarchy of 

different organizations that contribute to different levels of orchestration effects (McAdams, 

Goodchild & Soden, in press). The most basic level of them is the perceptual grouping of 

concurrent sounds into events where elemental perceptual attributes like pitch and timbre emerge, 

allowing higher level orchestration effects to function.  

Because of its fundamental role in orchestration and rich possibilities amenable to perceptual 

investigations, concurrent timbres have been one of the earliest focuses of empirical studies on 

orchestration-related issues. Sandell (1991) discussed several potential topics on orchestration that 

could be meaningful for perceptual investigations, including semantic descriptors of instrumental 

timbre, characterizing strength of instruments, and concurrent timbres. Sandell argued that 

concurrent timbre is a more suitable topic given its great relevance to musicians and central role 

in orchestration teaching. Several specific sonic objectives concerned with concurrent timbre were 

listed by Sandell, including augmenting existing timbres, softening timbres, inventing timbres, 

timbral imitation, etc. These objectives (or techniques) were further distilled into three sonic goals 

relevant to concurrently sounding timbres (Sandell, 1995): timbral heterogeneity (emphasizing the 

independence or segregation of timbre), timbral augmentation (having one timbre embellishing 

another), and emergent timbre (synthesizing a new timbre from existing timbres). These were later 

borrowed by McAdams et al. (in press) in formalizing different concurrent grouping aims within 

the taxonomy of orchestral grouping effects.  

What underlines these timbral techniques is the perceptual attribute of blend (Sandell, 1991 

& 1995), which often functions as a criterion of how well the chosen instruments combine together. 

According to the definition found in Merriam-Webster, “blend” means “to combine or associate 

so that the separate constituents or the line of demarcation cannot be distinguished”. In the context 

of music, a similar idea of instrumental blend can be found in orchestration treatises such as by 

Piston (1955), which generally suggest instrumental combinations “in which the distinctiveness or 

individuality of the constituent instruments is subordinated to obtaining an overall, uniform timbral 

quality” (Sandell, 1991). This musical definition is in line with the perceptual fusion process of 
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creating a “virtual source image” described by McAdams (1984b). The primary role of employing 

blend in orchestration was further stated by Blatter (1997), describing the usage of blending, 

mixing, matching, and contrasting different instrumental and timbral colors as “one of the chief 

goals of the orchestrators”. Because of its clear definition across different orchestration treatises 

and underlying role in evaluating composite sounds, blend is an intrinsic topic when it comes to 

discussing the effect and quality of different instrumental combinations, rendering itself of great 

interest to both musicians in actual musical practice and researchers who want to investigate the 

perceptual groundings of such practice. Additionally, as the previously mentioned different 

concurrent timbral techniques suggest, blend is not an all-or-none phenomenon (McAdams et al., 

in press). The amenability of blend to continuous manipulation (and hence a continuous perception 

of its strength), where the combined instruments can vary from completely blended to completely 

segregated, facilitates its perceptual modeling. All these facts confirm the importance and 

pertinence of investigating instrumental blends through the lens of perception. 

1.1.2 Previous studies on non-instrumental blend 

Prior to the earliest perceptual studies on instrumental blends conducted by pioneers such as 

Kendall and Carterette (1991; 1993a) and Sandell (1989; 1991; 1995), there had been several 

auditory perceptual studies conducted concerning blend-related issues for non-instrumental 

sounds, and results from these studies sometimes address similar perceptual groundings as in the 

case of instrumental blends. As part of the general background of existing studies on blend, a 

summary of some exemplary research and findings on non-instrumental blend will be discussed 

below. 

A few studies investigated the recognition of concurrently sounding different vowels with 

their fundamental frequencies separated by different amounts (e.g., Scheffers, 1983; Halikia, 

1985). Results from these studies generally suggest that as the two vowels are separated further in 

pitch, the accuracy of recognition increases, implying plausibly a decrease in the degree of blend. 

When vowels are presented in unison the accuracy of recognition is the lowest. These results 

suggest an effect of pitch separation alone on the perception of blend where unisons have the 

biggest advantage of promoting blend. Certain non-unison harmonic intervals like fifths and 

octaves are also more likely to promote blend compared with inharmonic intervals due to a larger 

number of partials shared by the two sounds (Sandell, 1991). 
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Studies on the perceptual fusion of different acoustic components within a complex tone also 

have great implications for the higher-level fusion of different sound sources. The harmonic series 

is an important cue for yielding an unambiguous pitch sensation for a sustained complex sound. 

Sustained inharmonic sounds are more likely to yield the perception of multiple pitches which in 

many cases can be interpreted as the existence of multiple sources (McAdams, 1984b). In terms 

of the temporal aspect, a series of experiments by McAdams (1984a) showed that the coherence 

of frequency and amplitude modulation of acoustic components contributes to perceptual fusion. 

In the amplitude case, this also implies the cue of synchronous onsets of acoustic components, as 

demonstrated by Rasch (1978) where asynchrony between components in a two-voiced tone leads 

to easier identification of individual voices and lower masking threshold for the softer voice. These 

cues of temporal coherence can be summarized under the Gestalt “common fate” principle, which 

states that sounds changing in similar ways are likely to have originated from the same source 

(Bregman, 1990). Additionally, if the coupled interaction of amplitude and frequency modulation 

defines a familiar spectral envelope (e.g., vowel formants), this would suggest a stable resonance 

structure and hence contributes to perceptual fusion (McAdams, 1984b).  

A more empirical investigation of the usage of blend in actual musical practice was the choral 

blend study by Goodwin (1980). In the experiment, singers were asked to sing a sustained vowel 

in a soloistic manner and then in a choir singing manner where the singers listened to a pre-

recorded well-blended choir sound and attempted to blend with the choir. Spectral analysis of the 

singing showed that compared with vowels sung in the soloistic manner, those sung in the choir 

manner had stronger fundamentals with fewer and weaker partials. This transformation of spectral 

features indicates lowered spectral centroid and darkened timbre, which are in line with singers’ 

practice of "darkening" their tone to blend with other singers (Sandell, 1995). 

These results have either direct or indirect implications for blends of instrumental sounds. 

The cues of harmonicity, onset synchrony and coherent frequency and amplitude modulation can 

be applied to the combination of different sound sources and function as concurrent grouping 

principles of event formation, which leads to a blended timbre. The more these principles 

converge, the stronger the degree of fusion (McAdams et al., in press). Results from Goodwin’s 

study suggested an advantage of sound with darker timbre to blend with other sounds, which might 

also be applicable to instrumental blend. 
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1.1.3 Previous studies on instrumental blends 

As discussed in the background section, the use of concurrent timbres of different 

instruments constitutes an indispensable aspect of orchestration, and blend is an important 

perceptual underpinning of the quality of concurrent timbres. Several studies have been conducted 

on the perception of concurrent timbres and blends of different acoustic instruments and have 

suggested their potential acoustic correlates. Sandell (1989) investigated blends of fifteen different 

instrumental sounds synthesized with the line-segment approximations form by Grey (1975). 

Participants rated all possible pairs of instruments in unison on the degree of blend between the 

“separated” and “fused”. The blend ratings of pairs with a given instrument were averaged to 

generate a single averaged blend of each instrument, its blendability within the set of sounds. The 

resulting averaged blends showed significant negative correlation with both spectral centroid and 

perceptual attack time of single instruments (Gordon, 1987), suggesting that the presence of any 

dark instrument with quick attack in an instrument pair generally leads to better blend than a pair 

of two bright instruments with slow attack.  

The blend ratings were also used as distances in multidimensional scaling, where the 

resulting space shows the degree of blend between instruments by their spatial proximity. The 

technique of multidimensional scaling (MDS) has been often used in perceptual research on timbre 

where listeners’ dissimilarity ratings of sound pairs are mapped onto a spatial configuration in a 

given number of dimensions. The resulting geometrical structure, often called a “timbre space”, is 

thought to reflect the perceptual qualities listeners use to compare the sounds (McAdams, 2019a). 

In Sandell’s study, the blend ratings were conceived as a measure of psychological proximity, 

analogous to perceived similarity, between a pair of instruments. The two-dimensional “blend” 

space generated has two dimensions that correlate well with spectral centroid and perceptual attack 

time, thus suggesting that the more similar the two sounds are in terms of these two parameters, 

the better they blend. The way these two acoustic factors interact (specifically in terms of sum and 

difference of their respective values for individual instruments) and affect blend was further 

corroborated by Sandell (1991) using the same stimuli and was summarized as a “gravitational 

effect”, which means the lower and closer the values of spectral centroid or perceptual attack time 

are for both sounds, the better the sounds blend.  

Additionally, Sandell compared blends in unison and minor third intervals and the relative 

explanatory power of different acoustic factors. The results showed that at the unison, the overall 
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lower sum of spectral centroid was more important than the similarity in centroid for promoting 

blend; of lesser importance were the overall sum of perceptual attack times and their similarity. 

When the two sounds were separated by a minor third, the relative significance of sum and 

difference criterion for the two acoustic factors was swapped: the closeness between spectral 

centroids of the two sounds became more important than their overall lower sum, and the closeness 

between perceptual attack times emerged as being more important than their overall smaller sum. 

Both interactions (sum and difference) of the perceptual attack time were of less importance 

compared to the unison context.  

Another important finding from Sandell (1991) is the perceptual evidence of intrinsic 

blending power of individual instruments, i.e., the fact that “certain instruments tended to impose 

a certain degree of blend regardless of what they were paired with”. “Good blenders” revealed by 

the experiments, such as bassoon and French horn, were also confirmed in different orchestration 

treatises. The underlying acoustic factors were identified as lower spectral centroid and shorter 

attack.  

Finally, Sandell (1995) re-investigated the acoustic correlates of instrumental blends using 

the same stimuli from his experiments in 1991, considering more acoustic parameters derived from 

the composite concurrent sounds (e.g., in the case of spectral centroid, it is computed on the 

composite sound itself, which can be seen as a counterpart of the sum of spectral centroids in 

Sandell’s research in 1991). He also examined potential interaction parameters between pairs of 

instruments (such as the correlation of temporal centroids between two instruments). Stepwise 

correlation identified composite spectral centroid as the most important factor affecting blend 

(lower composite centroid leads to better blend) when the two sounds were in unison, followed by 

the attack contrast (a measure of how different the attack envelopes are between two sounds). 

When the two sounds were separated by a minor third, the difference between spectral centroids 

for the two sounds replaced composite spectral centroid as the most important factor (smaller 

difference leads to better blend), corroborating the findings in Sandell (1991). Several temporal 

features that were found to be significant in the unison context became non-significant in the minor 

third context, which, together with the emerging importance of centroid difference, might be 

explained by the increased spectral distinguishability of the two sounds following the pitch 

separation. As a result, listeners can more reliably use the spectral difference to make blend ratings, 
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whereas temporal features lose their relative perceptual importance as they don’t provide further 

information beyond that of spectral features.  

The stimuli used by Sandell’s experiments are constrained by their synthetic nature and short 

duration (around 300 ms). Some early explorations on instrumental blend using authentic 

recordings in longer musical contexts were conducted by Kendall and Carterette (1991; 1993b; 

1993c). They investigated the perceptual similarities of concurrent timbres of different wind 

instruments with multidimensional scaling. Stimuli were all played by instrumentalists, covering 

several musical contexts for concurrent timbres with varied durations (unison, unison melody, 

major third and harmonized melody). Subsequent verbal attribute rating experiments identified 

two stable dimensions in the resulting similarity space across different musical contexts as “nasal” 

vs. “not nasal”, and “rich” vs. “brilliant”. Preliminary findings in their experiments also suggested 

a direct relationship between timbral profiles of single instruments and their concurrent pairs, as 

the concurrent timbral similarity space can be largely reconstructed from unweighted vector sums 

of single instruments placed in the same perceptual similarity space. Using the same stimuli, 

Kendall and Carterette conducted further experiments (1993a) about the blend and identifiability 

of concurrent wind timbres. There was a moderately strong inverse relationship between blend and 

identifiability, meaning that the less two instruments blend, the easier it is to identify them 

individually in their concurrently sounding pair. As in Sandell’s experiments, the unison context 

produced the highest blend ratings and lowest identification. Specifically, oboe dyads which were 

identified as “nasal” in their previous experiments received the lowest blend ratings. They also 

found that the degree of blend can be rather well predicted by the distance between the constituent 

instruments in their 2-D perceptual similarity space, with greater distance corresponding to less 

blend. This was supported again when they submitted blend ratings to multidimensional scaling 

resulting in a “blend” space, which was nearly identical to the perceptual similarity space of single 

instruments. 

More recent studies on instrumental blend expanded both the scope of instruments and 

musical contexts for blend to happen. Tardieu & McAdams (2012) studied specifically the blend 

between a sustained instrument (woodwind, brass, bowed string) and an impulsive instrument 

(pitched percussion, plucked string), which had never been investigated before. They found that 

longer attack times and lower spectral centroids increased blend where the properties of the 

impulsive instrument had more contribution than those of the sustained instrument. On the other 



9 

 

hand, the overall emergent timbres of such dyads were controlled primarily by the spectral 

envelope of the sustained instrument and the attack of the impulsive instrument. They concluded 

that in orchestration practice for dyads with such mixing of instruments, their perceived blends 

and overall timbres can be controlled almost individually by choosing the impulsive and sustained 

instruments. Lembke, Parker, Narmour and McAdams (2019) included pizzicato strings in 

studying blends of instrumental dyads and triads. Partial least-squares regression was used to 

investigate the relationship between perceived blends and different acoustical predictors related to 

timbres and musical contexts (e.g., pitch and articulation). The type of articulation (e.g., impulsive 

vs. gradual attack) was proven to be important for predicting blend where the presence of plucked 

strings resulted in clearly lower blend ratings than for combinations of sustained instruments. 

Blends within larger real-world orchestral contexts were also investigated by McAdams, 

Gianferrara, Soden and Goodchild (2016). The stimuli they used were orchestral excerpts 

involving different instrument family combinations with varying numbers of instrumental parts. 

Potential factors affecting blends included in the analysis were type of timbral blend (timbral 

emergence or timbral augmentation), timbral category (combinations of instrument families), 

number of instrument parts and degree of parallelism of musical lines. Two blend-related 

perceptual criteria were used in experiments: blend vs. no blend and unity vs. multiplicity. 

Stepwise regression showed a significant effect of degree of parallelism in accounting for the 

variance of ratings. Results also suggested complex interactions between the above factors in 

explaining orchestral blends rather than independent effects of isolated factors. Additionally, the 

two tested perceptual criteria seemed to reveal a more complex nature of musical blend, as 

combinations can be perceived as “multiple” but still blended. This suggested that “the notion of 

musical blend is not synonymous with complete perceptual fusion”.  

An approach investigating instrumental blend that focused on the aspect of performers’ 

efforts can be seen in Lembke, Levine and McAdams (2017). They studied how performers, 

specifically a bassoon player and a horn player, achieve blended timbres together in various 

musical contexts when assigned different performance roles as “leader” or “follower”. In line with 

the timbral darkening strategy found in Goodwin’s vocal blend study (1980), they found that when 

assigned the role “follower”, musicians adjusted the sounds they produced towards a darker timbre 

with reduced frequencies in the main formant or lower spectral centroids, together with slight 

reductions in sound level. The findings suggested that instrumentalists’ roles in the performance 
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would determine how they coordinate with each other and adjust the sounds to achieve a common 

sonic goal as in the case of timbral blend. 

An acoustic explanation of blends often seeks to correlate blend ratings with generalized 

global acoustic descriptors like spectral centroid. The perceptual importance of local descriptors 

for instruments’ formant structures has also been studied by Lembke & McAdams (2015). They 

used pitch-generalized spectral envelope descriptions to characterize the formant structures of 

wind and brass instruments. The perception of their blends was found to be affected by the relative 

position and prominence of instruments’ main formants. Specifically, for a dominant instrument 

and a subordinate one to blend well, the higher upper bound of the main formant for the subordinate 

instrument should not exceed than that of the dominant instrument. 

1.2 Timbre in working memory 
As discussed in the previous sections, existing research in blend mostly addresses it as a 

perceptual phenomenon characterizing concurrent sounds. However, the perception of blend can 

also happen in an imagined combination of sounds, where the sounds are “perceived” and 

evaluated in the form of mental image. To investigate such “virtual blend”, it is necessary to first 

know how timbre is stored in working memory, comparing it to the sensory representation of 

timbre resulting from real stimuli. A few existing studies on this topic will be discussed below. 

1.2.1 Maintenance of timbre in working memory 

According to the classic multistore model, as elaborated by Atkinson and Shiffrin (1968), 

human memory can be thought of as structured in terms of different independent entities (“stores”) 

functioning on different time scales. Between the lowest storage of sensory register with fast-

decaying pre-attentive information and longer-term memory (LTM), short-term memory (STM) is 

responsible for retaining categorical information for a measurable time, where the duration of 

retention can be lengthened by active rehearsal. In the case of exerting conscious rehearsal and 

maintenance, the concept of STM is more closely related to working memory (WM), which “is 

usually defined as an active form of memory that, as a whole, underpins a range of important 

cognitive faculties such as problem solving and action control” (Siedenburg & Müllensiefen, 2019, 

p. 99). An example of active maintenance in WM is explicit or implicit vocalization of memorized 
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items in the case of verbal WM, where the original memory trace is consciously refreshed and kept 

in a “phenological loop” by (sub)vocal rehearsal (Baddeley, 2012).  

The concepts of STM and LTM can also be applied to the case of non-verbal auditory 

memory, with STM operating on sensory representations rather than on verbal items (Cowan, 

1984). Of particular interest and relevance to the context of the current study is how timbre is kept 

in WM, as the imagination of instrumental blends requires active control of mental images of 

different timbres. The way timbre is maintained in short-term working memory has been 

demonstrated to be different compared to other non-verbal auditory memory as in the case of 

melody. Using a dual task paradigm, Nees et al. (2017) demonstrated that melodic short-term 

memory is maintained by subvocal articulatory rehearsal (i.e., by singing or humming internally 

to oneself), which suggests a strong similarity with verbal short-term memory. Unlike simple 

melodies, timbres of most instruments cannot be faithfully reproduced vocally by humans, which 

renders them less likely to be recoded into other formats such as an internal motor code for 

subvocal rehearsal of melodies in WM (Crowder, 1993). The concept of visual image thus may 

apply well to the case of timbre in WM. Similar to a visual image, a “timbral image” preserves the 

sensory coding of the original experience of hearing the timbre without being contaminated by 

other forms of recoding (Crowder, 1993).  

Some experiments have provided evidence that timbre in WM is likely to be maintained by 

“attentional refreshing” (Camos, Lagner & Barrouillet, 2009) of the initial sensory trace of hearing 

it, i.e., by “replaying” the timbral image internally that was just activated. Schulze & Tillmann 

(2013) found that concurrent articulatory suppression (by asking participants to count out loud 

from 1 to 5) didn’t impair the performance of backward recognition of timbral series of different 

acoustic instruments. This result suggests that WM of timbre is unlikely to involve verbal labeling 

of timbres and maintenance by articulatory rehearsal of the labels, because otherwise the 

recognition performance would be worse as it shares similar mental resources required by the 

suppression task. Moreover, Soemer & Saito (2015) showed that attention-driven reenactment of 

the auditory memory trace can be the underlying resource for timbre in STM. Participants in their 

experiments were exposed to series of artificial sounds differing in their timbres and they had to 

judge if a delayed probe sound was in the heard series. Different types of secondary suppression 

tasks were included during the delay between the series and probe sound. Their experiments 

showed that maintenance of timbral information was robust to articulatory suppression (where 
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participants were asked to articulate the syllable “da” at a specified interval). However, a secondary 

auditory imagery task (where participants were asked to evaluate the imaged pitch height of 

auditory imageries evoked by certain onomatopoeic words) was disruptive to main task, suggesting 

possible shared mental resources between auditory imagery (which is obviously attention-driven) 

and maintenance of timbre in WM.  

A similar experimental scheme was used in Siedenburg & McAdams (2017b) where they 

tested item recognition on timbres with both familiar acoustic instrumental sounds and unfamiliar 

transformed sounds. Both concurrent articulatory suppression (by asking participants to count 

aloud) and concurrent visual distractor task (by asking participants if there was a direct repetition 

of grid in a black-and-white grid pattern sequence) impaired the main recognition task for both 

familiar and unfamiliar sounds. The fact that unfamiliar sounds were unlikely to be labelled argues 

against verbal labelling and rehearsal of labels as a maintenance strategy for their timbres. The 

negative effect of articulatory suppression on the main task was therefore mainly attributed to its 

interference with the auditory trace (on which attentional refreshing relies). The negative effect of 

the visual distractor task on the main task was attributed to reduced attentional resources that 

attentional refreshing also relied on.  

Overall, these studies show support for attentional refreshing (i.e., mentally replaying 

timbres) as the underlying mechanism of how timbre is preserved in WM, which is unlikely to be 

mediated by “the persistence of the sensory memory trace” (Siedenburg & McAdams, 2017b) or 

verbal labelling of timbres and subsequent rehearsal of the labels. 

1.2.2 Timbral imagery 

Timbral imagery is a closely related topic which provides additional helpful clues to the 

mental representation of timbre. The concept of “imagery” needs to be differentiated from that of 

“image” (as mentioned in the previous section) in that the concept of “image” applies to the 

original sensory representation from actually seeing (in the case of a visual image) or hearing (in 

the case of an auditory image) the target object, whereas in the case of “imagery” the same 

representation is derived “top-down” (from long-term memory contents) without prior stimulation 

(Crowder, 1993); examples include “picture an apple” or “imagine a piano sound”.  

Some empirical evidence has demonstrated that imagery for timbre closely resembles the 

concrete sensory representation (mental “image”) of actually hearing the timbre, a characteristic 
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that aligns with how timbre is maintained in working memory as discussed in the previous section. 

Crowder (1989) compared two experimental conditions where the tasks were both to judge 

whether two consecutively presented tones, which could vary in timbre, were of the same pitch or 

not. In the first condition, participants listened to the two consecutive tones, whereas in the second 

condition the first tone was imagined by participants with a presented pitch height and a specified 

instrumental timbre. In both conditions, the same qualitative effect was found: matched timbres 

facilitated correct “same-pitch” responses and the response times were faster than in tones of 

different timbres. This result was interpreted as evidence for the sensory-based nature of timbral 

imagery, that “the neural consequences of hearing an instrumental timbre and imagining it are, to 

some extent, equivalent” (Crowder, 1993). With the help of functional magnetic resonance 

imaging, Halpern et al. (2004) was able to directly compare the brain activity from hearing and 

imagining sounds with different timbres. Participants were asked to compare pairs of timbres and 

rate the perceived dissimilarity while their brain activities were recorded. In another experimental 

condition the same procedure was repeated expect that stimuli were to be imagined by participants. 

Results showed a significant correlation between the dissimilarity data in the perceived and 

imagined conditions, suggesting a strong parallel between perceived timbre and timbral imagery. 

Moreover, the brain activity in the two conditions featured the same pattern in the auditory cortex. 

These results, taken together, point to the “authenticity” and accuracy of timbral imagery, that 

“sensory representations activated by imagery can resemble those activated by sensory 

stimulation” (Siedenburg & Müllensiefen, 2019, p. 102).  

Overall, existing studies on the maintenance of timbre in WM and imagery for timbre speak 

to the active and “experiential” nature of timbre cognition: timbre can be maintained in working 

memory by refreshing the initial sensory trace of hearing the timbre, and the mental image of 

timbre can also be re-constructed from long-term memory, which resembles actual sensory 

stimulation. Both processes involve the re-creation of aspects of original perceptual experience, 

i.e., of hearing the timbre itself. Relating back to the phenomenon of “inner hearing”, these facts 

suggest aspects of its cognitive nature: imagining and actively maintaining timbre in WM leads 

listeners to actually “hear” the original sounds internally. 
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1.3 Current study 
1.3.1 Motivations 

The capability of humans to recreate authentic mental images of sounds without necessarily 

hearing them underlies implicitly many different musical activities. In terms of performance, it 

could be the case that orchestral players would imagine the pitch of an upcoming tutti entrance in 

unison to facilitate tuning (Zatorre & Halpern, 2005). It is not difficult to extend this to a scenario 

of achieving timbral blend between an existing orchestral pedal and an upcoming new chord where 

players of the latter would adjust their articulation and intonation based on how they imagine they 

would blend with the ongoing orchestral sounds, for example. When composers and conductors 

study or write a score, instead of conceiving the music at hand as a set of abstractions of musical 

rules, they readily imagine all the musical aspects (pitch, rhythm, timbre, etc.) to mentally stage 

the musical scene.  

As discussed in the previous sections, many studies utilizing various neurological methods 

have suggested in general that neural activities responsible for internal auditory representation can 

occur without sound stimuli, which possibly mediates the experience of imagining music (Zatorre 

& Halpern, 2005). It is still not clear, on a higher perceptual level, how different concrete musical 

treatments (or techniques) involving interactions of sounds (e.g., segregation, blend, layering, etc.) 

render themselves comparatively in actual perception and imagination. In contrast to a single tone 

or a single melody, real-world music is much more complex when considering all the possibilities 

of sound interaction. It is therefore of great interest to further investigate these higher-level musical 

organization methods from the two alternative perceptual angles, i.e., “corporeal” vs. imaginary.  

Out of all the sound interaction strategies available, instrumental blend is probably the most 

basic one, the simplest form being two different instruments sounding together. As shown in the 

previous introduction, blend is also the building block of many higher-level orchestration 

techniques. Given its formal simplicity and musical importance, instrumental blend would an 

excellent candidate for a preliminary investigation into the working mechanisms of “imaginary 

musical soundscape”. 
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1.3.2 Objectives 

For composers and conductors, the scenario of imagining different combinations of 

instruments working together is mostly associated with timbral imagery activated from long-term 

knowledge of the instruments. This dependency on prior knowledge of instruments makes long-

term timbral imagery highly individual and most exclusive to trained musicianship. Extra 

limitations will be needed to facilitate a controlled experimental setup where imageries generated 

by different people can be meaningfully compared. Thus, to reduce the complication of individual 

knowledge and allow comparison between musicians and non-musicians, the imagined 

instrumental blend studied here will be generated from short-term timbral images, i.e., after 

hearing the sounds. Participants will hear single sounds of instruments, and the imagined blends 

will be constructed based on these concrete stimuli. This design also allows a straightforward 

comparison between imagined blend and heard blend: in a separate condition, single instrumental 

sounds used in the imagining condition will be paired and played together, allowing participants 

to rate the heard blend. 

The main objective of this study is thus to compare how listeners perceive the physically 

heard and imagined instrumental blend. This includes identifying how different the two types of 

blends are for individual instrument pairs and the overall agreement between heard and imagined 

blend. Additionally, whether the factor of musical background (musicians vs. non-musicians) 

influences how the two types of blends are perceived will be studied. To understand how acoustic 

parameters might contribute to the perception of the two types of blends differently, acoustic 

analyses will be conducted on the stimuli. Extracted acoustic features will be used for regression 

modeling of blending ratings in the two conditions separately. Finally, to visually compare how 

instruments blend in the two conditions, multidimensional scaling (MDS) will be used to construct 

two “blend spaces” by treating the degree of blend as a similarity measure between instruments. 

Similar treatment can be seen in Sandell (1989; 1991) and Kendall & Carterette (1993a). Acoustic 

features extracted from the previous analyses will be correlated with the scaling configurations to 

help interpret the MDS results. 
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1.3.3 Research questions and hypotheses 

In line with the objectives, a few questions can be proposed for the current study: 

i. How comparable are the perceived degrees of blend for imagined and heard blends? 

Additionally, does the factor of musical background play a significant role? 

ii. Do listeners rely on similar or different acoustic parameters in their perception of imagined 

and heard blends? 

Although there is very limited knowledge about imagined blend, some preliminary 

hypotheses can be drawn from available evidence about blend and timbral image/imagery outlined 

in earlier sections. Stiller (1985) suggested, from the point of view of orchestration practice, that 

the timbre of two different instruments sounding together is intermediate between the two 

constituent timbres, and one is soon able to imagine the sound of such combinations without 

having heard them before. This observation doesn’t address blend directly, but it does offer a 

possible clue as to how listeners, especially musicians, might evaluate the blending sounds in 

imagination. Based on Stiller’s observation, for people who have been working with combinations 

of instruments (e.g., composers, orchestrators, conductors, chamber performers, etc.) it might be 

easier to imagine combinations of sounds that match how they would sound together. They could 

have developed a set of strategies based on previous experience that allows them to efficiently 

conjure up mental images of combinations of instruments. On the contrary, it might be 

hypothesized that people who don’t usually and intentionally engage with musical activities 

involving the evaluation and creation of combinations of instruments could be more puzzled by 

the imagination task, thus giving ratings that are more likely to deviate from those of physically 

heard blends.  

Regarding the second question, it has been shown in the introduction of timbral imagery that 

the neural activities associated with imagery can match well those from hearing real sounds. In the 

context of the current study, it seems logical that listeners would still give overall coherent ratings 

between heard and imagined blends (i.e., the correlation between ratings for heard and imagined 

blends should be high). However, there is no evidence on whether the quality of timbral images 

can still stay the same under mental manipulations as the imagination of blends involves retrieving 

separate timbral images and superimposing them together (a “virtual blend”), which potentially 

draws on additional attentional resources. Studies such as Soemer and Saito’s (2015) and 

Siedenburg and McAdams’ (2017b) have shown that the maintenance of timbral information relies 
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on attentional refreshing. This might imply that timbral imageries could be “downgraded” or 

further abstracted as additional efforts are being made to superimpose them internally. As a result, 

it is possible that features of stimuli will be extracted differently by listeners when imaging blends 

compared with when evaluating heard blends. How exactly different acoustic features might be 

drawn upon by listeners in the two conditions will need to be uncovered in the analysis. 
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Chapter 2  
Method 

 Method 

2.1 Main experiment: perception of heard and imagined blends 
2.1.1 Participants 

Sixty-four participants in total were recruited (male = 26, female = 35, non-binary = 3; mean 

age = 23.1) which were categorized as musicians (who are currently pursuing a degree in music 

with at least five years of formal music training) and non-musicians (who had never pursued any 

music degrees). Musicians and non-musicians came from Schulich School of Music at McGill  and 

the general Montreal community, respectively. Participants recruited for the non-musician group 

were asked to provide a summary of their musical backgrounds, if any; two of them were later 

grouped into musicians as they received more than five years of formal music training and 

identified themselves as serious amateur musicians. Overall, there are 32 people in the musician 

group (male = 18, female = 11, non-binary = 3; mean age = 23.8), with a mean average of 15.5 

years of musical training (SD = 5.45), and 32 people in the non-musician group (male = 8, female 

= 24; mean age = 22.4), with a mean average of 2.1 years of musical training (SD = 3.34)1. Before 

the experiment, participants passed a pure-tone audiometric test at octave-spaced frequencies from 

125 Hz to 8 kHz (ISO 389–8, 2004; Martin & Champlin, 2000) and were required to have 

thresholds at or below 20 dB HL to proceed to the experiment. Participants were compensated for 

 
1 It is worth mentioning that many non-musician participants reported years of music training including various forms 
of non-continuous informal learning. After cross-checking with verbal feedback gathered by the experimenter, only 
those whose background was sufficient were considered eligible for the musician group. 
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their participation. This study was certified for ethical compliance by McGill University’s 

Research Ethics Board II and all participants signed written consent forms before the experiment. 

2.1.2 Stimuli 

To cover a wide range of instruments allowing for different degrees of blend, 14 different 

instruments were chosen as stimuli in this study, covering all major orchestral families: the 

woodwind family includes flute (abbreviated as “FL” in subsequent tables and figures; same for 

the other instruments), oboe (OB), English horn (EH), bassoon (FA), B-flat clarinet (KLB); the 

brass family includes C trumpet (TrC), French horn (HO), tenor trombone (TP), tuba (TU); the 

(pitched) percussion family includes celesta (CE), vibraphone (Vib), tubular bell (RGL); the string 

family includes violin (VI) and cello (VC). Stimuli for the fourteen instruments were selected from 

Vienna Symphonic Library (https://vsl.co.at). All played a sustained D#4 note at a forte or mezzo-

forte dynamic with ordinary articulations. Instrumental samples were downmixed to mono by 

averaging across the two channels and then trimmed to 2.2 seconds in duration, where a linear 

fade-out envelope was applied to the ending 0.2 seconds. The resulting stimuli all have a sampling 

rate of 44.1 kHz with 16-bit amplitude resolution. Single instrument stimuli were paired up with 

each other, forming 91 pairs in total. These paired stimuli were presented differently in two 

different consecutive conditions (“sequential” and “concurrent”) in the experiment aiming for 

testing the perception of imagined and heard blend, respectively. In the sequential condition, the 

two paired instruments were played one after the other with a gap of 0.5 seconds and participants 

were asked to imagine them being played simultaneously and rate the degree of blend of this 

imagined pair. In the concurrent condition, the two instruments were played simultaneously and 

participants were asked to rate the perceived degree of blend directly. 

As the present study is mainly concerned with blends of concurrent timbres, other musical 

parameters that may affect blend should be controlled as much as possible in both sequential and 

concurrent conditions. One such parameter is loudness (Sandell, 1991). To equalize the perceived 

loudness of the 14 stimuli, six volunteers participated in a loudness-matching experiment in which 

they had to adjust the loudness of all other stimuli to match that of the oboe sample (which 

functions as the reference). One volunteer ran the experiment only once and the rest five volunteers 

ran the experiment twice, generating 11 loudness adjustment values in total. The medians of 

adjustment values were applied to the corresponding stimuli except for the celesta sample where 
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an additional 2dB boost was applied because of inadequate loudness boost with the original median 

value2. 

Another important factor affecting blend is the onset synchrony between constituent sounds 

(McAdams, 1984b). Because non-synchronized sound events can prevent blending, it is necessary 

to ensure that the onset asynchrony for a given concurrent pair is minimized. Given that different 

instruments have different perceptual attack times (Gordon, 1987), aligning physical onsets does 

not necessarily ensure the perceptual attack synchrony. To align instrumental stimuli in the 

concurrent condition, seven volunteers participated in an attack synchronization experiment 

following a similar design in Gordon (1987) where all 91 pairwise combinations of instruments 

were synchronized. The medians of time shift values were applied to respective instruments in all 

pairs. The experimenter did a final listening check on the synchronized stimuli and made minor 

adjustments to pairs where the synchrony was not very satisfactory. The adjusted values were used 

to prepare stimulus pairs in the concurrent condition.3 

2.1.3 Experimental design 

The experiment was a three-way mixed design with one between-subjects factor—the 

musical background with two levels: musicians and non-musicians—and two within-subject 

factors—91 instrument pairs and two blending conditions (imagined and heard). 

2.1.4 Procedure 

The experimental session was run with the PsiExp computer environment (Smith, 1995). 

Sounds stored on a Mac Pro 5 computer running OS 10.6.8 (Apple Computer, Inc., Cupertino, 

CA) were amplified through a Grace Design m904 monitor (Grace Digital Audio, San Diego, CA) 

and presented over Dynaudio BM6a loudspeakers (Dynaudio International GmbH, Rosengarten, 

Germany) arranged at about ±60°, facing the listener at a distance of 1.5 m. Participants were 

seated in an IAC model 120act-3 double-walled audiometric booth (IAC Acoustics, Bronx, NY). 

The amplification level of the monitor was chosen in advance by the experimenter after pilot 

 
2 Values of loudness adjustment applied to instruments are documented in Appendix 1 

3 Values of time shifts applied to instrument pairs are documented in Appendix 2. 
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sessions to ensure a comfortable level for listening to all stimuli in the experiment and remained 

fixed for all participants.  

Participants were briefly introduced to the experimental procedure first and were corrected 

for any misunderstandings about the notion of blend that was being tested in the experiment (i.e., 

instead of how pleasant the combined sounds sound like, blend in this study is about whether 

different sounds fuse into one virtual sound source).  

At the very beginning of the experiment, participants were provided two examples of 

instrument pairs that are generally perceived to blend well (violin + cello) and poorly (flute + 

tubular bell). “Well-blended” was described as “the sounds fuse together as a single unity in 

perception when they sound together”; “poorly-blended” was described as “the sounds are more 

easily perceived as separate sources when they sound together.” For these examples, constituent 

instruments were played one after the other followed by the concurrently sounding pair.  

Participants then entered a familiarization phase where 21 instrument pairs (randomized 

possible combinations of flute, oboe, trumpet, tuba, violin, celesta, tubular bell) were played 

sequentially. This was designed to allow participants to establish an idea of the possible range of 

blends they would be rating on and to decide how they would use the range of the rating scale.  

The entire experiment was divided into two parts, corresponding to the two conditions 

described in the previous part. As hearing concurrent pairs first might prime listeners on the quality 

of blends and interfere with how they might imagine blends, the sequential condition (where 

participants had to imagine) was always presented first. In the first part (interface shown in Fig. 2-

1), paired instruments were played one after the other, which could be replayed altogether by 

pressing the “Play” button. The order of presentation was randomized. Participants were asked to 

imagine the two instruments being played simultaneously and rate how well the two sounds would 

blend in the imagined pair by placing a freely movable cursor on a bar, where a rating towards the 

left represents a low degree of blend and a rating towards the right represents a high degree of 

blend. Ratings were scaled to 0 ~ 1 for analysis. In the second part (interface shown in Fig. 2-2), 

paired instruments were played simultaneously and could be replayed several times. Participants 

were asked to rate the degree of perceived blend of the sounding pairs. The order of presentation 
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of instrument pairs were randomized for both parts. Each part was further divided into two blocks. 

Participants could choose to take a short break between blocks in a part and between the two parts. 

Figure 2-1. Experimental interface of the sequential condition. 

Figure 2-2 Experimental interface of the concurrent condition. 
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2.2 Acoustic analysis 
2.2.1 The Timbre Toolbox 

For the extraction of potential acoustic features related to blend, the Timbre Toolbox 

(Peeters, Giordano, Susini, Misdariis & McAdams, 2011, revised Kazazis, Depalle & McAdams, 

2021) was used, which offers a wide range of audio descriptors useful for musical perceptual 

studies. Previous studies have pointed out the importance of several temporal and spectral factors 

that contributed significantly to blend, common ones such as attack time and spectral centroid 

(Sandell, 1989 & 1991; Tardieu & McAdams, 2012; Lembke et al., 2019), along with various 

global and local spectral-envelope features (Lembke & McAdams, 2015; Lembke et al., 2017). In 

light of these findings, several potential descriptors were chosen in the analysis that sought to cover 

various spectral, temporal and spectro-temporal aspects of the stimuli while not overusing a large 

number of features with unnecessary redundancy. Given the results of hierarchical cluster analysis 

in Peeters et al. (2011) showing correlations among audio descriptors in the Timbre Toolbox, eight 

descriptors were chosen (see Table 2-1) aiming to span different clusters (i.e., represent various 

acoustic aspects of the stimuli) without introducing redundant colinear descriptors. Attack slope 

(AttSlope) is a global descriptor computed on the temporal energy envelope of the audio signal 

that measures the average temporal slope of the energy envelope during the attack segment. RMS 

energy (RMSErg) is a time-varying descriptor measuring the root-mean-square energy of 

overlapping time frames of the audio signal (window length = 1024 samples, hop length = 512 

samples). Spectral centroid (SpecCent), spectral crest (SpecCrest) and spectral variation (SpecVar) 

are time-varying descriptors addressing the content, shape, and temporal varying aspect of the 

frequency spectrum of the sound, calculated from the magnitude-squared STFT representation of 

the signal with Hann windows (window length = 2048 samples, hop length = 512 samples). 

Spectral centroid measures the center of gravity of the spectrum and is usually associated with the 

brightness of the sound (McAdams, 2013, p. 41). Spectral crest measures the peakiness of the 

spectrum which can be used to distinguish between noise-like and tone-like sounds. Spectral 

variation represents the amount of variation of the spectrum over time. Inharmonicity (InHarm), 

noisiness and tristimulus (three ratio values abbreviated as “Tri1”, “Tri2” and “Tri3”) are time-

varying descriptors addressing the harmonic properties of the sound, calculated from the sinusoidal 

harmonic partial representation with Blackman windows (window length = 2048 samples, hop 
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length = 512 samples). Inharmonicity measures the deviation of frequencies of partials from pure 

harmonic frequencies of the fundamental. Noisiness is calculated as the ratio of noise energy (the 

remainder after harmonic energy has been removed from the total energy) to total energy in the 

signal. Tristimulus characterizes the distribution of energies among different partial regions of the 

spectrum, with the first value (Tri1) measuring the proportion of total energy at the fundamental 

frequency, the second value (Tri2) measuring the proportion of energy of the second to fourth 

partials, and the third value (Tri3) measuring the proportion of energy of higher partials. 

 For time-varying descriptors, different summary statistics were used to reflect the general 

trend (median) and variability (inter-quantile range [IQR]) of the descriptors in a single stimulus.  

It has been shown that for certain descriptors the median and IQR values are closely correlated, 

but for others these two statistics reflect different aspects of the stimuli. Following the clustering 

results in Peeters et al. (2011), for the current analysis descriptors showing significant correlations 

between their median and IQR values (linked at the bottom of the dendrogram) were summarized 

by median values only. For the rest of the descriptors, both median and IQR were calculated 

(denoted by suffixes “_Med” and “_IQR”, respectively, following the abbreviated names of 

acoustic descriptors). In total, this gives 13 acoustic descriptor values for single instruments 

(tristimulus has three values). The feature extraction process was carried out in Matlab version 

R2020a (The MathWorks, Inc., Natick, MA). 

Table 2-1. Acoustic descriptors calculated on single instrument sounds, the respective input audio 
representations used for calculation, and statistics used for summarizing time-varying descriptors. 
Pairwise associations were used to generate pairwise features.  

 

Descriptors Input representations Summary statistics Pairwise associations 
AttSlope temporal energy envelope - sum, diff 
RMSErg audio signal Med, IQR sum, diff 
SpecCent power STFT Med, IQR sum, diff 
SpecCrest power STFT Med, IQR sum, diff 
SpecVar power STFT Med sum 
InHarm sinusoidal harmonic Med sum 
Noisiness sinusoidal harmonic Med sum, diff 
Tristimulus sinusoidal harmonic Med sum, diff, correlation 
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2.2.2 Pairwise features 

 To model blends with acoustic descriptors, it is necessary to come up with pairwise features 

that summarize relations between descriptors of constituent instruments. One way to do so, as can 

be seen in Sandell (1991), Lembke & McAdams (2015) and Lembke et al. (2019), is by simply 

taking the absolute difference and composite (sum) of associated descriptors for the paired 

instruments, which will be adopted in this study (denoted by suffixes “_sum” and “_diff”, 

respectively). Modeling like this provides two alternative ways to investigate how the association 

between instruments affects blend, i.e., when two instruments show similar/different/overall 

high/overall low values for a specific acoustic descriptor, how does the perceived blend change. 

Additionally, the Pearson correlation of tristimulus values between paired instruments (TriCor) 

was also considered as a pairwise feature. Overall, this gives 13×2+1 = 27 pairwise features. A 

correlation matrix was calculated on all pairwise features over all 91 instrument pairs. Two features 

(InHarm_Med and SpecVar_Med) were found to show significant correlation (r > .9) between 

their own composite and difference pairwise features. Thus, only their composite pairwise features 

were included in the blend regression analyses. At the end, 25 pairwise features were used as 

potential regressors for the acoustic modeling of blend ratings. 
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Chapter 3  
Results 

 Results 
Blend ratings in the two conditions were first analyzed using correlation to show the degree 

of their overall similarities. ANOVA analyses were subsequently carried out to test the effects of 

participants’ musical backgrounds, instrument pairs, blending conditions, and their interactions. 

Results of acoustic modeling of blends are presented next, followed by multidimensional scaling 

of the blend ratings. All analyses were carried out with R version 4.2.0 (http://www.r-project.org). 

3.1 Correlation between the two blending conditions 
Plotting the distributions of blend ratings for musicians and non-musicians separately for all 

combinations of the two within-subjects factors (instrument pair and blending condition) revealed 

that many of them were not normally distributed and had outliers, which was confirmed with 

Shapiro-Wilk tests.4 Thus, to correlate ratings between concurrent and sequential conditions, the 

median was used to represent participants’ blend ratings for a given instrument pair as it is less 

biased by outliers. Fig. 3-1 and 3-2 show the variation of median blend ratings in the two blending 

conditions across all 91 instrument pairs for musicians and non-musicians, respectively. Both 

musicians and non-musicians gave “comparable” ratings across heard and imagined blends which 

are highly correlated: for musicians, r = .96, p < .0001; for non-musicians, r = .95, p < .0001. This 

result shows that despite local differences between the two conditions, the perceived degree of  

 
4 For musician + concurrent condition, 55 out of 91 instrument pairs have non-normal rating distribution; For musician 
+ sequential condition: 22 out of 91 instrument pairs have non-normal rating distribution; for non-musicians within 
concurrent and sequential conditions, the numbers of pairs with non-normal rating distribution are 79 and 63, 
respectively (alpha level = 0.05). 
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Figure 3-2. Median blend ratings for each instrument pair within non-musicians. 

Figure 3-1. Median blend ratings for each instrument pair within musicians. 
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blend is fairly consistent between them for both musicians and non-musicians, i.e., when two 

instruments are perceived to blend well when sounding together, they would also blend relatively 

well in imagination. 

3.2 ANOVA results 
The original within-subjects factor of instrument pair contains 91 levels. While this retains 

the specificities of instruments and allows close examination of how perception of blend might 

differ between the heard and imagined conditions, it might be also be helpful to determine whether 

any patterns can be found in which specific instruments are generalized into their instrumental 

families, i.e., when this factor of instrumental combinations is further abstracted as family 

combinations. Thus, two different analyses of the ratings are examined here, the first being the 

original design where blends are studied on an “instrument-wise” basis, the second being an 

abstracted organization with “family-wise” blends which will be presented in later sections. 

3.2.1 Instrument-wise blends 

For the original organization of rating data, there are one between-subjects factor—

musicianship (musicians vs. non-musicians)—and two within-subjects factors—one being 

instrument pair (91 different pairs), the other being blending condition (concurrent vs. sequential). 

As the sphericity assumption test were not able to be calculated properly in R for the within-

subjects factors due to greater number of factor levels than that of observations (number of 

participants in this case), an alternative approach for calculating the significance of effects and 

interactions of factors with linear mixed models was used, which does not require the sphericity 

assumption (Field, Miles & Field., 2012, p. 621). Participants were treated as grouping factors 

across which intercepts are allowed to vary, modeling individual differences.5 The ANOVA table 

with F-tests and associated p-values was extracted from the linear mixed model using 

 
5 It has been suggested recently (Heisig & Schaeffer, 2019) that for multilevel models with cross-level interactions, 
random slopes also be added to lower-level components (in the current case, they are the two within-subjects factors). 
Random-intercept-only models could give “severely anti-conservative statistical inference” with inflated Type I error 
rates. Due to time constraints encountered in the analyses with computational difficulty, however, only random 
intercepts were included in the model. 
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Satterthwaite’s method (Satterthwaite, 1946) via the R package “lmerTest” (Kuznetsova et al., 

2017). Results were summarized below. 

3.2.1.1 Main effects 

The musical background of participants had no significant effect, F(1, 62) = 0.54, p = .46. 

Blending condition had a significant main effect on the blend ratings, F(1, 11222) = 458.67, p < 

.0001. Fig. 3-3 shows that pairs presented in the concurrent condition were generally perceived to 

blend better than in the sequential condition where participants had to imagine the blends. As 

expected, the instrument pair had a significant main effect on blend ratings, F(90, 11222) = 337.17, 

p < .0001. Fig. 3-4 shows the blend ratings of different pairs averaged across the two blending 

conditions. This result reflects the intrinsic timbral qualities of different instruments which result 

in different degrees of perceived blend. Fig. 3-4 also suggests that pairs involving one percussive 

and one sustained instrument generally received much lower ratings, corroborating the findings in 

Lembke et al. (2019). 

Figure 3-3. Main effect of blending condition on blend ratings (error bars correspond to the 95% 
confidence intervals [CI] of the means). 
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3.2.1.2 Two-way interaction effects 

The interaction between blending condition and musical background was significant, F(1, 

11222) = 15.51, p < .0001. The two groups rate blends similarly in the sequential condition. As 

can be seen in the interaction graph of these two factors (Fig. 3-5), for both musicians and non-

musicians overall better blends were perceived in the concurrent condition than in the sequential 

condition. However, non-musicians tend to differentiate blends in the two conditions more than 

musicians do, with concurrent blends being overall rated prominently higher by non-musicians. 

There was a significant interaction effect between instrument pair and musical background, F(90, 

11222) = 2.06, p < .0001. The interaction graph between these two factors (Fig. 3-6) suggests that 

musicians and non-musicians gave quite parallel ratings across all instrument pairs, albeit with 

varying degrees of divergence between the two groups for different pairs. Neither group gave 

consistently higher or lower ratings than the other group. The interaction between instrument pair 

and blending condition was also significant, F(90, 11222) = 10.89, p < .0001. Fig. 3-7 shows how 

the rating differences between the two blending conditions vary across instrument pairs.  

To show which pairs were significantly different in the ratings between the two blending 

conditions, multiple pairwise comparisons were conducted focusing on the simple effects of 

condition × instrument pair interaction, i.e., the effect of blending conditions on blend ratings for 

each instrument pair. Shapiro-Wilk tests conducted on the difference scores of blend ratings 

between the two conditions (across the two musicianship groups) showed that several instrumental 

pairs had non-normally distributed difference scores.6 Several extreme outliers7 were also found 

in the difference scores for different instrument pairs by different participants. Therefore, the non-

parametric alternative of a paired t-test—the Wilcoxon signed rank test—was used instead. 

Multiple tests were conducted between the two blending conditions for all 91 pairs of instruments 

with Holm correction for controlling family-wise error with multiple comparisons.  

  

 
6 p < .05 for 53 out of 91 pairs. 

7 Data points that are three times the interquartile range above or below the median. 
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Figure 3-4. Main effect of instrument pair on blend ratings (error bars correspond to the 95% CI). 

Figure 3-5. Interaction effect between blending condition and musical background on blend ratings (with 95% CI). 
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Figure 3-6. Interaction effect between instrument pair and musical background on blend ratings (with 95% CI). 

Figure 3-7. Interaction effect between blending condition and instrument pair on blend ratings (with 95% CI). 
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Fifty-one pairs were found to have significant conditional blend differences. Fig. 3-8 shows 

the median blend ratings in the two blending conditions for 36 instrument pairs out of the 51 pairs 

that had large effect sizes (r ≥ .5), with corresponding p-values and effect sizes annotated in the 

figure. Both Fig. 3-7 and 3-8 showed that pairs containing two sustained instruments in general 

blended better when they were heard than when they were imagined (whether the difference was 

significant or not). Pairs containing one sustained instrument and one percussive instrument 

showed the opposite trend, except for tubular bell: all pairs involving tubular bell were rated 

somewhat higher (better blend) when the pairs were heard than when they were imagined.  

To zoom in further on a few pairs that show bigger heard vs. imagined disparities across 

musicians and non-musicians, which may facilitate later discussion, multiple one-sample 

Wilcoxon signed-rank tests were conducted on the “absolute” difference scores between the two 

blending conditions  for all 91 pairs where the null hypothesis was that the median of the “absolute” 

difference scores is smaller than a predefined positive threshold, here set to the average of medians 

of “absolute” conditional blend differences among all 91 pairs.8  

  

 
8  Difference scores were calculated by subtracting sequential ratings from concurrent ratings for each pair of 
instruments and for each participant. Thus, for each instrument pair, there was a difference score distribution 
constituted by 64 observations. As the focus is to find large conditional differences regardless of the sign, absolute 
difference scores were used. The tested threshold was taken as the average of all medians of such absolute differences. 
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Figure 3-8. Median blend ratings (with 95% CI) in the two blending conditions for pairs having significantly different conditional blend 
differences with large effect sizes, annotated with corresponding p-values and effect sizes of the differences. Pairs with the largest 
conditional blend differences are highlighted with red annotations. 



 

35 

This positive threshold was set to sift out pairs that may have differences that are 

significantly different from zero but whose conditional blend differences are not large enough. The 

Holm correction was applied for multiple comparisons. Significantly different pairs in this test 

(subsequently called “pairs with larger conditional blend differences”) were given red annotations 

in Fig. 3-8. To summarize the pairs shown in Fig. 3-8, the frequencies of individual instruments 

appearing in these pairs were plotted in Fig. 3-9, with instruments involved in pairs with larger 

conditional blend differences colored in black. These frequencies were correlated with the thirteen 

single-instrument acoustic features described in the previous chapter to see if there is a potential 

acoustic explanation for the instruments’ tendency to form pairs that blend substantially differently 

when being heard and being imagined. Three features showed significant correlation (p < .05): for 

attack slope, r = –.66, p = .010; for the median of RMS energy, r = .65, p = .011; for the median 

of the second tristimulus value, r = .60, p = .022. These seem to suggest that when paired with 

other instruments, instrument sounds with slower attack, higher RMS energy, or higher harmonic 

energy within the second to fourth partial region are more likely to yield blends that are perceived 

substantially differently when they are heard compared with when they are imagined. 

Figure 3-9. Frequencies of instruments forming pairs with significant conditional blend 
differences with large effect sizes. Instruments belonging to pairs with larger conditional 
differences are colored in black. 
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3.2.1.3 Three-way interaction effect 

The three-way interaction between blending condition, instrument pair and musical 

background was significant, F(90, 11222) = 1.36, p = .014. As with the two-way interaction 

between blending condition and instrument pair, here the interpretation of this three-way 

interaction will focus on the same simple effects of blending condition within each instrument pair, 

additionally taking into the account of musical background (i.e., does musical background affect 

the conditional blend differences for a given instrument pair?). To do this, difference scores 

between the two blending conditions were calculated for each instrument pair and each participant. 

Multiple comparisons were made for all 91 pairs of instruments between the two groups of 

musicians and non-musicians, testing if the conditional differences were significantly different 

between the two groups. As Shapiro-Wilk tests suggested that many difference scores deviated 

significantly from normality9  and several extreme outliers were found in the data, the non-

parametric Wilcoxon rank sum test was used with Holm correction for multiple comparisons. Only 

two pairs gave significant results, EH_RGL (W = 242, p = .027, r = .45) and RGL_TP (W = 231, 

p = .015, r = .47). 

It should be noted that the p-value correction method used might be so conservative that 

some significant differences of small effect sizes cannot be detected. Thus, a linear mixed model 

approach was also attempted to test these comparisons by setting appropriate contrasts to all the 

factor levels to be compared, bypassing the need to conduct multiple comparisons. As with the 

main ANOVA analysis, random intercepts were included in the model and were allowed to vary 

across participants. Degrees of freedom and t-statistics of model coefficients were calculated using 

Satterthwaites’s method (Satterthwaite, 1946). Results showed that musical background had 

significant effects on the conditional blend differences for seven instrument pairs:10 EH_RGL [b 

 
9 In total there are 2*91 = 182 groups of difference scores to be tested (91 instrument pairs; for each pair, the two 
musicianship groups were compared in terms of the conditional blend differences). 67 sample groups were statistically 
significant (p < .05). 
10 It is worth pointing out that differing results found with the linear mixed model vs. overall non-significant results 
with multiple Wilcoxon tests is also partly due to their different focuses on the data: the former tests differences 
between sample groups by using the mean as the representative statistic, whereas the latter focuses on the median. 
The non-normality of difference scores likely resulted in the contrasting results observed here. The presence of 
frequent outliers in the difference scores plausibly justifies using the median instead of the mean as the summarizing 
statistic. The Q-Q plot of the residuals of the fitted linear mixed model shows that distribution deviates from normality. 
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= –0.120, t(11220) = –3.906, p < .0001], FA_RGL [b = –0.068, t(11220) = –2.211, p = .027], 

OB_RGL [b = –0.089, t(11220) = –2.904, p = .004], RGL_TP [b = –0.146, t(11220) = –4.753, p 

< .0001], RGL_TrC [b = –0.069, t(11220) = –2.239, p = .025], RGL_TU [b = –0.132, t(11220) 

= –4.305, p < .0001], TU_VC [b = –0.064, t(11220) = –2.103, p = .035 ]. Fig. 3-10 shows the 

means of conditional blend differences of the seven significant pairs for musicians and non-

musicians. All seven pairs documented larger conditional blend differences for non-musicians than 

for musicians, suggesting that for these specific pairs, musicians seem to be somewhat better at 

imagining blends that match the perception of actual heard blends as these pairs showed smaller 

conditional blend differences for them. Note the persistence of tubular bell (RGL), which appears 

in six of these pairs, including its pairing with English horn (EH_RGL), oboe (OB_RGL), and 

 
Plotting the model residuals against fitted values also shows violation of homoscedasticity of error. Meanwhile, it has 
been shown that except for when influential outliers are present, violation of normality is not as serious as people had 
thought, and slight deviations from homoscedasticity are also manageable for hypothesis testing in linear models 
(Knief & Forstmeier, 2021). For the current data, as there are several outliers contributed randomly by many 
participants throughout different instrument pairs, and the deviation from homoscedasticity is quite prominent, the 
results of linear mixed model should be largely valid but also interpreted with caution. 

Figure 3-10. Means of conditional blend differences plotted for musicians and non-musicians 
separately. Pairs plotted in the graph are the ones having significantly different conditional blend 
differences between musicians and non-musicians. 
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trombone (RGL_TP), which are the only three that show some degree of opposite differences 

between musicians and non-musicians. 

As a final concluding point, the validity of ANOVA analysis of the three factors using a 

linear mixed model will be briefly discussed. As with the model used above to decompose the 

three-way interaction, the mixed model used at the beginning of this section for omnibus tests of 

main effects and interaction effects had both non-normally distributed and (prominently) 

heteroscedastic residuals. The presence of outliers is almost consistent for blend ratings across all 

levels of the three factors, contributed by different participants, which makes it hard to eliminate 

these data points while keeping the size of the samples suitable for the analyses. When viewed 

together with the evidence of robustness of linear models against violation of normality and 

homoscedasticity assumptions (see footnote 10), the results of the linear mixed model used in the 

analyses seem to be reasonably acceptable, but the problems of multiple outliers and large 

deviation from homoscedasticity of model error should also be noted. 

3.2.2 Family-wise blends 

As mentioned at the beginning of section 3.2, the repeated measure of instrument pair can 

be abstracted into a higher level within-subject factor of family combination, which provides an 

alternative angle of investigating the instrumental factors in heard and imagined blends.  In total, 

the fourteen instruments used in the experiment spanned four different families: woodwinds 

(WW), brass (BR), percussion (PERC), and strings (ST). Since all the individual instruments were 

paired with each other in the experiment, all four families were also completely paired with each 

other, giving ten family combinations as the different levels of this new factor. For each participant 

and blending condition, blend ratings corresponding to the same family combination type were 

averaged, giving a single rating for this family combination. Under this new organization of rating 

data, there is one between-subjects factor of musicianship (musicians vs. non-musicians) and two 

repeated measures of family combination and blending condition (concurrent vs. sequential). The 

standard ANOVA analysis for mixed design was used.  

Before presenting the results, it is worth mentioning the normality assumption of ANOVA. 

The Q-Q plot of the ANOVA model’s residuals showed deviation from normality at both the 

lowest and highest extremes. Some outliers were also found in blend ratings for combinations of 

the three factors from different participants; five of them were extreme outliers. At the same time, 
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it has been shown that the Gaussian model is quite robust against the violation of normality 

assumption (Knief & Forstmeier, 2021). Given the magnitude of non-normality and outliers in the 

current model, the results of ANOVA should be safe to interpret. 

3.2.2.1 Main effects 

Levene’s tests conducted between the two musicianship groups for all combinations of the 

levels of the two repeated measures showed that homogeneity of variance was violated for only 

one such combination (p < .05). Given that only one factorial combination violated this assumption 

and that ANOVA is fairly robust against this type of violation when sample sizes are equal (Field 

et al., 2012, p. 413), the results of ANOVA should still be considered valid. Similar to the analysis 

of instrument-wise blends, there was no main effect of musical background on blend ratings, F(1, 

62) < 1.  

For the main effect of family combination, Mauchly’s test indicated that the sphericity 

assumption was violated, W = 0.00004, p < .0001. Therefore, degrees of freedom were corrected 

using Greenhouse–Geisser correction (𝜀̂ = 0.306). The main effect was significant, F(2.76, 170.98) 

= 574.83, p < .0001. Fig. 3-11 shows the means of family-wise blend ratings for all family 

combinations. The results were comparable to those listed in McAdams et al. (2016) (blends 

studied there were orchestral blends in longer contexts) where the combination of only string 

Figure 3-11. Main effect of family combination on family-wise blend ratings (with 95% CI). 
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instruments yielded the highest blend, and the pairing of percussion instruments with other families 

gave significantly lower ratings than other family combinations. 

The main effect of blending conditions was also significant, F(1, 62) = 44.66, p < .0001. As 

with the results found in instrument-wise blends, blend was rated significantly higher in general 

when heard than when imagined. 

3.2.2.2 Two-way interaction effects 

The interaction effect between musical backgrounds and blending condition was only 

marginally significant, F(1, 62) = 2.90, p = .093. This contradicts the result given in section 3.2.1.2 

where the interaction between these two factors was found to be significant. Although the two tests 

address the same effect, the sample sizes are different in the two ANOVA analyses as the blend 

ratings were averaged across different instrument pairs here. This, along with the fact that the two 

ANOVA analyses were calculated with different methods, could explain the contradicting results. 

As the unaveraged data analyzed in section 3.2.1.2 represent the actual responses given by 

participants in the experiment, it is probably more appropriate to interpret this interaction still as 

significant. 

For the interaction effect between musical background and family combination, Mauchly’s 

test showed a significant violation of sphericity, W = 0.00004, p < .0001. Greenhouse–Geisser 

correction (𝜀 ̂= 0.306) was applied. The interaction effect was not significant, F(2.76, 170.98) = 

1.54, p = .209. Fig. 3-12 shows the interaction graph of this effect, which suggests that musicians 

and non-musicians gave nearly identical blend ratings (averaged across two blending conditions) 

for all family combinations. When viewed together with Fig. 3-6 (note how the two lines 

representing pairwise blend ratings by the two groups intertwine and overlap well with each other), 

it seems that averaging ratings across the same family combination further eliminates the 

differences between musicians and non-musicians on the overall perception of blends. 
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For the interaction effect between family combination and blending condition, Mauchly’s 

test showed a significant violation of sphericity, W = 0.0084, p < .0001. Greenhouse–Geisser 

correction (𝜀̂ = 0.489) was applied. The interaction effect was significant, F(4.40, 272.91) = 19.93, 

p < .0001. As with the analyses done with instrument-wise blends, here the main interest of 

interpreting this effect is to parse it into simple effects of blending condition on each level of family 

combination. Shapiro-Wilk tests conducted on the difference scores of blend ratings between the 

two conditions (across the two musicianship groups) showed that the difference scores in family 

combinations BR_PERC, BR_ST and ST_ST significantly deviated from normality (p < .05). 

Given the robustness of t-tests against non-normality when sample sizes are relatively large (n > 

30) (Gravetter & Wallnau, 2008, p. 301), paired t-tests were used for multiple comparisons with 

Holm correction. Results are annotated in Fig. 3-13 with p-values and effect sizes. Significant 

results are marked in red. The combinations among brass, string and woodwind families, including 

their self-pairings (except for ST_ST), were all perceived to blend significantly higher when they 

Figure 3-12. Interaction effect between musical background and family combination on family-
wise blend ratings (with 95% CI). 
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were heard compared with in imagination. For combinations involving percussion, there were no 

significant conditional blend differences. 

3.2.2.3 Three-way interaction effect 

Mauchly’s test was significant for the three-way interaction, W = 0.0084, p < .0001. 

Therefore, Greenhouse–Geisser correction (𝜀̂ = 0.489) was applied. The effect was not significant, 

F(4.40, 272.91) = 1.78, p = .126. This suggests that the perception of heard vs. imagined blends 

generalized by instrument family combinations is similar between musicians and non-musicians. 

  

Figure 3-13. Mean blend ratings (with 95% CI) in the two blending conditions for all family 
combinations, annotated with p-values and effect sizes of the differences. Family combinations 
having significantly different conditional blend differences are highlighted with red annotations. 
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3.3 Regression modeling of blend ratings 
To understand how acoustic features of constituent instruments might contribute to blend 

ratings and, more importantly, how this picture might be different for the two blending conditions, 

stepwise multiple regression was conducted on the two sets of conditional blend ratings separately 

with 25 pairwise comparisons of features (listed in Table 2-1) as the entire scope of independent 

variables. The median of blend ratings for each instrument pair across the two musicianship groups 

was chosen as the dependent variable. Both independent and dependent variables were 

standardized before running the analyses, which gave standardized beta coefficients allowing 

easier comparisons between relative contributions of different features. Three types of stepwise 

regression directions were tried for the analyses: for the “forward” direction, the model was built 

from an intercept-only baseline by adding one predictor at a time that accounts for the most yet-

unexplained variance in the outcome variables at each stage and improves the predictive power of 

the model indicated by a decrease in the Akaike information criterion (AIC). The selection process 

stops when AIC cannot be further improved; for the “backward” direction, a full model was built 

from the entire scope of predictors and redundant predictors were sequentially removed if the 

corresponding removal improved the AIC; for the “both” direction, the “forward” and “backward” 

were alternated, whereby each predictor was added and then any possibly redundant predictor was 

subsequently removed. For the modeling of each blending condition, the three models given by 

the three stepwise methods were compared using a 5-fold cross-validation. The model with the 

smallest root mean squared error (RMSE) was chosen as the final model for that blending 

condition. Results of the obtained models are presented below. 

3.3.1 Blends in the concurrent condition 

Table 3-1 lists the model coefficients, their associated p-values, and overall fit of the model, 

including the adjusted 𝑅!, which is a metric of how well the regression model generalizes beyond 

the current sample. Plotting the model residuals showed that the normality assumption was met 

(as confirmed by the Q-Q plot), albeit with deviation from homoscedasticity. Thus, to obtain a 

more robust estimate of the significance of the model predictors, bias-corrected-and-accelerated 

(BCa) bootstrap confidence intervals (95%; 2000 bootstrap samples) were also calculated. If the 

confidence interval didn’t cross zero, then the significance of the corresponding predictor could 

be further confirmed. Predictors with bootstrap-confirmed significance are in boldface in the table. 
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Overall, the model accounted for around 87% of the variance in the blend ratings. Seven pairwise 

predictors had significant beta coefficients as confirmed by both the original regression and 

subsequent bootstrap confidence intervals (listed according to descending standardized beta 

estimates): TriCor, Tri2_Med_diff, Tri2_Med_sum, Noisiness_Med_diff, Tri3_Med_diff, 

RMSErg_Med_diff, AttSlope_diff. All significant predictors are negatively correlated with the 

blend ratings except for Tri2_Med_sum. 

Table 3-1. Final model obtained with concurrent blend ratings. Beta estimates are standardized. 
Standard errors and p-values of beta estimates are attached, along with the overall fit of the model. 
Significant predictors whose bootstrap confidence intervals (95%) don’t cross zero are in boldface. 

 

3.3.2 Blends in the sequential condition 

Table 3-2 summarizes the model derived for blend ratings in the sequential condition. 

Similar to the case of modeling concurrent blends, bootstrap confidence intervals were calculated 

for the model coefficients as residuals showed both deviation from normality and 

homoscedasticity. The final model explains around 88% of the variance in the blend ratings. Eight 

pairwise predictors had significant contributions as confirmed by the original regression and 

bootstrap confidence intervals (listed according to descending standardized beta estimates): 

TriCor, Tri2_Med_diff, Tri2_Med_sum, Tri3_Med_diff, Noisiness_Med_diff, AttSlope_diff, 

InHarm_Med_sum, RMSErg_Med_diff. The selected predictors are the same with those 

obtained in the model for concurrent blends, except for InHarm_Med_sum which is only present 

 Beta estimate SE p 
TriCor –0.528 0.079 < .0001 
Tri2_Med_diff –0.463 0.062 < .0001 
Tri2_Med_sum 0.311 0.059 < .0001 
Noisiness_Med_diff –0.249 0.055 < .0001 
Tri3_Med_diff –0.242 0.074 .002 
RMSErg_Med_diff –0.200 0.048 < .0001 
Tri1_Med_diff –0.199 0.066 .004 
AttSlope_diff –0.150 0.057 .009 
InHarm_Med_sum –0.103 0.060 .090 
Model multiple 𝑅!: 0.8705                  Adjusted 𝑅!: 0.8561 
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in the sequential model. All predictors are negatively correlated with the blend ratings except for 

Tri2_Med_sum. 

Table 3-2. Final model obtained with sequential blend ratings. Beta estimates are standardized. 
Standard errors and p-values of beta estimates are attached, along with the overall fit of the model. 
Significant predictors whose bootstrap confidence intervals (95%) don’t cross zero are in boldface. 

 

3.4 Multidimensional scaling of blend ratings 
Multidimensional scaling (MDS) is a useful tool for visualizing proximity data and 

uncovering latent dimensions of judgement (Borg et al., 2018). Blend ratings can also be conceived 

as a specific type of similarity data with higher blend ratings intuitively suggesting a kind of 

affinity between the associated instruments, as done in studies by Sandell (1989; 1991). The 

derived multidimensional space, therefore, can be understood as a “blend space”, where closely 

spaced instruments are perceived to blend better than instruments that are farther apart. For the 

current study, such spaces offer a straightforward way of comparing how instruments are perceived 

to blend in different conditions. Correlation between the MDS configurations and acoustic features 

can also help interpret the underlying behaviors of blend ratings in the heard and imagined 

conditions.  

 Beta estimate SE p 
TriCor –0.375 0.082 < .0001 
Tri2_Med_diff –0.346 0.063 < .0001 
Tri2_Med_sum 0.338 0.067 < .0001 
Tri3_Med_diff –0.305 0.073 < .0001 
Noisiness_Med_diff –0.266 0.055 < .0001 
AttSlope_diff –0.258 0.101 .013 
AttSlope_sum 0.251 0.110 .025 
InHarm_Med_sum –0.247 0.067 .0004 
RMSErg_Med_diff –0.244 0.055 < .0001 
Tri1_Med_diff –0.198 0.077 .012 
SpecCent_IQR_sum 0.140 0.071 .052 
SpecCent_Med_sum –0.093 0.068 .172 
Model multiple 𝑅!: 0.8805                  Adjusted 𝑅!: 0.8622 



46 

 

For each condition, the median of blend ratings for each instrument pair across the two 

musicianship groups was treated as the dissimilarity measure between the associated instruments. 

Similarity measures were obtained by subtracting dissimilarity data from one, which were then 

modeled using MDS algorithms implemented by the R package “smacof” (de Leeuw & Mair, 

2009). Interval MDS was chosen as the model for the analyses which attempts to preserve the 

differences among the dissimilarity data.11 Results of the MDS solutions are presented below. 

3.4.1 MDS of blends in the concurrent condition 

The classical Torgerson solution was chosen as the default initial configuration for the MDS 

program. The resulting configuration has a Stress value of 0.068. The significance of the Stress 

was tested using a permutation test (Mair et al., 2016) where the original dissimilarity data were 

permuted randomly many times (in the current analysis, n = 100) and subjected to MDS. The stress 

value of the target MDS solution was then located within the distribution of Stress values obtained 

with permuted data and its p-value can then be calculated as a measure of the significance of the 

target Stress value. For the Stress (0.068) of the current MDS solution, p < .001. The suitability of 

the current MDS solution was also confirmed by refitting the data using different random initial 

configurations (n = 1000) and comparing the configuration of the best solution with the current 

 
11 The less stringent MDS variant, the ordinal MDS (which only attempts to preserve the ordering of dissimilarities 
data in the scaling configuration), was also tried in the analyses. However, they almost always yielded degenerate 
solutions, with percussion instruments and other instruments being clustered together separately. Thus, the interval 
MDS was adopted in the analyses. 
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MDS solution. After matching the two with Procrustean transformation12, they essentially showed 

the same configuration. Hence, the default MDS solution was adopted and plotted in Fig. 3-14.  A 

prominent feature is that instruments were separated in two groups based on whether they are 

percussion instruments or not. 

The correlation between dissimilarities data and distances in the MDS configuration is very 

large, r = .995, p < .0001, demonstrating a good fit of the MDS solution. Fig. 3-15 visualizes the 

stress-per-point for each instrument in the MDS solution, quantifying how much incongruence 

 
12 Procrustean transformations are similarity transformations that preserve the structure of MDS configurations by 
rotation, reflection, translation, and size scaling, which can be used to match an MDS configuration to another 
optimally by eliminating their non-structural differences (Borg et al., 2018, p. 84). 

Figure 3-14. MDS solution obtained with concurrent blend ratings, along with projections of 
acoustic correlates. Non-significant projections are drawn with dashed grey lines. For correlates 
only having one MDS dimension with significant contribution to the projections, the significant 
dimension is appended to correlates’ names with “*”. In the case of no significant contributions 
from either dimension, “(--)” are appended to the correlates’ names. 
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between fitted distances and corresponding dissimilarities there is for the associated instrument. 

Instruments with high stress contribution means that participants might have difficulties rating the 

blends associated with that instrument. For the current case, tuba and tubular bell are the two 

instruments that seem to elicit such difficulties. To figure out which pairs exactly contributed the 

most to the stress-per-point of individual instruments, the pairwise representation errors (i.e., the 

square of difference between dissimilarity rating and corresponding pairwise distance in the MDS 

configuration) were plotted as heatmap in Fig. 3-16. It is clear from the heatmap that the singularity 

of tubular bell and tuba is directly associated with their pairing together, that is, participants 

seemed to have difficulty or inconsistent conception when rating their blend. 

  

Figure 3-15. Stress contributions from individual instruments for the MDS scaling of concurrent 
blend ratings. 



49 

 

 

3.4.2 MDS of blends in the sequential condition 

Similar to the modeling of concurrent blend ratings, the default Torgerson solution was 

chosen as the initial configuration of the multidimensional scaling of sequential blend data. 

Alternative initial configurations were also explored by scaling the data with different random 

configurations (n = 1000) and choosing the best solution with the smallest Stress value. The two 

solutions showed essentially the same configuration after a Procrustean matching process. Thus, 

the default MDS solution was adopted. The solution has a Stress value of 0.091, which was tested 

to be significant (p < .001) with subsequent permutation test. To allow better comparisons between 

the MDS results of the two different blending conditions, the MDS configuration of sequential 

Figure 3-16. Representation errors for each pair of instruments in the MDS solution of concurrent 
blend ratings. Darker colors correspond to larger representation errors. 
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blends was matched optimally to that of the concurrent blends with Procrustean transformations. 

The transformed MDS solution is shown in Fig. 3-17, plotted with the same axial limits in Fig. 3-

14. Comparing to the “blend space” in the concurrent condition, the same grouping based on 

percussiveness is observed in the sequential condition. Interestingly, non-percussive instruments 

seem to occupy a much larger space and are more scattered. 

The dissimilarities data correlated very well with corresponding distances in the MDS 

configuration, r = .989, p < .0001. Fig. 3-18 plots the stress-per-point for each instrument in the 

MDS space. Compared with the results in the concurrent MDS, there are no such prominent 

instruments that contributed singularly to the overall Stress. It seems to suggest that the Stress is 

more widely distributed across different instruments and different pairs, with trombone, tubular 

bell, and trumpet contributing relatively more than the other instruments. This can be confirmed 

in Fig. 3-19 where pairwise representation errors are visualized with a heatmap. The magnitude of 

Figure 3-17. MDS solution obtained with sequential blend ratings (optimally matched with the 
MDS configuration obtained with concurrent blend ratings via Procrustean transformations), along 
with projections of acoustic correlates. 
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errors is not as big as the singular cases shown in the concurrent MDS, but there are more pairs 

with relatively large representation errors within the context of MDS of sequential blends. 

Prominent pairs are: FL_TrC, HO_TP, KLB_TU, KLB_TrC, OB_VC, RGL_TP, RGL_VC, 

TP_TrC. Overall, it seems that participants had difficulties or inconsistency with rating imagined 

blends for a wider range of instrument pairs compared with when rating the heard blends. 

Instruments with high spectral centroid and/or rich higher partials (such as trumpet, trombone, 

oboe, etc.) or complex harmonic structure (in the case of tubular bell) seem to be especially 

“problematic” when participants imagined their blends with other instruments. 

  

Figure 3-18. Stress contributions from individual instruments for the MDS scaling of sequential 
blend ratings. 
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Figure 3-19. Representation errors for each pair of instruments in the MDS solution of sequential 
blend ratings. Darker colors correspond to larger representation errors. 
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3.4.3 Projection of acoustic correlates 

Each of the thirteen acoustic features of single instruments described in section 2.2.1 was 

correlated using linear multiple regression with the coordinates of instruments in the MDS 

configuration for the concurrent and sequential conditions separately (i.e., using X and Y 

coordinates as independent variables, and acoustic correlates as dependent variables). Acoustic 

features were all standardized before regression so that the distribution of an acoustic feature was 

centered around zero with a standard deviation of one. Figs. 3-14 and 3-17 also visualize the 

correlation results, showing the projection of acoustic correlates onto the “blend space”. The 

relative lengths of projection arrows correspond to the multiple 𝑅! of the respective regression 

results. Non-significant regression results are colored in light grey with dashed lines. The 

significance of individual contribution from the first and second MDS dimensions to the projection 

fit is indicated following the acoustic correlates’ names (see the caption of Fig. 3-14). 

3.4.3.1 Acoustic correlates in the concurrent condition 

Table 3-3 shows some of the regression results of acoustic correlates in the concurrent MDS 

space. Correlates with significant regression results are in boldface. Overall, seven acoustic 

correlates showed significant correlation with the MDS configuration (listed according to 

descending 𝑅! ): AttSlope, Tri2_Med, Tri1_Med, RMSErg_Med, SpecCrest_Med, 

Noisiness_Med, InHarm_Med. Out of these correlates, AttSlope, Tri2_Med, RMSErg_Med and 

Noisiness_Med also appeared significant as pairwise features in the regression model of raw blend 

ratings in the concurrent condition. Attack slope very prominently explains the two groups of 

instruments separated across the first dimension shown in the MDS. There are a few other 

meaningful projections that might help to explain the distribution of instruments in the MDS space 

from different perspectives. Almost perpendicular to the projection of attack slope, InHarm_Med 

seems to be a meaningful direction that explains some amount of variance of the non-percussive 

instruments, though overall the fit of this projection is not as good as the other projections. 

Compared to the first dimension, the non-percussive instruments have a slightly larger spread on 

the second dimension of the MDS space, which contributed significantly only to the projection of 

InHarm_Med and SpecCrest_Med. It is tempting to ascribe this dimension to the “tonality” of the 

sound as inharmonicity and spectral crest both correspond more or less to the degree of 

harmonicity from two opposite directions (which is the case in the projection plot). Nevertheless, 
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as the fit is only moderate, further explanation of this portion of variance may still require other 

unexplored features. 

Table 3-3. Fit of projections and p-values of acoustic correlates in the MDS space obtained with 
concurrent blend ratings. Significant correlates are in boldface. 

 𝑹𝟐 Adjusted 𝑹𝟐 p 
AttSlope 0.671 0.611 0.0022 
Tri2_Med 0.564 0.485 0.0103 
Tri1_Med 0.561 0.482 0.0107 
RMSErg_Med 0.550 0.468 0.0124 
SpecCrest_Med 0.521 0.434 0.0175 
Noisiness_Med 0.515 0.427 0.0186 
InHarm_Med 0.487 0.394 0.0254 
SpecCent_Med 0.352 0.234 0.0920 
SpecCrest_IQR 0.261 0.126 0.1899 
RMSErg_IQR 0.196 0.050 0.3008 
Tri3_Med 0.160 0.007 0.3835 
SpecVar_Med 0.125 –0.034 0.4794 
SpecCent_IQR 0.063 –0.108 0.7008 

 

3.4.3.2 Acoustic correlates in the sequential condition 

Table 3-4 summarizes the regression results of projecting acoustic correlates onto the 

sequential MDS space. Nine correlates showed significant correlation with the MDS configuration 

(listed according to descending 𝑅! ): Tri3_Med, Tri2_Med, Noisiness_Med, Tri1_Med, 

SpecCent_Med, AttSlope, SpecCrest_Med, InHarm_Med, RMSErg_Med. 

Tri3_Med, Tri2_Med, Noisiness_Med, AttSlope, InHarm_Med and RMSErg_Med also 

appeared significant as pairwise features in the regression model of raw blend ratings in the 

sequential condition. Comparing these results to those obtained with concurrent blend ratings, 

SpecCent_Med and Tri3_Med emerge as having a significant correlation with the sequential MDS 

space but not for the concurrent space. Both correlates appear to be meaningful directions that 

explain the large variance of instruments (primarily along the second dimension). Some of the 

other correlates that are also significant in the concurrent MDS space remain largely invariant in 

terms of their projected directions in the sequential MDS space, for example SpecCrest_Med and 

Tri1_Med, which show better projection fit here and also seem to explain well the spatial variance 
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along the second dimension. Attack slope still pertains to the segregation between percussions and 

non-percussive instruments. Interestingly, Tri2_Med and Noisiness_Med swap their directions 

when comparing the two MDS spaces. 

 

Table 3-4. Fit of projections and p-values of acoustic correlates in the MDS space obtained with 
sequential blend ratings. Significant correlates are in boldface. 

 

 
𝑹𝟐 Adjusted 𝑹𝟐 p 

Tri3_Med 0.802 0.766 0.0001 
Tri2_Med 0.637 0.570 0.0038 
Noisiness_Med 0.619 0.549 0.0050 
Tri1_Med 0.607 0.535 0.0059 
SpecCent_Med 0.597 0.524 0.0067 
AttSlope 0.586 0.511 0.0078 
SpecCrest_Med 0.521 0.434 0.0174 
InHarm_Med 0.507 0.418 0.0204 
RMSErg_Med 0.506 0.416 0.0207 
SpecCent_IQR 0.349 0.230 0.0946 
SpecCrest_IQR 0.189 0.041 0.3166 
SpecVar_Med 0.139 –0.018 0.4393 
RMSErg_IQR 0.026 –0.151 0.8654 
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Chapter 4  
Discussion 

 Discussion 
The current study aims to uncover how blends are perceived in imagination compared with 

when the blends are actually heard, whether musical backgrounds have an effect on this, and finally 

how acoustic features might contribute to the two different types of blends differently. The four 

sets of analyses were set to answer these questions, sometimes with overlapping focuses but from 

different perspectives: 1) correlation between blend ratings in the two conditions was conducted 

to show the general similarities between imagined and heard blends; 2) ANOVA was conducted 

with two different organizations of data, i.e., instrument-wise and family-wise blends, to 

decompose the effects of musical background, instrumental specificity, and blending condition. 

The two organizations of data provide alternative views at the instrumental aspect of blends, with 

family-wise organization abstracting the pairwise choices into family-wise combinations that give 

a more generalized account of the instrumental factor. Compared with the overall correlation done 

in the first step, ANOVA also provides a more zoomed-in description of how specific instrument 

pairs or family combinations are perceived to blend differently under the two conditions by people 

with different musical backgrounds; 3) regression modeling of blends with acoustic correlates was 

conducted to show how the perception of blends are affected by the interaction of different acoustic 

features of the paired instruments, and how these features might be used differently in the two 

blending conditions; 4) multidimensional scaling was used to visualize the “blend spaces” of 

instruments in the two blending conditions where acoustic correlates were projected, which 

provides another perspective to re-examine the acoustic modeling done in the third step (as MDS 

provides a more generic abstraction of the blend ratings). Discussion of the results of these analyses 

will be formed around the two research questions proposed in section 1.3.3, within which more 

detailed aspects will be listed pertaining to the specific analyses. 
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4.1 Congruence and incongruence between heard and imagined 
blends 
Despite local differences observed in specific instrument pairs, imagined and heard blends 

are largely parallel to each other (see Fig. 3-1 and 3-2 for the overall contours of two types of blend 

ratings) for both musicians and non-musicians, which can be confirmed also by the large 

correlation between blend ratings in the two conditions. Thus, it seems that the mental image of 

blending two instruments is to some extent comparable to that of hearing the instruments, which 

should be a reasonable extrapolation of previously mentioned evidence of the authenticity of 

imagining single instrument’s timbre. The large picture holds true for both types of blends: pairs 

containing one percussive and one sustained instrument blend universally worse than all the other 

pairs. 

Within this overall parallelism, different instrument pairs very clearly exhibit different 

properties that induce various degrees of difference between the two types of perceived blends, 

including the sign of the difference. Regarding the general difference between heard and imagined 

blends, almost all participants reported that many pairs blended much better when they actually 

heard them being played compared to what they previously imagined, which is confirmed by the 

significant main effect of blending condition. This global pattern holds true when inspecting the 

data from musicians and non-musicians separately. It seems plausible that despite the ability for 

people to imagine two instruments blending together, the mental image of this interaction still 

deviates from the real perception of actual sounding blends, and in the case of the current 

experiment the imagination seems to be on average more “conservative” than the real blends13. A 

possible explanation of this, which has been confirmed by some participants’ feedback, is partly 

related to the “constructive” nature of mentally blending two existing instruments: operating on 

the mental images of two distinct instruments itself assumes a priori the “twoness” of the 

composite sound14.  

 
13 It should be emphasized that this “conservativeness” is an averaged description. A more meaningful interpretation 
will be discussed as we consider the specificities of instrument pairs. Nevertheless, it seems to echo participants’ 
general feedback well. 
14  Even the operation of superimposing two instruments in mind turned out to be a bit problematic for some 
participants as some of them reported a certain level of general difficulty when imagining blends. 
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The exact nature of differences between blends in the two experimental conditions is largely 

dependent on the specific instrument pairs in question. As shown in Fig. 3-7, blends of two 

sustained instruments were generally “underestimated” in imagination, and blends of one 

percussive and one sustained instrument were generally “overestimated” in imagination. As these 

two categories of blends also generally received ratings that are somewhat clustered at the higher 

and lower regions, respectively, on the rating scale (i.e., pairs of sustained instruments are 

generally better blenders than pairs mixing percussive and sustained instruments), it seems to 

suggest that imagined blends in general tend to be rated more conservatively. Note in Fig. 3-8 that 

most of the pairs with significant conditional blend differences are pairs of two sustained 

instruments, which were perceived to blend better in reality. Only two pairs of sustained-

percussive instruments have significant conditional blend differences with better blends in 

imagination. None of the two pairs were considered to have “larger” conditional blend differences 

as tested in section 3.2.1.2. It seems plausible that for instruments with sharp attack contrasts, 

blends were relatively easy to be conceived in imagination and rated because of the stark difference 

of attack profiles as a signifier of non-blend. Thus, they were in general given low ratings, which 

were not too different from the perception of hearing the blends. For instruments without big attack 

contrasts, blends were harder to conceive and evaluate in imagination, possibly because of the 

generic difficulty of superimposing two instruments’ images in imagination and the intrinsic 

“twoness” of the imagination task, as mentioned previously. 

Regarding the innate difficulty of imagining blends, as hypothesized in section 1.3.3, the 

action of retaining two instruments in memory and subsequently superimposing them internally 

requires a certain amount of attention resources which might detract from the accuracy of the 

blend’s representation. Some participants reported the “blurry” nature of imagined blends, where 

it was possible to imagine the blend of two instruments but usually only a rough image (compared 

with the direct perception of blends in the concurrent condition). Thus, participants were less 

confident to rate the imagined blends as either really well-blended or badly blended. This is also 

reflected in the distribution of ratings: for the concurrent condition, blends are more populated near 

both ends of the scale; for the sequential condition, blends are more spread across the entire scale. 

Another possible explanation of concurrent blend ratings being more polarized than sequential 

blend ratings is linked to the ordering of the experimental conditions. The imagination task (and 

its associated difficulty and “indirectness”) in the first part likely conditioned and heightened 
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participants’ awareness and expectation of what an actual good or bad blend sounds like. The 

exposure to real blends in the second part thus confronted participants with fresh stimuli that were 

easily accessible and amenable to evaluation (compared with the more indirect “path” to imagined 

blends). This augmented state of realization of aspects of blends (e.g., “I didn’t expect this pair to 

blend that well/badly until I heard it”, which was common feedback from participants) possibly 

encouraged participants to rate with more confidence that led to more polarized ratings.  

The previous observation of pairs involving percussion instruments, however, is not the case 

for tubular bell, as all its pairs were perceived to blend somewhat better in reality than in 

imagination (whether the differences are significant or not). The inharmonic sound of tubular bell 

seems to suggest to participants’ its inability to blend with other instruments, as all the other 

instruments have relatively much more harmonic sounds with clearly defined pitches. In reality, 

the sound of tubular bell was actually able to blend with others to a better degree, possibly due to 

masking and complex interactions between frequencies of the paired sounds. On the one hand, this 

again points to the fact that blends in imagination are probably not able to preserve and account 

for the actual acoustic interactions happening within real blends. On the other hand, it provides 

some evidence that the evaluation of blends in imagination might be biased on simply evaluating 

the similarity between constituent instruments, as the immediacy of tubular bell’s uniqueness 

possibly explains its low blend ratings when paired with other instruments in imagination. These 

points will be re-discussed in the following sections. 

The tendencies of single instruments to form pairs with significant conditional blend 

differences, as summarized in Fig. 3-9, showed some degree of correlation with instruments’ attack 

slopes, RMS energy, and the second tristimulus value. Especially, the factor of attack profile seems 

consistent with the observation mentioned above that it might be easier to conceive and evaluate 

blends containing percussive and sustained instruments than those made of instruments with 

similar attack qualities. The other two factors are a bit difficult to explain, and are thus in need of 

further investigation.  

Analyses with family-wise blends essentially suggest very similar findings. Combinations 

between non-percussive families were all perceived to blend significantly higher in reality than in 

imagination, except for the self-combination of string family which were perceived to be 

essentially the same in the two conditions. The differences between the two blending conditions 

for combinations involving percussions are all non-significant. These findings are in line with the 
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observations obtained with instrument-wise blends that instruments with contrasting attack 

behaviors are more immediate to blend evaluation in imagination than other pairs. 

4.2 The effect of musical backgrounds 
Plotting the distribution of blend ratings by musicians and non-musicians separately (Fig. 4-

1) suggests that non-musicians tended to give more polarized blend ratings than musicians. As 

shown in Fig. 4-1, non-musicians tended to use the extremities of the rating scale more frequently 

than musicians did. Verbal feedback from some non-musician participants suggests that the idea 

of blend exists on a continuum was understandable for them but somehow still a bit difficult to 

operate on themselves. As musicians supposedly engage with instrumental practices and using 

blends much more frequently, it seems reasonable that they are more confident in and capable of 

describing blends with small differences. 

Figure 4-1. Distributions of blend ratings by musicians (upper panels) and non-musicians (lower 
panels) separated by the two blending conditions. 
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The significant three-way interaction between musical background, instrument pair, and 

blending condition suggests that musical background may play a role in how blends are imagined 

vs. heard for different instrument pairs. Fig. 3-10 suggests that for instrument pairs that do 

significantly distinguish between the two groups of participants in terms of conditional blend 

differences, musicians’ imagination of blend seem to be overall more similar to their perception 

of heard blends compared to non-musicians. For non-musicians, the potential for these pairs to 

blend are more prominently “underestimated” than with musicians. The dominance of tubular bell 

in the pairs shown in Fig. 3-10, especially with the pair RGL_TP (also the case for EH_RGL and 

OB_RGL, but less prominent) showing different directions of conditional differences, suggests 

that its blends were probably perceived or “understood” differently by musicians and non-

musicians, possibly due to its inharmonic nature. The other possibility is related to the reported 

ambiguity of blends involving one percussive and one sustained instrument. Similar to the results 

found in Tardieu & McAdams (2012), participants sometimes reported very different ideas about 

how such mixed pairs blend in perception: while some stated that they didn’t think such pairs 

blended at all (whether in reality or imagination) because of the immediate contrasts between the 

two instruments’ attacks, some said they saw such pairs as “chimeric” blends with the attack 

coming from the impulsive instrument and the tail (sustained part) from the sustained instrument, 

creating a plausible “new” instrument as a single source in perception. This ambiguity was seen in 

both musicians and non-musicians and probably caused the sometimes-contrasting perceptual 

results around these pairs. 

4.3 Acoustic correlates of blend 
Overall, acoustic modeling of blends in the concurrent and sequential conditions suggests a 

similar set of features that may explain the blend ratings. The model for concurrent blend ratings 

shares a few common acoustic predictors with the one obtained in Sandell (1991) for unison 

blends: in Sandell’s work, the absolute difference of perceptual attack time and the third value 

(energy of the fifth harmonic and above) of tristimulus of the difference spectrum between the 

paired instruments were included in the final model. Perceptual attack time difference describes 

the contrasting behaviors of attacks of the paired instruments, which functions similarly to the 

feature AttSlope_diff in the current model. The tristimulus feature in Sandell’s model is 

conceptually the same as Tri3_Med_diff in the current model, with some minor difference in 
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calculation15. For the concurrent blend model, a few other tristimulus related features also turned 

out to be significant. The model coefficients suggest that as the difference between instruments’ 

tristimulus values become larger (for the higher harmonic region above the fundamental), their 

blend becomes worse. The positive coefficient of Tri2_Med_sum seems to suggest that overall 

higher energy in the middle harmonic regions (spanning from the second to the fourth harmonics) 

also promotes blend. In line with Sandell’s model, the negative coefficient of AttSlope_diff means 

that large difference between attack behaviors leads to worse blend. The prominence of tristimulus 

related features found in models of both blending conditions suggests an important role of features 

related to contrasts of spectral envelopes between the blending sounds. Further investigation of 

more refined features like formant shapes and locations might give better explanatory power. 

Interestingly, the coefficient of TriCor is negative, which suggests that when other predictors 

are held constant, higher positive correlation between tristimulus of the paired instruments (i.e., 

instruments with similar harmonic energy distribution of the three harmonic regions) leads to 

worse blend. This seems to go against some of the previous evidence that concurrent sounds with 

insufficiently overlapping spectra tend be heard independently (Reuter, 1997). The same negative 

contribution from TriCor is also observed for sequential blend ratings. A possible explanation (at 

least in the case of concurrent blends) for this counterintuitive behavior might be that all the 

concurrent pairs were synthesized by simply superimposing two instrument samples that were 

recorded independently, which were not intended for an ideal blending scenario. A problematic 

technical detail found during the preparation stage of the experiment was that playing these 

individual sounds together created some unnatural artefacts for certain pairs due to phase 

cancellation especially for the high partial regions16. This potentially complicated the masking 

behaviors between the spectra of sounds. An ideal scenario would be to record blends as-is in a 

natural manner à la Kendall & Carterette (1991) where mixing and position of microphones can 

 
15 The tristimulus feature used in Sandell’s work was calculated first by taking a difference spectrum between average 
spectra of the two paired instruments. Tristimulus values were then calculated on the difference spectrum. 
16 This was also the underlying reason for manually adjusting the time shift values for synchronizing instruments 
when preparing the concurrent stimuli (see section 2.1.2), as a way to preserve the naturalness of blends while also 
ensuring perceptual synchrony between the instruments. 
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be adjusted to best reflect how instrumental blends are usually produced and heard, which would 

probably lead to different results than the current findings.  

On the other hand, as tristimulus doesn’t fully reflect the distribution of formants, the 

contribution of negatively correlated tristimulus values might not necessarily negate the presence 

of overlapping formants, but rather simply suggests an additional favoring of dissimilar harmonic 

energy distribution as a blend contributor when other factors are held constant. The persistence of 

this contributor in the sequential condition also seems to suggest a universal preference for such 

regional harmonic energy contrasts regardless of whether the blends are heard or imagined. It is 

not difficult to see that TriCor can be uniquely determined from pairwise composite and difference 

values for the three tristimulus descriptors (i.e., Tri1_Med_sum, Tri1_Med_diff, Tri2_Med_sum, 

…, if neglecting the small error resulting from using median as the summary statistic), though non-

linearly. The significance of TriCor and a few specific composite and difference tristimulus 

features found in regression suggests that the relationship between blend and tristimulus is quite 

convoluted. It might help to design a more focused experiment in which a set of sounds are 

synthesized, sharing basic acoustic features such as formant locations, attack profiles, etc. At the 

same time, the relative distribution of harmonic energy in different frequency regions is allowed 

to vary for different sounds, providing various tristimulus profiles. After listening to pairs of these 

sounds, participants would then be asked to rate their blends, following a similar concurrent vs. 

sequential conditional setup. Such an experiment, where the difference between sounds is largely 

limited to only tristimulus, could hopefully give a clearer picture of how tristimulus affects blend 

specifically. 

The commonality of features retained by models of concurrent and sequential blends seems 

to support the qualitative observation in section 4.1 that heard and imagined blends are overall 

parallel. Surprisingly, a factor that is missing from both models is spectral centroid, which has 

usually made a significant contribution to modeling perceived blend. A possible explanation of 

this could be found in Lembke et al. (2019), where they included the blends of impulsive and 

sustained sounds in their stimuli. They observed that the temporal features were more influential 

in modeling blends while spectral features became secondary or even tertiary. They suggested that 

“In perceptual tasks comparable to those employed in these experiments, participants may focus 

their attention on the dominant distinctions across stimuli at the cost of perceptual resolution for 

the less pronounced differences”, which seems applicable to the current study not only because of 
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the inclusion of impulsive instruments that might draw the attention of participants 

disproportionately, but also because of the contrasts between the two experimental conditions that 

could have biased the perception of participants as mentioned before, which similarly might lead 

to the reduced “perceptual resolution for the less pronounced differences”. 

When comparing the two “blend spaces” obtained with MDS, a few interesting observations 

can be made. Very prominently, both spaces showed the same segregation between percussive and 

non-percussive instruments, which again supports the universal role of attack contrasts in shaping 

blends. When looking at the projections of acoustic descriptors, certain significant correlates (e.g., 

Tri1_Med and SpecCrest_Med) remained almost constant in terms of their directions, suggesting 

some invariant aspects when judging heard and imagined blends. The absence of significant 

projections of Tri3_Med and SpecCent_Med in the space of heard blends, which, however, appear 

to be significant in the space of imagined blends, deserves a closer look. Fig. 4-2 shows the two 

spaces together, with a few “pairs with larger conditional blend differences” (see section 3.2.1.2) 

being emphasized by connecting the paired instruments with a colored line. First of all, note that 

despite being non-significant in the concurrent space, the projections of Tri3_Med and 

SpecCent_Med retain almost the same directions there as in the sequential space. Secondly, note 

the changes of orientation of the highlighted pairs between the two spaces. While these pairs are 

relatively close together on the projections of Tri3_Med and SpecCent_Med in the concurrent 

space (the connected lines are close to perpendicular to these projections), they are farther apart 

(i.e., less blended) and much more stretched out along the projections of Tri3_Med and 

SpecCent_Med (the connected lines are comparatively closer to parallel to these projections).  
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Figure 4-2. MDS spaces obtained with concurrent and sequential blend ratings. A few pairs that 
were tested to have large conditional blend differences are connected by colored lines (colors are 
shared by the two graphs). 
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These behaviors seem to suggest that (at least for the cases of pairs that have significantly 

large conditional blend differences), when participants imagine blends, a primary focus is on the 

differences between the high frequency contents of the two sounds. If the sounds are very different 

in terms of their brightness and/or relative energy in the high partial regions, then they are less 

likely to blend well in imagination because of their uniqueness on these aspects. On the other hand, 

these two features seem to be more irrelevant to evaluation of heard blends, possibly because of, 

as already discussed above, the complex masking and interaction between frequencies happening 

in real blends that were not faithfully accounted for in imagination but led to better perceived 

blends in real sounds, as well as the generally reduced perceptual resolution for these frequential 

features. The absence of these two projections in the concurrent “blend space” plausibly collapses 

the instruments into a smaller space (thus better blends in general), where some of the individual 

differences between instruments that are deemed to be prohibitive to blends in imagination become 

less influential for good blending to happen with real sounds.  

In the end, one might also surmise that evaluating blends in imagination resorts more or less 

to judging the similarity between the involved instruments, instead of a complete mental recreation 

of two instruments sounding together. Based on these comparisons and some participants’ 

feedback, it seems that there is an underlying analytical or “comparative” inclination when 

imagining and evaluating blends, where certain differences and contrasts between two sounds are 

readily understood (or intuitively interpreted) as a signifier of non-blends, without necessarily 

undergoing the supposed “superimpose-and-analyze” mental process. A comparative study using 

the same stimuli with participants rating the perceived similarity between instruments might 

provide more evidence for this hypothesis. 

As a concluding mark, it is worth mentioning that the interpretation of acoustic correlates 

based on MDS spaces might be compared with the previous results obtained from direct regression 

modeling on blend data as complementary explanations. Their divergence (e.g., spectral centroid 

appears to be meaningful within “blend spaces” but not in the regression models) is expected, as 

MDS already re-models and abstracts the blend data itself. Thus, the two approaches essentially 

provide two alternative angles in tandem for interpreting and explaining the observed blends. 
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Chapter 5  
Conclusion 

 Conclusion 
The current study assessed how instrumental blends are perceived in imagination in 

comparison with the perception of blend in physically presented sound dyads. The results show 

that macroscopically imagined blends are largely consistent with heard blends, suggesting that 

mental images of blends can be constructed from isolated sources, which still match the perception 

of real blends to a certain degree. On a microscopic level, how well the imagined images of blends 

correspond to the heard blends is contingent on the complex interaction between the specific 

instruments involved and the participants’ musical backgrounds. For pairs involving impulsive 

instruments, their blends can be readily conceived and evaluated in imagination relying on the 

contrasting attack profiles of the instruments, therefore most closely matching the perception of 

heard blends. Without this cue, blends can be harder to be properly conceived in imagination, and 

the degree of blend is usually underestimated.  

Acoustic modeling shows similar sets of acoustic features meaningful for explaining the two 

types of blends. This invariance is also reflected in multidimensional scaling of the two sets of 

blend data, where certain acoustic correlates show similar projections in the two “blend spaces”. 

Attack slope and tristimulus appear to have consistent explanatory power for both heard blend and 

imagined blend ratings, where greater difference between the respective values of the two 

instruments leads to worse blend. Interestingly, features related to the amount of energy present in 

the higher frequency regions of sounds appear to be meaningful when explaining instrument pairs 

that received significantly different ratings between the concurrent and sequential conditions. 

Instruments with rich high partials and prominent energy in the high frequency regions (such as 

trumpet and tubular bell) possibly signal an innate disinclination to blend with others due to their 

uniqueness, which functions as an important cue for evaluating imagined blends. In reality, due to 

the complex masking and interactions between the spectra, the degree of blends for these 
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instruments is actually improved to different extents, as reflected by their higher concurrent blend 

ratings. It seems plausible that it is difficult for the mental faculty to fully account for the complex 

sensory interactions occurring between sounds that may affect the actual blends. A “comparative” 

strategy, by which sounds are analyzed according to their differences and uniqueness, thus seems 

to be what is underlying the evaluation of imagined blends besides an authentic mental image of 

the blends as superimposed timbral composites. 

The factor of musical backgrounds is complex and intertwined with specific instruments in 

question. Non-musicians tended to give more extreme ratings to a given pair than musicians, 

probably because musicians are more sensitive to various degrees of timbral changes and are able 

to evaluate blends on a finer scale. The greatest divergence seems to be associated with the 

perception of pairs involving one sustained and impulsive instrument, as the idea of how such pairs 

blend is rather blurry and different across individuals. 

As mentioned in the previous chapters, there are several limitations of the current study due 

to time and resource constraints. The stimuli used in the current studies were individual samples 

that didn’t take into account the “musical” scenario of blending with other instruments. 

Instrumental blends in a real-world scenario entail coordination between musicians that are 

specific to the instruments, and ideally the reception of the blends would also be optimized in terms 

of the spacing between instruments and listeners, as well as room acoustics. Technical problems 

as such unwanted cancellation between sounds would be greatly alleviated with blends being 

recorded by pairs of performers. This would also spare the effort of manually synchronizing pairs 

of instruments with greater precision and naturalness.  

Regarding the analytical methods, as mentioned in section 3.2.1, including random slopes 

for the within-subjects factors should improve the validity of the analyses with linear mixed 

models. Acoustic features for modeling blends were chosen primarily based on prior knowledge 

and generic representativeness, which are far from comprehensive. Approaches allowing for 

selecting meaningful regressors out of a large number of potential predictors, such as partial least 

squares or lasso regression, might improve the interpretability of the current results with other 

useful acoustic correlates. Local spectral descriptors pertaining to the formant structures of 

instruments (Lembke & McAdams, 2015) also seem promising as additional features to explore 

for explaining the blend ratings. Finally, as mentioned in section 4.1, the ordering of the two 

conditions in the current experiment seems to have a potentially great effect on how participants 
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evaluate blends. While presenting the sequential condition first can help bypass the priming effect 

with presenting concurrent blends to participants first, it probably brought in other biases as 

mentioned in the previous discussion. Randomizing the order of presentation as a comparative 

follow-up study might be able to show how great the biases are. 

As imagination of timbral combinations are most often encountered by composers or 

conductors when dealing with real-world compositions, it seems logical that a more musically 

meaningful examination of the properties of timbral imagination should allow for a larger musical 

context. Composers rarely focus on the blends of two static single notes. Phrasal, melodic, or even 

textural organizations thus may serve as meaningful musical contexts for future explorations on 

timbral imagination, allowing a more organic and ecologically valid investigation of other possible 

musical factors that affect blends in imagination. 

On the other hand, the yet-unanswered question of what is actually happening when people 

actively imagine blends calls for more detailed neurological approaches to elucidate its underlying 

mechanism. Some of the participants recognized after the experiment that they didn’t always or 

were not always sure that they followed the instruction of imagining the two sounds playing 

simultaneously (as it was not always easy), but rather switched to other methods momentarily, 

such as holding the first note in memory and superimposing this image onto the second note when 

it was being played where evaluations were made on this “half-imagined” blend. Other methods 

reported include simply judging the similarity between instruments as a “shortcut” to rate how 

they would blend in imagination. Methods such as functional MRI (fMRI), as adopted in Halpern 

et al. (2004), might shed light on how comparable imagining blends is with hearing blends or 

simply comparing two sounds on a neurological level. 
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Appendix 1: Loudness match adjustment 
 

Table A. Loudness adjustment applied to instrumental samples based on the results of loudness 
matching pre-experiment. 

Filenames Loudness adjustment (dB) 
CE_ES_f_D#4.wav 2.73 
EH_pA_sus_f_D#4.wav -4.14 
FA_nA_sus_f_D#4.wav -0.55 
FL1_oV_pA_sus_f_D#4.wav -1.55 
HO_oV_nA_sus_f_D#4.wav 0.4 
KLB_nA_1-105_f_D#4.wav -1.81 
OB_pA_sus_f_D#4.wav 0.14 
RGL_led_ff_D#4.wav 0.93 
TP_oV_nA_sus_f_D#4.wav -1.54 
TU_oV_nA_sus_f_D#4.wav -1.05 
TrC_oV_nA_sus_f_D#4.wav -1.11 
VC_sus_mf_D#4.wav -0.43 
VI_sus_mf_D#4.wav -3.56 
Vib_ES_Me_sp-0_mf1_D#4.wav 3.27 
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Appendix 2: Synchrony adjustment 
 

Table B. Time offsets between instrumental samples applied to ensure pairwise perceptual 
synchrony. Values are times in milliseconds that row’s stimuli should be delayed to be in 
synchrony with column’s stimuli. 

 

(Note: One may observe that time offsets associated with the flute sound are almost always much 

larger than with other instruments. This can be attributed to the characteristically slow and airy 

attack of the flute, which calls for bigger temporal adjustments for it to be in sync with other 

instruments.) 

 

 
CE EH FA FL HO KLB OB RGL TP TU TrC VC VI Vib 

CE - - - - - - - - - - - - - - 

EH -2.9 - - - - - - - - - - - - - 

FA -30.5 -17.4 - - - - - - - - - - - - 

FL -108.8 -117.6 -107.4 - - - - - - - - - - - 

HO -11.6 2.9 23.2 98.7 - - - - - - - - - - 

KLB -40.6 -36.3 -29 58 -42.1 - - - - - - - - - 

OB -5.8 -8.7 17.4 95.8 -1.5 26.1 - - - - - - - - 

RGL -2.9 17.4 34.8 119 2.9 74 -1.5 - - - - - - - 

TP -37.7 -20.3 10.2 97.2 -24.7 33.4 -16 -36.3 - - - - - - 

TU -4.4 -1.5 20.3 121.9 -7.3 47.9 -1.5 -5.8 11.6 - - - - - 

TrC -23.2 -2.9 17.4 127.7 -7.3 53.7 -21.8 -4.4 2.9 -2.9 - - - - 

VC -36.3 -13.1 11.6 98.7 -5.8 23.2 -11.6 -16 4.4 -7.3 -1.5 - - - 

VI -65.3 -4.4 -5.8 90 -24.7 13.1 -40.6 -40.6 -13.1 -14.5 -7.3 -10.2 - - 

Vib 1.5 18.9 40.6 105.9 7.3 59.5 18.9 2.9 42.1 10.2 13.1 53.7 37.7 - 
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